高考数学难点-数学归纳法解题
- 格式:pdf
- 大小:171.73 KB
- 文档页数:6
高考数学一轮复习方法指导:数学归纳法数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范畴内成立,下面是小编整理2021年高考数学一轮复习方法指导:数学归纳法,期望对您高考复习有所关心.(一)第一数学归纳法一样地,证明一个与正整数n有关的命题,有如下步骤(1)证明当n取第一个值时命题成立,关于一样数列取值为1,但也有专门情形,(2)假设当n=k(k≥[n的第一个值],k为自然数)时命题成立,证明当n= k+1时命题也成立。
(二)第二数学归纳法关于某个与自然数有关的命题,(1)验证n=n0时P(n)成立,(2)假设no综合(1)(2)对一切自然数n(>n0),命题P(n)都成立,(三)螺旋式数学归纳法P(n),Q(n)为两个与自然数有关的命题,假如(1)P(n0)成立,(2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k +1)成立,综合(1)(2),关于一切自然数n(>n0),P(n),Q(n)都成立,(四)倒推数学归纳法(又名反向数学归纳法)(1)关于无穷多个自然数命题P(n)成立,一样说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,事实上确实是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”因此也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副事实上的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
(2)假设P(k+1)成立,并在此基础上推出P(k)成立,教师范读的是阅读教学中不可缺少的部分,我常采纳范读,让幼儿学习、仿照。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
高考数学中的数学归纳法及应用在高考数学中,数学归纳法是一个重要的概念,它被广泛应用于各种数学问题的解决和证明,特别是那些与自然数和整数相关的问题。
在本文中,我们将主要讨论高考数学中的数学归纳法及其应用。
1. 数学归纳法的基本原理数学归纳法是一种数学推理方法,通过一个已知的命题的真实性,证明其对于所有的自然数都成立。
数学归纳法的基本步骤包括以下三个部分:第一步,证明基本情况,即证明所要证明的命题在某个整数上成立。
这个整数一般是0或1,有时也可以是其他的整数。
第二步,证明归纳步骤,即证明如果命题在某个整数上成立,那么它在下一个整数上也会成立。
第三步,结论,即由前两步推出所要证明的命题对所有的自然数都成立。
2. 数学归纳法的应用数学归纳法在高考数学中的应用非常广泛,以下是一些常见的应用:2.1. 计算等差数列的和等差数列的和问题,就可以用数学归纳法来推导出通用公式。
具体步骤如下:首先,我们用初中阶段所学的方法,求出等差数列前n项和的通式Sn。
S1 = a1 (n=1时,Sn=a1)S2 = a1 + a2 (n=2时,Sn=a1+a2)S3 = a1 + a2 + a3 (n=3时,Sn=a1+a2+a3)……Sn = a1 + a2 + …… + an我们通过数学归纳法来推导出通用公式:证明基本情况,当n=1 时,Sn=a1 成立。
证明归纳步骤:假设当n = k(k≥1)时,Sn = a1 + a2 + …… + ak 成立。
即证明当n=k+1 时,Sn=a1+a2+……+ak+ak+1 成立。
即结论:对于所有的自然数n,等差数列的前n项和为Sn = n[a1 + an] / 2。
2.2. 证明不等式数学归纳法也可以用于证明不等式的真实性。
如果某个命题的成立可以从另一个命题的成立推导出来,而这两个命题都可以用数学归纳法进行证明,那么我们可以通过这两个命题的联合证明,来证明原来的不等式。
例如,我们可以用数学归纳法证明n ≥ 3 时,2^n > n^2。
高考数学中的数学归纳法及递推公式数学归纳法是数学方法中的一种,用于证明所有自然数或其某些子集上的陈述。
在高考数学考试中,数学归纳法是一个重要的主题,涵盖了递推公式、数列、不等式等等。
在高考数学的数列问题中,数学归纳法是一个非常重要的概念。
这种场景下,通过数学归纳法来找到递推公式,可以使我们更快地找到数列公式,从而计算出所需的结果。
例如,一个常见的问题是找到斐波那契数列的公式。
在这种情况下,数学归纳法可以帮助我们找到递推关系,快速计算出所需的结果。
数学归纳法从基础情况开始,以这个情况为“基础”。
然后,假设对于某个自然数,这个情况成立,并证明对于下一个自然数,相同的情况也成立。
通过这种方式,我们可以证明所有自然数上的情况都成立。
具体来讲,这个方法有以下步骤:1. 证明基础情况2. 假设某个情况成立(归纳假设)3. 证明对于比这个情况大1的自然数,相同的情况也成立(归纳过程)在高考数学考试中常常被用来推导递推公式的概念,其实就是一种应用数学归纳法的方法。
如果想要得到一个递推公式,我们需要通过两种方法进行推导。
第一种方法是正向递推,通常从小到大来计算数列元素的值。
为了证明这个方法的有效性,我们需要遵循数学归纳法。
具体而言,首先证明基础情况成立,然后假设对于某个自然数,递推公式成立,并证明对于下一个自然数,递推公式也成立。
通过这种方式,我们就可以得到一个递推公式,并成功地使用它来计算除基础情况之外的任何自然数。
这种方法通常比较直观,因为它从数列开始,逐渐向前推导,而且递推公式也很容易理解和使用。
第二种方法是逆向递推,通常从大到小来计算数列元素的值。
为了证明这个方法的有效性,我们需要使用数学归纳法。
首先证明基础情况成立,然后假设对于某个自然数,逆推公式成立,并证明对于前一个自然数,逆推公式也成立。
通过这种方式,我们就可以得到一个逆推公式,同样可以成功地使用它来计算除基础情况之外的任何自然数。
这种方法比较复杂,因为它从数列的末端开始计算,但在某些情况下,逆推公式更容易理解和使用。
数学归纳法在解题中的技巧1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体内容转变方法存有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段探讨法:适用于于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于于存有显著几何意义的情况。
2、因式分解根据项数挑选方法和按照通常步骤就是顺利进行因式分解的关键技巧。
因式分解的通常步骤就是:提取公因式;选择用公式;十字相乘法;分组分解法;拆项添项法;3、分体式方法。
利用全然平方公式把一个式子或部分化成全然平方式就是分体式方法,它就是数学中的关键方法和技巧。
分体式方法的主要根据存有:4、换元法。
解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5、未定系数法。
未定系数法就是在未知对象形式的条件下求对象的一种方法。
适用于于求点的座标、函数解析式、曲线方程等关键问题的化解。
其解题步骤就是:①设立②列于③求解④写下6、复杂代数等式。
复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最了不起的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)谋值域范围的思路列于欲求范围字母的不等式或不等式组8、化简二次根式。
基本思路是:把√m化成完全平方式。
即:9、观察法10、代数式求值方法存有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)特别注意:当表达式的代数式就是字母的“等距式”时,通常可以化成字母“和与内积”的形式,从而用“和内积代入法”表达式。
11、解含参方程。
方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型解(2)根据需要讨论(3)分类写下结论12、恒相等成立的有用条件(1)ax+b=0对于任一x都设立关于x的方程ax+b=0存有无数个求解a=0且b=0。
高考数学技巧如何利用数学归纳法解决问题数学归纳法是一种常见且重要的数学技巧,在高考数学中经常被用于解决一些复杂的问题。
通过合理运用数学归纳法,可以简化问题的复杂性,从而更好地解决数学题。
本文将探讨高考数学中如何利用数学归纳法解决问题的技巧和方法,并通过一些例题进行说明。
一、数学归纳法的基本原理数学归纳法是一种证明数学命题的方法。
它的基本原理是:设n为一个正整数,如果能证明当n取某个值时命题成立,而且如果在命题成立的情况下可以推导得到n+1的情况也成立,那么就可以得出结论:当n为任意正整数时,命题都成立。
二、数学归纳法的步骤数学归纳法主要包括三个步骤:基础步骤、归纳假设和归纳步骤。
1.基础步骤:首先需要证明当n取某个值时命题成立。
这个值通常是最小的正整数,可以是1或任意不为0的正整数。
2.归纳假设:假设当n取k(其中k为正整数)时命题成立,即假设命题P(k)为真。
3.归纳步骤:在已知P(k)为真的情况下,利用此假设证明P(k+1)为真。
通过推理和运算,将P(k+1)的真实性转化为某个已知条件的真实性,即从P(k)推导得到P(k+1)。
三、利用数学归纳法解决高考数学问题的技巧1.明确问题类型:在高考数学中利用数学归纳法解题,首先要明确问题的类型。
常见的问题类型包括数列、方程、不等式、集合等。
2.观察规律:利用数学归纳法解题的关键在于观察规律。
通过对问题的分析和计算,观察数列、方程等中数值、系数的变化规律,总结出规律的特点。
3.列出基础步骤:根据观察所得的规律,找到问题中的基础步骤。
基础步骤通常是证明当n取某个值时命题成立。
4.假设并证明:在观察到的规律的基础上,假设命题P(k)为真,并通过计算和推理证明该命题成立。
5.归纳得出结论:在已知P(k)为真的情况下,运用数学归纳法的归纳步骤,将P(k+1)的真实性转化为已知条件的真实性,进而得出结论。
四、数学归纳法解题的例子【例题】已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,则证明:a_n=n^2。
高考数学专题复习题:数学归纳法一、单项选择题(共6小题)1.利用数学归纳法证明不等式1111()2321nf n ++++<- (2n ≥,且*n ∈N )的过程,由n k =到1n k =+时,左边增加了()A .12k -项B .2k 项C .1k -项D .k 项2.用数学归纳法证明:()()()1221121n n n ++++=++ ,在验证1n =成立时,左边所得的代数式是()A .1B .13+C .123++D .1234+++3.用数学归纳法证明等式()()()3412332n n n +++++++= ()N,1n n ∈≥时,第一步验证1n =时,左边应取的项是()A .1B .12+C .123++D .1234+++4.用数学归纳法证明:11112321n n ++++<- ,()N,1n n ∈≥时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是()A .2k B .21k -C .12k -D .21k +5.已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-+⋅⋅⋅+=++⋅⋅⋅+ ⎪-++⎝⎭时,若已假设n k =(2k ≥,k 为偶数)时命题为真,则还需要再证()A .1n k =+时等式成立B .2n k =+时等式成立C .22n k =+时等式成立D .()22n k =+时等式成立6.现有命题()()()11*1112345611442n n n n n ++⎛⎫-+-+-++-=+-+∈ ⎪⎝⎭N ,用数学归纳法探究此命题的真假情况,下列说法正确的是()A .不能用数学归纳法判断此命题的真假B .此命题一定为真命题C .此命题加上条件9n >后才是真命题,否则为假命题D .存在一个无限大的常数m ,当n m >时,此命题为假命题二、多项选择题(共2小题)7.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++8.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++三、填空题(共2小题)9.在运用数学归纳法证明()121*(1)(2)n n x x n +-+++∈N 能被233x x ++整除时,则当1n k =+时,除了n k =时必须有归纳假设的代数式121(1)(2)k k x x +-+++相关的表达式外,还必须有与之相加的代数式为________.10.用数学归纳法证明:()()122342n n n -+++++= (n 为正整数,且2n )时,第一步取n =________验证.四、解答题(共2小题)11.用数学归纳法证明:()*11111231n n n n +++>∈+++N .12.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:①证明当0n n =(0n ∈N )时命题成立;②假设n k =(k ∈N ,且0k n ≥)时命题成立,推导出在1n k =+时命题也成立.用模取余运算:mod a b c =表示“整数a 除以整数b ,所得余数为整数c ”.用带余除法可表示为:被除数=除数×商+余数,即a b r c =⨯+,整数r 是商.举一个例子7321=⨯+,则7mod31=;再举一个例子3703=⨯+,则3mod 73=.当mod 0a b =时,则称b 整除a .从序号分别为0a ,1a ,2a ,3a ,…,na 的1n +个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到m (2m ≥)时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为()1,f n m +.如()1,0f m =表示当只有1个人时幸运者就是0a ;()6,24f =表示当有6个人而2m =时幸运者是4a ;()6,30f =表示当有6个人而3m =时幸运者是0a .(1)求10mod3;(2)当1n ≥时,()()()()1,,mod 1f n m f n m m n +=++,求()5,3f ;当n m ≥时,解释上述递推关系式的实际意义;(3)由(2)推测当1212k k n +≤+<(k ∈N )时,()1,2f n +的结果,并用数学归纳法证明.。
高考数学必考知识点难点高考数学是每个参加高考的学生必须要面对的考试科目之一,也是让很多学生望而生畏的科目。
而在高考数学中,有一些必考的知识点,它们是高考数学的难点。
接下来,我们就来一起探讨一下这些必考知识点的难点所在。
一、函数与方程在高考数学中,函数与方程是必考的重点内容。
其中,函数的性质和基本函数是考生必须要掌握的知识点。
函数的性质包括定义域、值域、奇偶性、周期性等等,对于每种类型的函数,考生应当了解其特点和基本图象。
基本函数包括常数函数、一次函数、二次函数、指数函数、对数函数和幂函数等,每种函数都有其自己的性质和变化规律。
理解这些概念和知识点,能够帮助考生正确分析和解决函数与方程的问题。
二、向量与立体几何向量与立体几何是高考数学中的另一大难点。
向量是带有方向和大小的量,掌握向量的基本运算和性质对于解决各种几何问题至关重要。
例如,在计算线段的长度、方向和夹角时,我们就需要使用向量的知识。
立体几何是关于三维空间中的图形和体积的研究,它涉及到平行与垂直、相交、投影等多个方面的知识点。
要想在高考中得分,考生需要深入理解和熟练掌握这些内容。
三、导数与积分在高考数学中,导数与积分被认为是较为抽象和难以理解的知识点。
导数是用来描述函数变化速度的概念,它可以通过函数的斜率来理解。
应用导数求函数的极值、最值等问题是高考中经常出现的题型。
而积分则是导数的逆运算,它可以用来求解曲线下方的面积、曲线的长度等。
掌握导数与积分的基本概念和运算法则,对于解题非常有帮助。
四、数列与数学归纳法数列与数学归纳法也是高考数学的一大难点。
数列是由某一规律生成的一串数值,它的性质和变化规律需要通过数学归纳法进行证明。
数学归纳法是一种数学证明方法,通过证明某个命题在第一个数成立后,假设其在第n个数成立,然后通过引入第n+1个数,来证明该命题在第n+1个数也成立。
掌握数列和数学归纳法的理论和应用,可以帮助考生解决数学推导和证明题。
总之,高考数学中的难点知识点需要考生在备考过程中予以重视和专题攻破。
高考数学中的数学归纳法及其扩展应用数学归纳法是数学中一种常用的证明方法,其强大的证明能力不仅在数学理论中得到广泛应用,还在数学应用中有着许多扩展与应用。
其中在高考数学中,数学归纳法是一个非常重要的概念,它已经成为高中数学必修内容之一。
因此,本文将深入讨论数学归纳法及其在高考数学中的扩展应用。
一、数学归纳法的基本概念与模式数学归纳法是一种非常简便的证明方法,可以证明所有的自然数都满足某种规律。
其基本概念可以概括为以下两个部分:1. 基本步骤(或称“起始步骤”):证明当n取某个特定的值时,命题成立。
2. 归纳步骤:证明当n=k时命题成立,可以推导出n=k+1时命题同样成立。
归纳法证明中的思考方向正好与演绎推理相反,也因此其非常具有灵活性。
当然,在日常应用中,使用归纳法无疑会比直接使用其他方法要轻松便捷的多。
二、数学归纳法在高考数学中的应用数学归纳法不仅在数学理论中有着重要的应用价值,而且在学科应用中也有着广泛的应用。
在高考数学中,尤其是在数列、函数等章节,数学归纳法的应用较为广泛。
1. 数列在数列数列的求和、证明和递推问题中,数学归纳法是一种常用的证明方法。
例如,我们可以使用归纳法证明某一数列满足递推公式S(k+1)=S(k)+k+2 (S(1)=2)。
(1) 当k=1时,S(k+1)=S(1+1)=S(2)=S(1)+3=5,此时等式成立。
(2) 假设n=k时命题成立,即S(k+1)=S(k)+k+2。
(3) 则当n=k+1时,有:S(k+2)=S(k+1)+(k+3)=S(k)+(k+2)+(k+3)=S(k)+(2k+5)通过简单的运算化简,可得S(k+2)=(k+1)(k+4)/2+2,由此命题在所有自然数范围内都成立。
2. 函数在高考数学中,函数的性质问题中也大量使用了归纳法证明。
例如,我们可以使用归纳法证明奇函数经过原点的图像对称于y 轴。
(1) 当k=1时,f(x)=-f(-x),此时等式成立。
高考数学中的数学归纳法与数学归纳法证明数学归纳法是现代数学中一个重要的证明方法,也是高中数学中常见的方法之一。
在高考中,数学归纳法常常出现在数列、不等式等知识点中。
本文将重点探讨在高考数学中,如何应用数学归纳法及其证明方法。
一、数学归纳法的概念数学归纳法是一种证明命题的通用的方法,它是建立在自然数基础上的。
数学归纳法的基本思想是:先证明命题对于自然数 1的真实性,然后证明对于任意正整数 n,若命题对于正整数 n 成立,则命题对于正整数 n+1 成立。
根据这一思想,只要证明命题对于自然数 1 成立,且对于任意正整数 n 的情况也成立,即可得出命题在自然数范围内成立的结论。
二、应用数学归纳法的例题1、数列问题数列是高考中比较常见的数学知识点,其中数学归纳法的应用很多。
例如:证明:对于正整数 n,恒有1+2+3+……+n=n(n+1)/2。
解:首先证明当 n=1 时,命题成立,1=1(1+1)/2。
假设命题对于正整数 k 成立,即1+2+3+……+k=k(k+1)/2。
那么当 n=k+1 时,有:1+2+3+……+k+(k+1)=k(k+1)/2+(k+1)=[(k+1)(k+2)]/2。
因此,当 n=k+1 时,命题也成立。
由此可知,命题对于任意正整数 n 成立。
2、不等式问题在不等式问题中,数学归纳法的应用也相当广泛。
例如:证明:对于正整数 n,有 2^n>n。
解:首先证明当 n=1 时,命题成立,2^1>1。
假设命题对于正整数 k 成立,即 2^k>k。
那么当 n=k+1 时,有:2^(k+1)=2*2^k>2k>k+1。
因此,当 n=k+1 时,命题也成立。
由此可知,命题对于任意正整数 n 成立。
三、数学归纳法证明的基本步骤数学归纳法的证明分为以下三步:1、证明基本情形。
即证明当 n=1 时,命题成立。
2、归纳假设。
假设命题对于某个正整数 k 成立,即证明在假设成立的前提下,命题对于正整数 k+1 成立。