控制图数据
- 格式:xls
- 大小:18.50 KB
- 文档页数:1
SPC“控制图”的分析与判定控制图(Control Chart)又叫管制图,是对过程质量特性进行测定、记录、评估,从而监察过程是否处于控制状态的一种用统计方法设计的图。
图上有三条平行于横轴的直线:中心线(CL,Central Line)、上控制线(UCL,Upper Control Line)和下控制线(LCL,Lower Control Line),并有按时间顺序抽取的样本统计量数值的描点序列。
UCL、CL、LCL统称为控制线(Control Line),通常控制界限设定在±3标准差的位置。
根据控制图使用目的不同,控制图可分为:分析用控制图和控制用控制图。
根据统计数据的类型不同,控制图可分为:计量控制图和计数控制图(包括计件控制图和计点控制图)。
计量型控制图平均数与极差控制图( -X-R Chart )平均数与标准差控制图( -X-S Chart )中位数与极差控制图( ~X-R Chart )个別值与移动极差控制图( X-Rm Chart )计数值控制图不良率控制图(P chart)不良数控制图(nP chart,又称 np chart 或 d chart)缺点数控制图(C chart)单位缺点数控制图(U chart)控制图种类及应用场合:控制图的分析与判定应用控制图的目的,就是要及时发现过程中出现的异常,判断异常的原则就是出现了“小概率事件”,为此,判断的准则有两类。
第一类:点子越出界限的概率为0.27% 。
准则1属于第一类。
第二类:点子虽在控制界限内,但是排列的形状有缺陷。
准则2-8属于第二类。
控制图八大判异准则(口诀)2/3A (连续3点中有2点在中心线同一侧的B区外<即A 区内>4/5C (连续5点中有4点在中心线同一侧的C区以外)6连串(连续6点递增或递减,即连成一串)8缺C (连续8点在中心线两侧,但没有一点在C区中)9单侧(连续9点落在中心线同一侧)14交替(连续14点相邻点上下交替)15全C (连续15点在C区中心线上下,即全部在C区内1界外(1点落在A区以外)▶2/3A (连续3点中有2点在中心线同一侧的B区外<即A区内>)判读:1 . 控制过严;2 . 材料品质有差异;3 . 检验设备或方法之大不相同;4 . 不同制程之资料绘于同一控制图上;5 . 不同品质材料混合使用。
控制图如何制作控制图,是制造业实施品质管制中不可缺少的重要工具。
它最早是由美国贝尔电话实验室的休华特在1924年首先提出的,它通过设置合理的控制界限,对引起品质异常的原因进行判定和分析,使工序处于正常、稳定的状态。
控制图是按照3 Sigma 原理来设置控制限的,它将控制限设在X±3 Sigma 的位置上。
在过程正常的情况下,大约有99。
73%的数据会落在上下限之内。
所以观察控制图的数据位置,就能了解过程情况有无变化。
工具/原料•电脑•待解决问题方法/步骤1. 1确定抽样数目,平均值—极差控制图的抽样数目通常为每组2~6个。
确定抽样次数,通常惯例是每班次20~25次数,最少20组,一般25 组较合适,但要确保样本总数不少于50个单位。
2. 2确定级差、均值及均值、级差控制界限(通过公式计算)。
3. 3制作Xbar—-R控制图.4. 4分析控制图并对异常原因进行调查及对策;继续对生产过程进行下一生产日的抽样并绘制控制图,以实现对工程质量的连续监控。
END注意事项•制作Xbar--R控制图,需要明确记录抽样数据的基本条件(机种、项目、生产线、规格标准、控制界限、抽样时间及日期、抽样频次等),在控制图的上方可开辟“基本条件记录区”以记录上述条件;另外抽样的数据及计算出的X 和R值记录在控制图的下方区域,形成“抽样数据区”,最下方可作为“不良原因对策区",这样就可形成一份完整的Xbar ——R控制图。
二、控制图的轮廓线第3页 /(共6页)控制图是画有控制界限的一种图表。
如图5-4所示。
通过它可以看出质量变动的情况及趋势,以便找出影响质量变动的原因, 然后予以解决。
图5—4控制图我们已经知道:在正态分布的基本性质中, 质量特性数据落在[μ±3]范围内的概率为99。
73%, 落在界外的概率只有0. 27%,超过一侧的概率只有0。
135%, 这是一个小概率事件。
这个结论非常重要,控制图正是基于这个结论而产生出来的.现在把带有μ±3线的正态分布曲线旋转到一定的位置(即正态分布曲线向右旋转9,再翻转),即得到了控制图的基本形式,再去掉正态分布的概率密度曲线, 就得到了控制图的轮廓线, 其演变过程如图5-5所示。
品质管理中的控制图分析方法控制图是品质管理中的一种重要工具,用于监控和改进过程的稳定性和可预测性。
控制图帮助企业追踪和分析过程数据,以便及时发现并纠正潜在问题,避免质量偏差和产品不合格。
下面将介绍几种常用的控制图分析方法。
1. 均值-范围控制图(X-bar R图)均值-范围控制图是用于监测过程平均值和变异性的控制图方法。
它由两个部分组成:均值控制图(X-bar图)和范围控制图(R图)。
均值控制图用来监控过程的平均值是否稳定,范围控制图用于监控过程的变异性。
通过同时使用这两个图,可以追踪过程的整体性能和特殊因素的影响。
2. 均值-极差控制图(X-bar S图)均值-极差控制图也是一种监测过程平均值和变异性的方法。
它由两个部分组成:均值控制图(X-bar图)和极差控制图(S图)。
均值控制图用于监测过程的平均值是否稳定,极差控制图用于监测过程的变异性。
与X-bar R图相比,X-bar S图更适用于样本容量较小或样本规模不一致的情况。
3. P控制图P控制图用于监测过程中的百分比或比例。
它是一种二项分布的控制图方法,适用于二分类的数据(如合格/不合格、良品/次品)。
P值是指在一次观察中发生某一事件的概率。
P控制图通过监测P值的变化来判断过程的稳定性。
4. C控制图C控制图是对计数型数据(如缺陷数量、不良品数量)进行控制的一种方法。
C值是指在一次观察中发生某一事件的次数,如一个产品中的缺陷数量。
C控制图通过监测C值的变化来判断过程的稳定性。
与P控制图相比,C控制图更适用于缺陷发生率较低的情况。
5. 过程能力指数(Cp、Cpk)过程能力指数是评估过程能力的一种方法。
Cp是用于评估过程在规范限制范围内的能力,它考虑到了过程的稳定性和分布的偏移程度。
Cpk是用于评估过程在规范限制范围内的中心情况和离散情况,它考虑到了过程的稳定性、分布的偏移程度和偏移的影响程度。
这两个指数可以帮助企业判断过程是否满足客户要求,并确定是否需要改进过程。
SPC控制图详解什么就是控制图?控制图就是对过程质量加以测定、记录从而进行控制管理得一种用科学方法设计得图。
控制图得应用控制图中包括三条线1、控制上限(UCL)2、中心线(CL)3、控制下限(LCL)控制图得种类数据:就是能够客观地反映事实得资料与数字数据得质量特性值分为:计量值可以用量具、仪表等进行测量而得出得连续性数值,可以出现小数。
计数值不能用量具、仪表来度量得非连续性得正整数值。
计量型数据得控制图Xbar-R图(均值-极差图)Xbar-S图(均值-标准差图)X-MR图(单值-移动极差图)X-R(中位数图)计数型数据得控制图P图(不合格品率图)np图(不合格品数图)c图(不合格数图)u图(单位产品不合格数图)控制图得判异控制图可以区分出普遍原因变差与特殊原因变差1、特殊原因变差要求立即采取措施2、减少普遍原因变差需要改变产品或过程得设计错误得措施1、试图通过持续调整过程参数来固定住普通原因变差,称为过渡调整,结果会导致更大得过程变差造成客户满意度下降。
2、试图通过改变设计来减少特殊原因变差可能解决不了问题,会造成时间与金钱得浪费。
控制图可以给我们提供出出现了哪种类型得变差得线索,供我们采取相应得措施。
控制图上得信号解释有很多信号规则适用于所有得控制图(Xbar图与R图),主要最常见得有以下几种:规则1:超出控制线得点规则2:连续7点在中心线一侧规则3:连续7点上升或下降规则4:多于2/3得点落在图中1/3以外规则5:呈有规律变化SPC控制图建立得步骤1、选择质量特性2、决定管制图之种类3、决定样本大小,抽样频率与抽样方式4、收集数据5、计算管制参数(上,下管制界线等)6、持续收集数据,利用管制图监视制程SPC控制图选择得方法1.X-R控制图用于控制对象为长度、重量、强度、纯度、时间、收率与生产量等计量值得场合。
X控制图主要用于观察正态分布得均值得变化,R控制图主要用于观察正态分布分散或变异情况得变化,而X-R控制图则将二者联合运用,用于观察正态分布得变化。
控制图(均值图)培训讲义在经济飞速发展的今天,为了企业的发展、事业的昌盛,我们必须致力于持续改进,我们必须寻找更有效的方法来生产产品提供服务,这些产品和服务必须不断地在价值上待以改进和提高,我们必须重视内部以及外部的顾客,并将顾客满意作为企业主要的目标。
为达到这一目标,我们公司的每一位员工都必须确保不断改进以及使用更有效的方法。
下面给大家描述一种最有效的控制图统计方法,可以使改进更加明确、有效。
一、所使用符号的介绍:CP(理想值)稳定的过程能力指数CPK(实测值)稳定的过程能力指数CPU上限的能力指数CPL下限的能力指数PP(理想值)性能指数PPK(实测值)性能指数PPU上限性能PPL下限性能USL工程规范上限LSL工程规范下限X均埴R极差T公差范围S样本标准差D2值估计值二、控制图的结构:收集数据控制图是从对某个特性或过程特征的测量发展而来的。
这些测量值构成了描述过程分布特性(控制)统计量(例如:均值、中位数、极差、标准差、单值)。
测量数据取自于过程流的单个样品。
按子组的形式收集样本,它可以是由一个零件或多个零件组成。
通常,一个较大的子组使得更容易发现微小的过程变化。
建立一个抽样计划为了控制图的有效性,抽样计划应该定义“合理子组”。
合理子组是选择样本以使得在一个子组内出现特殊原因变差的机会最小,而在子组间出现特殊原因变差的机会最大。
要记住的关键一条是当开发一个抽样计划时,要将子组间的变差和子组内的变差进行比较。
连续取样而形成的子组,使过程改变的机会最小并且子组内的变差也应该最小。
抽样的频率将取决于子组间过程改变的时机。
子组内的变差代表短时间18内的零件间的变差,子组间出现的任何大的变差则表明过程发生变化,应该进行调查并采取适当的措施。
子组容量——所研究的过程的类型决定了如何定义子组容量。
按照前面的阐述,较大的子组使得容易探测出较小的过程变化。
负责的团队必须确定适当的子组容量。
如果预期的过程变化相对小,则应该有较大的子组容量。