图形的翻折变换
- 格式:ppt
- 大小:219.00 KB
- 文档页数:10
图形的旋转与翻折变换数学是一门抽象而又实用的学科,其中的几何学更是与我们生活息息相关。
在初中数学学习中,图形的旋转与翻折变换是一个重要的内容,它不仅能够帮助我们更好地理解几何形状,还可以应用于实际问题的解决。
本文将围绕图形的旋转与翻折变换展开讨论,希望能够给中学生及其父母带来一些启示和帮助。
一、图形的旋转变换图形的旋转变换是指围绕某一点或某一直线旋转图形,使得图形在平面上发生位置改变。
旋转变换有两个重要的概念:旋转中心和旋转角度。
以正方形为例,当我们将正方形绕着一个点旋转时,这个点就是旋转中心。
而旋转角度则是指旋转的角度大小,可以是顺时针或逆时针旋转。
通过旋转变换,我们可以观察到图形在平面上的位置、大小和形状的改变。
例如,我们可以通过旋转变换将一个正方形变成一个菱形,或者将一个长方形变成一个平行四边形。
这种变换不仅可以让我们更好地理解图形之间的关系,还可以应用于实际问题的解决。
二、图形的翻折变换图形的翻折变换是指将图形沿着某一直线对称翻折,使得图形在平面上发生位置改变。
翻折变换有两个重要的概念:对称轴和对称点。
以三角形为例,当我们将三角形沿着一条直线对称翻折时,这条直线就是对称轴。
对称点则是指对称轴上的一个点,使得该点与图形上的另一个点关于对称轴对称。
通过翻折变换,我们可以观察到图形在平面上的位置、大小和形状的改变。
例如,我们可以通过翻折变换将一个正方形变成一个长方形,或者将一个长方形变成一个平行四边形。
这种变换不仅可以帮助我们更好地理解图形之间的关系,还可以应用于实际问题的解决。
三、应用举例图形的旋转与翻折变换在实际问题中有广泛的应用。
我们可以通过一些例子来说明。
例一:小明要设计一个标志,标志上有一个正方形和一个菱形,他希望将正方形旋转一定角度后与菱形重叠,从而形成一个新的图形。
他应该如何选择旋转的角度呢?解析:首先,我们可以确定旋转中心为正方形的中心点。
然后,通过观察可以发现,当正方形旋转45度时,它与菱形重叠。
图形的旋转、平移与翻折在几何学中,图形的旋转、平移与翻折是常见的操作,可以通过这些操作改变图形的位置、形状和方向。
这些操作在数学、物理学和计算机图形学等领域都有广泛的应用。
本文将介绍图形的旋转、平移与翻折的基本概念和相关应用。
一、图形的旋转图形的旋转是指将图形绕一个旋转中心按一定角度旋转。
旋转可以使图形发生变化,同时保持图形的大小和形状不变。
旋转操作常用的单位是度数,顺时针为正方向,逆时针为负方向。
图形的旋转可以通过旋转矩阵来描述。
设图形的坐标为(x, y),旋转的角度为θ,旋转中心为(x0, y0),则旋转后的坐标可以表示为:x' = (x - x0) * cosθ - (y - y0) * sinθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0通过这个公式,我们可以将任意点围绕旋转中心进行旋转变换。
图形的旋转可以应用于很多领域,例如地理学中的地图旋转变换、物理学中的刚体旋转运动等。
在计算机图形学中,旋转操作经常用于图像处理、动画制作等方面。
二、图形的平移图形的平移是指将图形沿着特定的方向和距离进行移动。
平移操作只改变图形的位置而不改变图形的形状和方向。
图形的平移可以通过平移向量来表示。
设图形的坐标为(x, y),平移向量为(dx, dy),则平移后的坐标可以表示为:x' = x + dxy' = y + dy通过这个公式,我们可以将图形沿水平方向和垂直方向进行平移变换。
图形的平移操作在几何学中经常用于研究几何关系、证明定理等方面。
在计算机图形学中,平移操作经常用于图像编辑、游戏开发等方面。
三、图形的翻折图形的翻折是指将图形在一个轴线上进行对称变换。
翻折操作将图形上的每个点关于轴线镜像对称,使得图形在镜像轴两侧成为对称的。
图形的翻折可以通过翻折矩阵来表示。
设图形的坐标为(x, y),轴线为x轴或y轴,对称变换为x轴翻折或y轴翻折,对应的翻折矩阵为:对于x轴翻折:x' = xy' = -y对于y轴翻折:x' = -xy' = y通过这个公式,我们可以将图形关于x轴或y轴进行翻折变换。
备战2023年中考数学考试易错题易错点07图形的变化01图形的平移平移的性质(1)平移的条件平移的方向、平移的距离(2)平移的性质①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.1.(2022春•新城区校级期中)在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣2),那么点B的对应点B′的坐标是()A.(1,1)B.(1,2)C.(2,2)D.(2,1)2.(2022秋•定远县期中)如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…依此规律跳动下去,点A第2022次跳动至点A2022的坐标是()A.(505,1009)B.(﹣506,1010)C.(﹣506,1011)D.(506,1011)3.(2022•南京模拟)如图,从起点A到终点B有多条路径,其中第一条路径为线段AB,其长度为a,第二条路径为折线ACB,其长度为b,第三条路径为折线ADEFGHIJKLB,其长度为c,第四条路径为半圆弧ACB,其长度为d,则这四条路径的长度关系为()A.a<b<c<d B.a<c<d<b C.a<b=c<d D.a<b<c=d4.(2022秋•拱墅区期末)以A(﹣1,7),B(﹣1,﹣2)为端点的线段上任意一点的坐标可表示为:(﹣1,y)(﹣2≤y≤7).现将这条线段水平向右平移5个单位,所得图形上任意一点的坐标可表示为.5.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中画出△ABC向右平移4个单位,再向下平移2个单位的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1,B1,C1;(3)设点P在x轴上,且△BCP与△ABC的面积相等,直接写出点P的坐标.02 轴对称轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.1.(2022秋•福州月考)如图,在Rt△ABC中,∠BAC=90°,∠B=55°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°2.(2022春•天桥区校级期中)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.2.4B.4.8C.5.2D.63.(2022•上虞区模拟)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=,点P是斜边AB上一动点,连结CP,将△BCP以直线CP为对称轴进行轴对称变换,B点的对称点为B',连结AB',则在P点从点A出发向点B运动的整个过程中,线段AB'长度的最小值为()A.1B.C.﹣1D.3﹣4.(2021秋•讷河市期末)如图,∠AOB=30°,点P在∠AOB的内部,点C,D分别是点P关于OA、OB的对称点,连接CD交OA、OB分别于点E,F;若△PEF的周长的为10,则线段OP=()A.8B.9C.10D.115.(2021秋•思明区校级期末)如图,已知AB∥CD,AD∥BC,∠ABC=60°,BC=2AB=8,点C 关于AD的对称点为E,连接BE交AD于点F,点G为CD的中点,连接EG、BG,则S△BEG=()A.B.C.16D.326.(2022秋•渝中区校级期末)如图,在△ABC中,∠ABC=90°,AB=6,BC=8,AC边的垂直平分线交BC于E,交AC于D,F为上一点,连接EF,点C关于EF的对称点C'恰好落在ED的延长线上,则C'D的长为.7.(2022秋•东丽区校级期末)如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC边上,△ABD、△AFD关于直线AD对称,∠F AC的角平分线交BC边于点G,连接FG.∠BAD=θ,当θ的值等于时,△DFG为等腰三角形.03 轴对称与坐标变化坐标与图形变化-对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.(2)关于y轴对称纵坐标相等,横坐标互为相反数.(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m-a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n-b)1.(2022•清城区一模)在平面直角坐标系中,点A(x2+2x,1)与点B(﹣3,1)关于y轴对称,则x的值为()A.1B.3或1C.﹣3或1D.3或﹣12.(2021秋•花都区期末)剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(2m,﹣n),其关于y轴对称的点F的坐标(3﹣n,﹣m+1),则(m﹣n)2022的值为()A.32022B.﹣1C.1D.03.(2022•金水区校级模拟)如图,在平面直角坐标系中,已知A(﹣2,0),B(0,4),点C与坐标原点O关于直线AB对称.将△ABC沿x轴向右平移,当线段AB扫过的面积为20时,此时点C的对应点C'的坐标为()A.B.C.D.4.(2022秋•渠县期末)在平面直角坐标系中,对△MBC进行循环往复的轴对称变换,若原来点A 的坐标是(,),则经过第2022次变换后所得的点A的坐标是.5.(2022秋•谢家集区期中)如图,在平面直角坐标系中,已知点A的坐标为(4,3).①若△ABC是关于直线y=1的轴对称图形,则点B的坐标为;②若△ABC是关于直线y=a的轴对称图形,则点B的坐标为.6.(2022秋•温江区校级期中)在平面直角坐标系xOy中,经过点M(0,m)且平行于x轴的直线可以记作直线y=m,平行于y轴的直线可以记作直线x=m,我们给出如下的定义:点P(x,y)先关于x轴对称得到点P1,再将点P1关于直线y=m对称得点P′,则称点P′为点P关于x轴和直线y=m的二次反射点.已知点P(2,3),Q(2,2)关于x轴和直线y=m的二次反射点分别为P1,Q1,点M(2,3)关于直线x=m对称的点为M1,则当三角形P1Q1M1的面积为1时,则m=.04 图形的翻折1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.1.(2022秋•二七区校级期末)如图,在矩形ABCD中,点F是CD上一点,连结BF,然后沿着BF将矩形对折,使点C恰好落在AD边上的E处.若AE:ED=4:1,则tan∠EBF的值为()A.4B.3C.D.2.(2022秋•南岸区期末)如图,正方形ABCD的边长为4,E是边CD的中点,F是边AD上一动点,连接BF,将△ABF沿BF翻折得到△GBF,连接GE.当GE的长最小时,DF的长为()A.B.C.D.3.(2022秋•运城期末)如图,在菱形ABCD中,∠A=60°,点E,F分别在AB,AD上,沿EF折叠菱形,使点A落在BC边上的点G处,且EG⊥BD于点M,若AB=a(取=1.4,=1.7),则BE等于()A.B.C.D.4.(2023•市南区一模)如图,在矩形ABCD中,AB=1,在BC上取一点E,连接AE、ED,将△ABE沿AE翻折,使点B落在B'处,线段EB'交AD于点F,将△ECD沿DE翻折,使点C的对应点C'落在线段EB'上,若点C'恰好为EB'的中点,则线段EF的长为()A.B.C.D.5.(2022秋•徐汇区期末)如图所示,在△ABC中.沿着过点C的直线折叠这个三角形,使顶点A 落在BC边上的点E处,折痕为CD,并联结DE.如果BC=9cm,且满足=,边AC =.6.(2022秋•浦东新区期末)如图,正方形ABCD的边长为5,点E是边CD上的一点,将正方形ABCD沿直线AE翻折后,点D的对应点是点D',联结CD'交正方形ABCD的边AB于点F,如果AF=CE,那么AF的长是.05 中心对称中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.1.(2022春•嘉鱼县期末)如图,点O为矩形ABCD的两对角线交点,动点E从点A出发沿AB边向点B运动,同时动点F从点C出发以相同的速度沿CD边向点D运动,作直线EF,下列说法错误的是()A.直线EF平分矩形ABCD的周长B.直线EF必平分矩形ABCD的面积C.直线EF必过点OD.直线EF不能将矩形ABCD分成两个正方形2.(2022秋•莱西市期末)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→菱形→平行四边形→矩形B.平行四边形→正方形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形3.(2021秋•中牟县期末)如图是两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心按逆时针方向进行旋转,第一次旋转后得到图①,第二次旋转后得到图②,…,则第2022次旋转后得到的图形与图①~④中相同的()A.图①B.图②C.图③D.图④4.(2022•仙居县二模)如图,把正方形ABCD绕着它的对称中心O沿着逆时针方向旋转,得到正方形A′B′C′D′,A′B′和B'C′分别交AB于点E,F,在正方形旋转过程中,∠EOF的大小()A.随着旋转角度的增大而增大B.随着旋转角度的增大而减小C.不变,都是60°D.不变,都是45°5.(2022春•连城县校级月考)如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,定点B的坐标为(8,4),若直线经过点D(2,0),且将平行四边形OABC分割成面积相等的两部分,则直线DE的表达式()A.y=x﹣2B.y=2x﹣4C.D.y=3x﹣606 轴对称与最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.1.(2022秋•乌鲁木齐期末)如图,在锐角△ABC中,∠C=40°;点P是边AB上的一个定点,点M、N分别是AC和BC边上的动点,当△PMN的周长最小时,∠MPN的度数是()A.90°B.100°C.110°D.80°2.(2022秋•南沙区校级期末)如图,在△ABC中,∠ABC=60°,BD平分∠ABC,点E是BC上的一动点,点P是BD上一动点,连接PC,PE,若AB=6,S△ABC=15,则PC+PE的最小值是()A.B.6C.D.103.(2022秋•和平区校级期末)如图,在四边形ABCD中,∠A=∠C=90°,M,N分别是BC,AB 边上的动点,∠B=58°,当△DMN的周长最小时,∠MDN的度数是()A.122°B.64°C.62°D.58°4.(2022秋•长安区校级期末)如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC 为()A.10B.12C.13D.145.(2022秋•黄陂区校级期末)如图,等腰三角形ABC的底边AB长为8,面积为24,腰BC的垂直平分线EF交边AB于点E,若D为AB边的中点,P为线段EF上一动点,则三角形DPB的周长的最小值为()A.7B.8C.9D.106.(2022秋•番禺区校级期末)如图,等腰三角形ABC的底边BC长为6,腰AC的垂直平分线EF分别交边AC、AB于点E,F,若D为BC边的中点,M为线段EF上一动点,若三角形CDM的周长的最小值为13,则等腰三角形ABC的面积为()A.78B.39C.42D.30A.①②③B.②③④C.③④⑤D.②③④⑤07 旋转的性质旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.1.(2022秋•武昌区校级期末)如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A'B'C'D'.若边A'B交线段CD于H,且BH=DH,则DH的值是()A.B.C.D.2.(2022秋•泰山区期末)如图,在△ABC中,AB=AC,∠BAC=120°,O为BC的中点,将△ABC 绕点O顺时针旋转得到△DEF,当点D,E分别在边AC和CA的延长线上,连接CF,若AD=3,则△OFC的面积是()A.B.C.D.3.(2022秋•泰山区期末)如图,点P是等边三角形ABC内部一点,连接AP、BP、CP,且AP2=BP2+CP2,现将△APC绕点A顺时针旋转到△ADB的位置,对于下列结论:①△ADP是等边三角形;②△ABP≌△CBP;③∠DBP=90°;④∠BDA+∠BP A=210°.其中正确的结论有()A.1个B.2个C.3个D.4个4.(2022秋•遵义期末)如图,已知矩形ABCD,AB=5,AD=3,矩形GBEF是由矩形ABCD绕点B顺时针旋转90°得到的,点H为CD边上一点,现将四边形ABHD沿BH折叠得到四边形A'BHD',当点A'恰好落在EF上时,DH的长是()A.B.C.D.5.(2022秋•荔湾区校级期末)如图,正方形ABCD中,AB=5cm,以B为圆心,1cm为半径画圆,点P是⊙B上一个动点,连接AP,并将AP绕点A逆时针旋转90°至AP′,连接BP′,在点P 移动的过程中,BP′长度的取值范围是cm.6.(2022秋•达川区期末)如图,在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(4,0),点M为x轴上方一动点,且MA=3,以点M为直角顶点构造等腰直角三角形BMP,当线段AP取最大值时,AP=,点M的坐标为.08 旋转与坐标变换坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(-x,-y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.1.(2022秋•南宫市期末)如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(2,0),点A在x轴正半轴上,且AC=4.将△ABC绕点C逆时针旋转90°,则旋转后点A的对应点的坐标为()A.(2,4)B.(2,﹣4)C.(2,2)D.(4,2)2.(2022秋•金华期末)如图,在平面直角坐标系中,已知点A(0,2),点B在第一象限内,AO =AB,∠OAB=120°,将△AOB绕点O逆时针旋转,每次旋转60°,则第2022次旋转后,点B 的坐标为()A.(﹣,3)B.(,0)C.(,3)D.(﹣2,0)3.(2022秋•汕尾期中)在平面直角坐标系中,等边△AOB如图放置,点A的坐标为(1,0),每一次将△AOB绕着点O逆时针方向旋转60°,同时每边扩大为原来的2倍,第一次旋转后得到△A1OB1,第二次旋转后得到△A2OB2,…,依次类推,则点A2021的坐标为()A.(﹣22020,﹣×22020)B.(22021,﹣×22021)C.(22020,﹣×22020)D.(﹣22011,﹣×22021)09 几何变换综合问题1.(2022秋•商河县期末)如图,已知△ABC中,AB=AC,∠BAC=α.点D是△ABC所在平面内不与点A、C重合的任意一点,连接CD,将线段CD绕点D顺时针旋转α得到线段DE,连接AD、BE.(1)如图1,当α=60°时,线段BE与AD的数量关系是;直线BE与AD相交所成的锐角的度数是.(2)如图2,当α=90°时,①(1)中的结论是否仍然成立,请说明理由;②当BE∥AC,AB=8,AD=时,请直接写出△DCE的面积.2.(2022秋•中原区期末)已知,△ABC和△DEC都是等腰直角三角形,C为它们公共的直角顶点,如图1,D,E分别在BC,AC边上,F是BE的中点,连接CF.(1)求证:△ACD≌△BCE.(2)请猜想AD与CF的数量关系和位置关系,并说明理由.(3)如图2,将△ABC固定不动,△DEC由图1位置绕点C逆时针旋转,旋转角∠BCD=α,(0°<a<90°),旋转过程中,其他条件不变.试判断,AD与CF的关系是否发生改变?若不变,请说明理由;若改变,请求出相关正确结论.3.(2022秋•顺义区期末)如图,△ABC为等边三角形,在∠BAC内作射线AP(∠BAP<30°),点B关于射线AP的对称点为点D,连接AD,作射线CD交AP于点E,连接BE.(1)依题意补全图形;(2)设∠BAP=α,求∠BCE的大小(用含α的代数式表示);(3)用等式表示EA,EB,EC之间的数量关系,并证明.4.(2023•临川区校级一模)旋转变换在平面几何中有着广泛的应用.特别是在解(证)有关等腰三角形、正三角形、正方形等问题时,更是经常用到的思维方法,请你用旋转交换等知识,解决下面的问题.如图1,△ABC与△DCE均为等腰直角三角形,DC与AB交于点M,CE与AB交于点N.(1)以点C为中心,将△ACM逆时针旋转90°,画出旋转后的△A′CM′(2)在(1)的基础上,证明AM2+BN2=MN2.(3)如图2,在四边形ABCD中,∠BAD=45°,∠BCD=90°,AC平分∠BCD,若BC=4,CD =3,则对角线AC的长度为多少?(直接写出结果即可,但在图中保留解决问题的过程中所作辅助线、标记的有关计算数据等)5.(2022•兴庆区校级一模)已知:如图,在矩形ABCD和等腰Rt△ADE中,AB=8cm,AD=AE=6cm,∠DAE=90°.点P从点B出发,沿BA方向匀速运动.速度为1cm/s;同时,点Q从点D 出发,沿DB方向匀速运动,速度为1cm/s.过点Q作QM∥BE,交AD于点H,交DE于点M,过点Q作QN∥BC,交CD于点N.分别连接PQ,PM,设运动时间为t(s)(0<t<8).解答下列各题:(1)当PQ⊥BD时,求t的值;(2)设五边形PMDNQ的面积为S(cm2),求S与t之间的函数关系式.6.(2022秋•晋中月考)综合与实践.项目式学习小组研究了一个问题,如图1,在矩形ABCD中,AB=4,AD=6,E,F分别是AB,AD的中点,四边形AEGF是矩形,连接CG.(1)请直接写出CG与DF的长度比为;(2)如图2,将矩形AEGF绕点A按顺时针方向旋转至点G落在AB边上,求点F到AD的距离;(3)将矩形AEGF绕点A按顺时针方向旋转至如图3所示的位置时,猜想CG与DF之间的数量关系,并证明你的猜想.7.(2022秋•淮北月考)在等腰△ABC中,BC=AC,点D在BC上,延长AC至点E,使CE=CD,连接AD,DE,BE.(1)若∠ACB=90°,①如图1,求证:BE=AD;②如图2,将△DCE绕点C按顺时针方向旋转一定的角度,使点A,D,E三点在一条直线上,判定△ABE的形状,并说明理由.(2)若∠DCE=∠ACB≠90°,如图3,(1)中①的结论是否成立?若不成立,请给出AD,BE 之间的数量关系;若成立,请给出证明.8.(2022秋•沙河口区期末)如图1,平面直角坐标系中,AB∥x轴,OA=AB,C是点A关于x轴的对称点,BC∥OA,交x轴于点E,连接OB.(1)求证:①OB平分∠AOE,②△OCE是等边三角形;(2)如图2,若F在OB上,∠BAF=45°,连接CF.点B的坐标为(a,b),直接写出点F的坐标(用a、b表示).。
教案:初中数学——翻折变换一、教学目标:1. 让学生理解翻折变换的定义及基本性质。
2. 培养学生运用翻折变换解决实际问题的能力。
3. 培养学生的空间想象能力和抽象思维能力。
二、教学内容:1. 翻折变换的定义及基本性质。
2. 翻折变换在实际问题中的应用。
三、教学重点与难点:1. 翻折变换的定义及基本性质。
2. 如何在实际问题中运用翻折变换。
四、教学过程:1. 导入:利用多媒体展示一些生活中的翻折现象,如打开书本、折叠纸张等,引导学生关注翻折变换。
2. 新课讲解:(1)翻折变换的定义:解释翻折变换的概念,即在平面内,将一个图形沿着某条直线折叠,使得折叠前后的图形重合。
(2)翻折变换的基本性质:① 翻折变换不改变图形的大小和形状。
② 翻折变换的轴线是对称轴,图形关于轴线对称。
③ 翻折变换的对应点、对应线段、对应角相等。
(3)翻折变换在实际问题中的应用:举例说明翻折变换在实际问题中的应用,如制作几何模型、展开平面图等。
3. 课堂练习:让学生动手进行一些翻折变换,观察图形的变化,加深对翻折变换的理解。
4. 拓展提高:引导学生思考如何将翻折变换应用于实际生活中,提高学生的实际应用能力。
5. 课堂小结:总结本节课所学内容,强调翻折变换的定义、基本性质及实际应用。
五、课后作业:1. 完成课后练习题,巩固翻折变换的基本性质。
2. 举例说明翻折变换在实际问题中的应用,如制作几何模型、展开平面图等。
六、教学反思:在课后对教学效果进行反思,了解学生在掌握翻折变换方面的困难,针对性地调整教学方法,提高教学效果。
七、教学评价:通过课堂表现、课后作业和拓展应用等方面,评价学生在翻折变换方面的掌握程度。
旋转平移翻折的几何变换与性质旋转、平移和翻折是几何中常见的基本变换方式,它们在空间和平面几何中发挥着重要的作用。
本文将介绍旋转平移翻折的几何变换及其性质,推导其数学表达式,并通过具体的实例来说明其应用。
一、旋转变换旋转是指将平面或空间中的图形按照一定角度绕着旋转中心进行旋转的操作。
对于平面上的点(x, y),其绕原点逆时针旋转θ度后的新坐标可以由以下公式计算得出:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ其中,x'和y'分别表示旋转后点的坐标,θ为旋转角度。
二、平移变换平移是指将平面或空间中的图形沿着指定的方向和距离进行移动的操作。
平移变换可以用一个向量来表示。
对于平面上的点(x, y),其平移(dx, dy)后的新坐标可以由以下公式计算得出:x' = x + dxy' = y + dy其中,(dx, dy)为平移向量,x'和y'分别表示平移后点的坐标。
三、翻折变换翻折是指将平面或空间中的图形沿着指定的轴进行对称的操作。
对于平面上的点(x, y),其关于直线y=k翻折后的新坐标可以由以下公式计算得出:x' = xy' = 2k - y其中,(x', y')为翻折后点的坐标,k为翻折轴的位置。
以上是旋转、平移和翻折的几何变换的数学表达式。
下面将通过实例说明它们在几何问题中的应用。
实例一:旋转变换假设有一张平面上的三角形ABC,顶点分别为A(1, 2),B(3, 4)和C(5, 6)。
现在需要将该三角形绕原点顺时针旋转60度,求旋转后各顶点的坐标。
根据旋转变换的公式,旋转角度θ=60°,原点为旋转中心,可以计算得出旋转后的各顶点坐标为:A'(1*cos60° - 2*sin60°, 1*sin60° + 2*cos60°) = (0.5, 2.598)B'(3*cos60° - 4*sin60°, 3*sin60° + 4*cos60°) = (-1.133, 4.330)C'(5*cos60° - 6*sin60°, 5*sin60° + 6*cos60°) = (1.333, 7.464)实例二:平移变换假设有一条直线L,其方程为y = 2x - 1。
翻折变换(折叠问题)能量储备● 翻折变换(折叠问题)实质上就是轴对称变换.● 折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.● 在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.通关宝典★ 基础方法点方法点1.利用轴对称性质,解决折纸问题例1:将长方形纸片ABCD(如图①所示)按如下步骤操作:(1)以过点A 的直线为折痕折叠纸片,使点B 恰好落在AD 边上,折痕与BC 边交于点E(如图②所示);(2)以过点E 的直线为折痕折叠纸片,使点A 落在EC 边上,折痕EF 交AD 边于点F(如图③所示);(3)将纸片展平,那么∠AFE 的度数为( )A .60°B .67.5°C .72°D .75°分析:根据轴对称的性质,可知第一次折叠后∠EAD =45°,∠AEC =135°;第二次折叠后,∠AEF =67.5°,∠FAE =45°,所以∠AFE =67.5°.解:B方法点2.折叠与剪纸的综合应用例1:请分析如图所示的图形,该怎样剪?设法使所剪的次数尽可能少.解:图(1)可以先折叠1次,剪出它的一半即可得到整个图形;图(2)可以折叠2次,剪出它的14即可得到整个图形. 方法点3.解决矩形折叠问题的方法(1)利用折叠的性质:折叠前后的图形能够完全重合,折叠前后的图形对应边相等,对应角相等.(2)此类问题往往通过图形间的折叠找出折叠部分与原图形之间线段或角的联系,从而得到折叠部分与原图形或其他图形之间的关系.(3)尽量将数量关系利用勾股定理列方程.例1:如图所示,将矩形ABCD 沿对角线BD 折叠,点C 的对应点为点C′,BC′与AD 交于点E.若AD =8 cm ,AB =4 cm ,求△BDE 的面积.解:设DE =x cm ,则AE =(8-x)cm .由折叠的性质知△BCD 与△BC′D 全等,则∠1=∠2.在矩形ABCD 中,∵ AD ∥BC ,∴ ∠1=∠3,∴ ∠2=∠3,∴ BE =DE =x.在Rt △ABE 中,由勾股定理,得BE 2=AB 2+AE 2,即x 2=42+(8-x)2,解得x =5.∴ △BDE 的面积为12DE·AB =12×5×4=10(cm 2). ★★ 易混易误点1.误认为折叠几次就有几条对称轴把一个图形沿一条直线折叠后,如果直线两旁的部分能够相互重合,这条直线才是这个轴对称图形的对称轴,并非是把这个图形折叠的次数当成对称轴的条数.例1:将一张正方形的纸沿对角线对折一次后得到等腰三角形,沿等腰三角形底边上的高对折一次,又得到等腰三角形,再沿着底边上的高对折一次,共对折了三次后,在中间剪去一个小圆,则展开后得到的图形至少有几条对称轴?解:4条.蓄势待发考前攻略折纸由于取材方便,又能有效地考查实践操作、归纳探索、逻辑推理、空间想象等各种能力,因而备受中考命题者的青睐,题型主要以选择题为主.完胜关卡。
探索平移旋转和翻折的变化规律平移、旋转和翻折是数学中的基本操作,它们在几何学和图形变换中起着重要的作用。
通过对图形应用这些操作,我们可以探索它们的变化规律,并且更好地理解平移、旋转和翻折的特性。
本文将介绍这三种操作,并通过具体的示例来探索它们的变化规律。
一、平移平移是指将图形在平面上保持大小和形状不变的情况下,沿着指定的方向和距离移动。
平移操作可以用矢量表示,其中矢量的大小和方向确定了平移的路径和距离。
对于平移操作来说,图形上的所有点都按照相同的距离和方向进行移动,因此图形的大小和形状不会改变。
以正方形ABC...为例,我们将这个正方形向右平移2个单位,可以得到新的正方形A'B'C'...。
这说明,经过平移操作后,图形上的每个对应点都按照相同的距离和方向进行移动,保持了原有的形状和大小。
通过对不同的图形进行平移操作,我们可以观察到它们的位置关系具有对称性,即对于任何一点P,将其平移后的位置P'与原来的位置之间的距离和方向是相同的。
二、旋转旋转是指将图形绕着一个中心点旋转一定角度,使得图形产生位置上的变化。
旋转操作可以用角度和方向表示,其中角度决定了旋转的大小,而方向则决定了旋转的方向。
对于旋转操作来说,图形上的所有点都沿着以中心点为轴进行旋转,因此图形的大小和形状不会改变。
以正三角形ABC...为例,我们以顶点A为中心点,将这个正三角形逆时针旋转60度,可以得到新的正三角形A'B'C'...。
这说明经过旋转操作后,图形上的每个对应点都绕着中心点旋转,保持了原有的形状和大小。
通过对不同的图形进行旋转操作,我们可以观察到它们的位置关系具有对称性,即对于任何一点P,将其旋转后的位置P'与原来的位置之间的角度和方向是相同的。
三、翻折翻折是指将图形沿着一条线进行折叠,使得图形的一部分覆盖在另一部分上,产生位置和形状上的变化。
翻折操作可以用折叠线表示,折叠线决定了图形的翻折路径和方式。
图形变换模型之翻折(折叠)模型几何变换中的翻折(折叠、对称)问题是历年中考的热点问题,试题立意新颖,变幻巧妙,主要考查学生的识图能力及灵活运用数学知识解决问题的能力。
涉及翻折问题,以矩形对称最常见,变化形式多样。
无论如何变化,解题工具无非全等、相似、勾股以及三角函数,从条件出发,找到每种对称下隐藏的结论,往往是解题关键。
本专题以各类几个图形(三角形、平行四边形、菱形、矩形、正方形、圆等)为背景进行梳理及对应试题分析,方便掌握。
【知识储备】翻折和折叠问题其实质就是对称问题,翻折图形的性质就是翻折前后图形是全等的,对应的边和角都是相等的。
以这个性质为基础,结合三角形、四边形、圆的性质,三角形相似,勾股定理设方程思想来考查。
解决翻折题型的策略:1)利用翻折的性质:①翻折前后两个图形全等;②对应点连线被对称轴垂直平分;2)结合相关图形的性质(三角形,四边形等);3)运用勾股定理或者三角形相似建立方程。
模型1.矩形中的翻折模型【模型解读】1(2023·辽宁鞍山·统考中考真题)如图,在平面直角坐标系中,矩形AOBC的边OB,OA分别在x轴、y轴正半轴上,点D在BC边上,将矩形AOBC沿AD折叠,点C恰好落在边OB上的点E处.若OA=8,OB=10,则点D的坐标是.【答案】10,3【分析】根据折叠的性质得出AE =AC =10,在Rt △AOE 中,勾股定理求得OE =6,进而得出BE =4,在Rt △DBE 中,勾股定理建立方程,求得BD 的长,即可求解.【详解】解:∵四边形AOBC 是矩形,∴AC =OB =10,∵折叠,∴AE =AC =10,在Rt △AOE 中,OE =AE 2-AO 2=102-82=6∴EB =OB -OE =10-6=4,∴设DB =m ,则CD =8-m ,∵折叠,∴DE =CD =8-m ,在Rt △DEB 中,DE 2=EB 2+BD 2,∴8-m 2=m 2+42,解得:m =3,∴DB =3,∴D 的坐标为10,3 ,故答案为:10,3 .【点睛】本题考查矩形与折叠,勾股定理,坐标与图形,熟练掌握折叠的性质以及勾股定理是解题的关键.2(2023春·江苏泰州·八年级统考期中)如图,在矩形ABCD 中,AB =3,BC =8,E 是BC 的中点,将△ABE 沿直线AE 翻折,点落B 在点F 处,连结CF ,则CF 的长为()A.6B.325C.35D.254【答案】B【分析】连接BF 交AE 于点H ,根据三角形的面积公式求出BH ,得到BF ,根据直角三角形的判定得到∠BFC =90°,根据勾股定理求出答案.【详解】解:连接BF 交AE 于点H ,∵将△ABE 沿直线AE 翻折,点落B 在点F 处,∴点B 、F 关于AE 对称,∴BH =FH ,BF ⊥AE ,∵BC =8,点E 为BC 的中点,∴BE =4,又∵AB =3,∴AE =AB 2+BE 2=32+42=5,∴BH =3×45=125,则BF =245,∵FE =BE =EC ,∴∠BFC =90°,∴CF =BC 2-BF 2=82-245 2=325.故选:B .【点睛】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.3(2023·湖北·统考中考真题)如图,将边长为3的正方形ABCD 沿直线EF 折叠,使点B 的对应点M 落在边AD 上(点M 不与点A ,D 重合),点C 落在点N 处,MN 与CD 交于点P ,折痕分别与边AB ,CD 交于点E ,F ,连接BM .(1)求证:∠AMB =∠BMP ;(2)若DP =1,求MD 的长.【答案】(1)证明见解析(2)MD =125【分析】(1)由折叠和正方形的性质得到∠EMP =∠EBC =90°,EM =EB ,则∠EMB =∠EBM ,进而证明∠BMP =∠MBC ,再由平行线的性质证明∠AMB =∠MBC 即可证明∠AMB =∠BMP ;(2)如图,延长MN ,BC 交于点Q .证明△DMP ∽△CQP 得到QC =2MD ,QP =2MP ,设MD =x ,则QC =2x ,BQ =3+2x .由∠BMQ =∠MBQ ,得到MQ =BQ =3+2x .则MP =13MQ =3+2x 3.由勾股定理建立方程x 2+12=3+2x 3 2,解方程即可得到MD =125.【详解】(1)证明:由翻折和正方形的性质可得,∠EMP =∠EBC =90°,EM =EB .∴∠EMB =∠EBM .∴∠EMP -∠EMB =∠EBC -∠EBM ,即∠BMP =∠MBC ,∵四边形ABCD 是正方形,∴AD ∥BC .∴∠AMB =∠MBC .∴∠AMB =∠BMP .(2)解:如图,延长MN ,BC 交于点Q .∵AD ∥BC ,∴△DMP ∽△CQP .又∵DP =1,正方形ABCD 边长为3,∴CP =2∴MD QC =MP QP =DP CP=12,∴QC =2MD ,QP =2MP ,设MD =x ,则QC =2x ,∴BQ =3+2x .∵∠BMP =∠MBC ,即∠BMQ =∠MBQ ,∴MQ =BQ =3+2x .∴MP =13MQ =3+2x 3.在Rt △DMP 中,MD 2+DP 2=MP 2,∴x 2+12=3+2x 3 2.解得:x 1=0(舍),x 2=125.∴MD =125.【点睛】本题主要考查了正方形与折叠问题,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理等等,正确作出辅助线构造相似三角形是解题的关键.4(2023春·江苏宿迁·八年级统考期末)如图,在矩形ABCD 中,AB =6,BC =8.点O 为矩形ABCD 的对称中心,点E为边AB上的动点,连接EO并延长交CD于点F.将四边形AEFD沿着EF翻折,得到四边形A EFD ,边A E交边BC于点G,连接OG、OC,则△OGC的面积的最小值为()A.18-3B.92+37 C.12-372D.6+372【答案】D【分析】在EA上截取EM=EG,连接OM,证明△MOE≌△GOE,所以OM=OG,即可得OM最短时,OG也就最短,而当OM⊥AB时,OM最短,且OM=4=OG,再过点O作OH⊥BC,得OH=3,又因为OC=5,就可以根据勾股定理计算GH、HC的长,从而计算出最小面积.【详解】解:在EA上截取EM=EG,连接OM,由折叠得:∠MEO=∠GEO,又∵EO=EO,∴△MOE≌△GOE SAS,∴OM=OG,∴OM最短时,OG也就最短,而当OM⊥AB时,OM最短,此时,∵点O为矩形ABCD的对称中心,∴OM=12BC=4=OG,即OG的最小值是4,在△OGC中,∵点O为矩形ABCD的对称中心,∴OC长度是矩形对角线长度的一半,即是5,定值,∠BCO度数也不变,是定值,∴当OG=4最小值时,ΔOGC面积最小.过点O作OH⊥BC,∵点O为矩形ABCD的对称中心, ∴OH=12AB=3,∴Rt△OGH中,GH=OG2-OH2=42-32=7,Rt△OHC中,HC=OC2-OH2=52-32=4,∴GC=GH+HC=7+4,∴△OGC面积的最小值是12×GC×OH=12×(7+4)×3=327+6.故选:D.【点睛】本题考查矩形的性质、全等三角形的判定与性质及垂线段最短等知识,解题关键是找到OG最小值.5(2023春·辽宁抚顺·八年级校联考期中)如图,矩形纸片ABCD中,AB=6,BC=10,点E、G分别在BC、AB上,将△DCE、△BEG分别沿DE、EG翻折,翻折后点C与点F重合,点B与点P重合.当A、P、F、E四点在同一直线上时,线段GP长为()A.832 B.83C.53D.532【答案】B【分析】据矩形的性质得到CD=AB=6,AD=BC=10,∠B=∠C=90°,据折叠的性质得到DF=CD =6,EF=CE,∠DFE=∠C=∠DFA=90°,根据勾股定理得到AF=8,设EF=CE=x,由勾股定理列方程得到AE=10,BE=8,由折叠的性质得到PG=BG,∠APG=∠EPG=∠B=90°,PE=BE=8,求得AP=AE-PE=2,设PG=BG=y,则AG=6-y,据勾股定理列方程即可得到结论.【详解】解:在矩形纸片ABCD中,AB=6,BC=10,∴CD=AB=6,AD=BC=10,∠B=∠C=90°,∵将△DCE沿DE翻折,翻折后点C与点F重合,∴DF=CD=6,EF=CE,∠DFE=∠C=∠DFA=90°,∴AF=AD2-DF2=102-62=8,设EF=CE=x,∴BE=10-x,AE=8+x,∵AB2+BE2=AE2,∴62+(10-x)2=(8+x)2,解得:x=2,∴AE=10,BE=8,∵将△BEG沿EG翻折,翻折后点B与点P重合,∴PG=BG,∠APG=∠EPG=∠B=90°,PE=BE=8,∴AP=AE-PE=2,设PG=BG=y,则AG=6-y,∵AG2=AP2+PG2,∴(6-y)2=22+y2,∴y=83,∴线段GP长为83,故选:B.【点睛】本题考查翻折变换(折叠问题),矩形的性质,勾股定理,根据勾股定理列方程是解题关键.6(2023·江苏盐城·统考中考真题)综合与实践【问题情境】如图1,小华将矩形纸片ABCD先沿对角线BD折叠,展开后再折叠,使点B落在对角线BD 上,点B的对应点记为B ,折痕与边AD,BC分别交于点E,F.【活动猜想】(1)如图2,当点B 与点D重合时,四边形BEDF是哪种特殊的四边形?答:.【问题解决】(2)如图3,当AB=4,AD=8,BF=3时,求证:点A ,B ,C在同一条直线上.【深入探究】(3)如图4,当AB与BC满足什么关系时,始终有A B 与对角线AC平行?请说明理由. (4)在(3)的情形下,设AC与BD,EF分别交于点O,P,试探究三条线段AP,B D,EF之间满足的等量关系,并说明理由.【答案】(1)菱形;(2)证明见解答;(3)BC=3AB,证明见解析;(4)3EF=2(AP+B D),理由见解析【分析】(1)由折叠可得:EF⊥BD,OB=OD,再证得△BFO≌△DEO(ASA),可得OE=OF,利用菱形的判定定理即可得出答案;(2)设EF 与BD 交于点M ,过点B 作B K ⊥BC 于K ,利用勾股定理可得BD=45,再证明△BFM ∽△BDC ,可求得BM =655,进而可得BB =1255,再由△BB K ∽△BDC ,可求得B K =125,BK =245,CK =BC -BK =8-245=165,运用勾股定理可得B C =4,运用勾股定理逆定理可得∠CB F =90°,进而可得∠A B F +∠CB F =90°+90°=180°,即可证得结论;(3)设∠OAB =∠OBA =α,则∠OBC =90°-α,利用折叠的性质和平行线性质可得:∠AB ′B =∠AOB =α,再运用三角形内角和定理即可求得α=60°,利用解直角三角形即可求得答案;(4)过点E 作EG ⊥BC 于G ,设EF 交BD 于H ,设AE =m ,EF =n ,利用解直角三角形可得B D =BD-BB =3n -3m +12n =32n -3m ,AP =2AE ⋅cos30°=3m ,即可得出结论.【详解】解:(1)当点B 与点D 重合时,四边形BEDF 是菱形.理由:设EF 与BD 交于点O ,如图,由折叠得:EF ⊥BD ,OB =OD ,∴∠BOF =∠DOE =90°,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠OBF =∠ODE ,∴△BFO ≌△DEO (ASA ),∴OE =OF ,∴四边形BEDF 是菱形.故答案为:菱形.(2)证明:∵四边形ABCD 是矩形,AB =4,AD =8,BF =3,∴BC =AD =8,CD =AB =4,∠BCD =90°,∴CF =BC -BF =8-3=5,∴BD =BC 2+CD 2=82+42=45,如图,设EF 与BD 交于点M ,过点B ′作B K ⊥BC 于K ,由折叠得:∠A B F =∠ABF =∠BMF =∠B MF =90°,B F =BF =3,BB =2BM ,∴∠BMF =∠BCD ,∵∠FBM =∠DBC ,∴△BFM ∽△BDC ,∴BM BC =BF BD ,即BM 8=345,∴BM =655,∴BB =1255,∵∠BKB =∠BCD ,∠B BK =∠DBC ,∴△BB K ∽△BDC ,∴B K CD =BK BC=BB BD ,即B K 4=BK 8=125545,∴B K =125,BK =245,∴CK =BC -BK =8-245=165,∴B C =B K 2+CK 2=125 2+165 2=4,∵B F 2+B C 2=32+42=25,CF 2=52=25,∴B F 2+B C 2=CF 2,∴∠CB F =90°,∴∠A B F +∠CB F =90°+90°=180°,∴点A ′,B ′,C 在同一条直线上.(3)当BC =3AB 时,始终有A B 与对角线AC 平行.理由:如图,设AC 、BD 交于点O ,∵四边形ABCD是矩形,∴OA=OB,∠OBA+∠OBC=90°,∴∠OAB=∠OBA,设∠OAB=∠OBA=α,则∠OBC=90°-α,由折叠得:∠A B F=∠ABC=90°,B F=BF,∴∠BB F+∠A B B=90°,∠BB F=∠OBC=90°-α,∴∠AB B=∠OBA=α,∵A B∥AC,∴∠AB′B=∠AOB=α,∵∠OAB+∠OBA+∠AOB=180°,∴α+α+α=180°,即3α=180°,∴α=60°,∴∠BAC=60°,∴BCAB=tan∠BAC=tan60°=3,∴BC= 3AB;(4)3EF=2(AP+B′D),理由如下:如图,过点E作EG⊥BC于G,设EF交BD于H,由折叠得:EF⊥BD,B F=BF,∠BFE=∠B FE,设AE=m,EF=n,由(3)得:∠BAC=60°=∠ABD,∴∠BB F=∠DBC=30°,∴∠BFE=∠B FE=60°,∴EG=EF⋅sin60°=32n,FG=EF⋅cos60°=12n,∵∠EAB=∠ABG=∠BGE=90°,∴四边形ABGE是矩形,∴AB=EG=32n,BG=AE=m,AD∥BC,∴BF=B F=m+12n,∴BH=BF⋅cos30°=32m+12n,∴BB =2BH=3m+12n,∵BD=2AB=3n,∴B D=BD-BB =3n-3m+12n=32n-3m,∵AD∥BC,∴∠DEF=∠EFG=60°,∴∠APE=∠DEF-∠DAC=60°-30°=30°=∠DAC,∴AP=2AE⋅cos30°=3m,∴AP+B D=3m+32n-3m=32n,∴AP+B D=32EF,即3EF=2(AP+B D).【点睛】本题是四边形综合题,考查了矩形的性质和判定,菱形的判定,勾股定理,直角三角形性质,等腰三角形性质,平行线性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等,涉及知识点多,综合性强,难度较大.模型2.正方形中的翻折模型【模型解读】7(2023·河南洛阳·统考二模)如图,正方形ABCD的边长为4,点F为CD边的中点,点P是AD边上不与端点重合的一动点,连接BP.将△ABP沿BP翻折,点A的对应点为点E,则线段EF长的最小值为()A.27B.25-4C.34D.37-2【答案】B【分析】先确定线段EF的最小值的临界点,然后结合正方形的性质,折叠的性质,以及勾股定理,即可求出答案.【详解】连接BF,则EF≥BF-BE,当点B、E、F在同一条直线上时,EF的长度有最小值,如图由翻折的性质,BE=AB=4,在正方形ABCD中,BC=CD=4,∠C=90°,∵点F为CD边的中点,∴CF=2,∴BF=42+22=25,∴EF=BF-BE=25-4;故选:B.【点睛】本题考查了正方形的性质,折叠的性质,勾股定理,最短路径问题,解题的关键掌握所学的知识,正确找出线段最小值的临界点,从而进行解题.8(2023·广西玉林·统考模拟预测)如图,在正方形ABCD的边AB上取一点E,连接CE,将△BCE沿CE 翻折,点B恰好与对角线AC上的点F重合,连接DF,若BE=2,则△CDF的面积是()A.1+324B.32+4 C.62+8 D.322【答案】B【分析】由折叠可得EF=BE=2,∠CFE=∠B=90°,且∠FAE=45°可得AF=2,AE=22,即可求对角线BD的长,则可求△CDF面积.【详解】如图连接BD交AC于O,∵ABCD为正方形,∴∠ABC=90°,AB=BC,AC⊥BD,DO=BO,∠BAC=45°,∵△BCE沿CE翻折,∴BE=EF=2,BC=CF,∠EFC=90°,∵∠BAC=45°,∠EFC=90°,∴∠EAF=∠AEF=45°,∴AF=EF=2,∴AE=22,∴AB=22+2=BC=CF,∴BD=2AB=4+22,∴OD=2+2,∵S△CDF=12×CF×DO=32+4,故选B.【点睛】本题考查翻折变换、正方形的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是熟练应用所学知识解决问题.9(2023·广东九年级课时练习)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论:①△ABG≌△AFG;②∠AGB+∠AED=135°③GF=3;④AG⎳CF;其中正确的有(填序号).【答案】①②③④【分析】根据折叠,得到AD=AF,∠D=∠AFE=90°,推出AB=AF,∠AFG=∠B=90°,可证明Rt△ABG≌Rt△AFG,即可判断①正确;根据∠DAE=∠EAF,∠BAG=∠FAG,进而可得∠GAE=45°,根据三角形内角和定理即可得∠AEF+∠ADF=135°,得到∠AGB+∠AED=135°,进而判断②正确;设BG=GF=x,则CG=6-x,EG=x+2,CE=4,在Rt△EGC中,根据勾股定理建立方程(x+2)2= (6-x)2+42,解方程可得GF=3,即可判断③正确;根据BG=FG=3,得到CG=BC-BG=6-3=3,得到CG=FG,推出∠GCF=∠GFC,根据∠AGB=∠AGF,得到∠BGF=2∠AGF=2∠GFC,得到∠AGF=∠GFC,推出AG∥CF,即可判断④正确【详解】∵四边形ABCD是正方形,∴∠D=∠ABC=∠DAB=∠BCD=90°,AB=BC=CD=AD=6,∵CD=3DE,∴DE=2,∴CE=4,∵将△ADE沿AE对折至△AFE,∴∠AFE=∠ADE=90°,AF=AD,EF=DE=2,∴∠AFG=∠ABG=90°,AF=AB,在Rt△ABG和Rt△AFG中,AB=AF AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴①正确;∵将△ADE沿AE对折至△AFE,∴∠DAE=∠EAF,∵Rt△ABG≌Rt△AFG,∴∠BAG=∠FAG,∵∠DAE+∠EAF+∠BAG+∠FAG=∠DAB=90°,∴∠EAG=∠EAF+∠FAG=12∠DAB=45°,∴∠AEF+∠ADF=135°,∴∠AGB+∠AED=135°,∴②正确;设BG=GF=x,则CG=6-x,EG=x+2,∵CE=4,∴(x+2)2=(6-x)2+42,解得x=3,∴BG=GF=3,∴③正确;∵BG=FG=3,∴CG=BC-BG=6-3=3,∴CG=FG,∴∠GCF=∠GFC,∵∠AGB=∠AGF,∴∠BGF=2∠AGF=2∠GFC,∴∠AGF=∠GFC,∴AG∥CF∴④正确;故答案为:①②③④.【点睛】本题考查了正方形性质,折叠图形全等的性质,三角形全等的判断和性质,三角形内角和定理,勾股定理,熟练掌握以上知识是解题的关键.10(2023·江苏扬州·统考中考真题)如图,已知正方形ABCD的边长为1,点E、F分别在边AD、BC上,将正方形沿着EF翻折,点B恰好落在CD边上的点B 处,如果四边形ABFE与四边形EFCD的面积比为3∶5,那么线段FC的长为.【答案】3 8【分析】连接BB ,过点F作FH⊥AD于点H,设CF=x,则DH=x,则BF=1-x,根据已知条件,分别表示出AE,EH,HD,证明△EHF≌△B CB ASA,得出EH=B C=54-2x,在Rt△B FC中,B F2=BC2+CF2,勾股定理建立方程,解方程即可求解.【详解】解:如图所示,连接BB ,过点F作FH⊥AD于点H,∵正方形ABCD的边长为1,四边形ABFE与四边形EFCD的面积比为3∶5,∴S四边形ABFE =38×1=38,设CF=x,则DH=x,则BF=1-x∴S四边形ABFE =12AE+BF×AB=38即12AE+1-x×1=38∴AE=x-14∴DE=1-AE=54-x,∴EH=ED-HD=54-x-x=54-2x,∵折叠,∴BB ⊥EF,∴∠1+∠2=∠BGF=90°,∵∠2+∠3=90°,∴∠1=∠3,又FH=BC=1,∠EHF=∠C∴△EHF≌△B CB ASA,∴EH=B C=54-2x在Rt△B FC中,B F2=B C2+CF2即1-x2=x2+54-2x2解得:x=38,故答案为:38.【点睛】本题考查了正方形的性质,折叠的性质,勾股定理,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.11(2023·江苏·统考中考真题)综合与实践定义:将宽与长的比值为22n+1-12n(n为正整数)的矩形称为n阶奇妙矩形.(1)概念理解:当n=1时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽(AD)与长CD的比值是.(2)操作验证:用正方形纸片ABCD进行如下操作(如图(2)):第一步:对折正方形纸片,展开,折痕为EF,连接CE;第二步:折叠纸片使CD落在CE上,点D的对应点为点H,展开,折痕为CG;第三步:过点G 折叠纸片,使得点A 、B 分别落在边AD 、BC 上,展开,折痕为GK .试说明:矩形GDCK 是1阶奇妙矩形.(3)方法迁移:用正方形纸片ABCD 折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:小明操作发现任一个n 阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点E 为正方形ABCD 边AB 上(不与端点重合)任意一点,连接CE ,继续(2)中操作的第二步、第三步,四边形AGHE 的周长与矩形GDCK 的周长比值总是定值.请写出这个定值,并说明理由.【答案】(1)5-12;(2)见解析;(3)12,理由见解析【分析】(1)将n =1代入22n +1-12n,即可求解.(2)设正方形的边长为2,根据折叠的性质,可得AE =EB =1,设DG =x ,则AG =2-x ,在Rt △AEG ,Rt △GHE 中,勾股定理建立方程,解方程,即可求解;(3)仿照(2)的方法得出2阶奇妙矩形.(4)根据(2)的方法,分别求得四边形AGHE 的周长与矩形GDCK 的周长,即可求解.【详解】解:(1)当n =1时,22n +1-12n=5-12,故答案为:5-12.(2)如图(2),连接EG ,设正方形的边长为2,根据折叠的性质,可得AE =EB =1设DG =x ,则AG =2-x 根据折叠,可得GH =GD =x ,CH =CD =2,在Rt △BEC 中,EC =EB 2+BC 2=12+22=5,∴EH =5-2,在Rt △AEG ,Rt △GHE 中,AG 2+AE 2=GE 2,GH 2+EH 2=GE 2∴2-x 2+12=5-2 2+x 2解得:x =5-1∴GD DC=5-12∴矩形GDCK 是1阶奇妙矩形.(3)用正方形纸片ABCD 进行如下操作(如图):第一步:对折正方形纸片,展开,折痕为MN ,再对折,折痕为EF ,连接CE ;第二步:折叠纸片使CD 落在CE 上,点D 的对应点为点H ,展开,折痕为CG ;第三步:过点G 折叠纸片,使得点A 、B 分别落在边AD 、BC 上,展开,折痕为GK .矩形GDCK 是2阶奇妙矩形,理由如下,连接GE ,设正方形的边长为4,根据折叠可得EB =1,则AE =4-1=3,设DG =x ,则AG =4-x 根据折叠,可得GH =GD =x ,CH =CD =4,在Rt △BEC 中,EC =EB 2+BC 2=12+42=17,∴EH =17-4,在Rt △AEG ,Rt △GHE 中,AG 2+AE 2=GE 2,GH 2+EH 2=GE 2∴4-x 2+32=17-4 2+x 2解得:x =17-1∴GD DC=17-14当n =2时,22n +1-12n=17-14∴矩形GDCK 是2阶奇妙矩形.(4)如图(4),连接诶GE ,设正方形的边长为1,设EB =m ,则AE =1-m ,设DG =x ,则AG =1-x 根据折叠,可得GH =GD =x ,CH =CD =1,在Rt △BEC 中,EC =EB 2+BC 2=1+m 2,∴EH =1+m 2-1,在Rt △AEG ,Rt △GHE 中,AG 2+AE 2=GE 2,GH 2+EH 2=GE 2∴1-x 2+1-m 2=1+m 2-1 2+x 2整理得,x =m 2+1-m ∴四边形AGHE 的边长为1-x +x +1+m 2-1+1-m =1+m 2-m +1=x +1矩形GDCK 的周长为2GD +DC =2x +1 ,∴四边形AGHE 的周长与矩形GDCK 的周长比值总是定值12【点睛】本题考查了正方形的折叠问题,勾股定理,熟练掌握折叠的性质是解题的关键.模型3.菱形中的翻折模型【模型解读】12(2023·四川成都·模拟预测)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.【答案】2.8【分析】作EH⊥BD于H,根据折叠的性质得到EG=EA,根据菱形的性质、等边三角形的判定定理得到△ABD为等边三角形,得到AB=BD,根据勾股定理列出方程,解方程即可.【详解】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∠ABC=60°,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=12∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8-x,在Rt△EHB中,BH=12x,EH=32x,在Rt△EHG中,EG2=EH2+GH2,即(8-x)2=32x2+6-12x2,解得,x=2.8,即BE=2.8,故答案为:2.8.【点睛】本题考查的是翻转变换的性质、菱形的性质、勾股定理、解直角三角形,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.13(2023·安徽·统考一模)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连结A'C,则A'C长度的最小值是( ).A.7B.7-1C.3D.2【答案】B【分析】根据题意,在N的运动过程中A′在以M为圆心、AD为直径的圆上的弧AD上运动,当A′C取最小值时,由两点之间线段最短知此时M、A′、C三点共线,得出A′的位置,进而利用锐角三角函数关系求出A′C的长即可.【详解】如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=12MD=12,∴FM=DM×cos30°=32,∴MC=FM2+CF2=7,∴A′C=MC-MA′=7-1.故选B.14(2023·山东枣庄·九年级校考阶段练习)如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.72B.12C.74D.23【答案】A【分析】连接BE、BD,根据菱形的性质可知ΔBCD是等边三角形,由E是CD中点,可求得DE,BE,又因为CD∥AB,可得∠ABE=∠CEB=90°,利用勾股定理即可求解.【详解】解:连接BE、BD,∵四边形ABCD为菱形,∠A=60°,∴AB=4=BC=CD,∠A=60°=∠C,∴ΔBCD是等边三角形,∵E是CD中点,∴DE=2=CE,BE⊥CD,∠EBC=30°,∴BE=3CE=23,∵CD∥AB,∴∠ABE=∠CEB=90°,由折叠可得AF=EF,∵EF2=BE2+BF2,∴EF2=12+(4-EF)2,∴EF=72.故选:A.【点睛】本题主要考查了菱形的性质,等边三角形的性质,勾股定理等知识点,解题的关键是根据题意作出辅助线得到等边三角形再由勾股定理求解.15(2023春·湖北十堰·八年级校联考期中)如图,在菱形纸片ABCD中,∠ABC=60°,E是CD边的中点,将菱形纸片沿过点A的直线折叠,使点B落在直线AE上的点G处,折痕为AF,FG与CD交于点H,有如下结论:①∠CFH=30°;②DE=33AE;③CH=GH;④S△ABF:S四边形AFCD=3:5,上述结论中,所有正确结论的序号是()A.①②④B.①②③C.①③④D.①②③④【答案】B【分析】连接AC,得到△ACD是等边三角形,根据三线合一的性质得到AG⊥CD,由折叠得∠G=∠B= 60°,求出∠C,∠CHF的度数即可判断①;利用30度角的性质求出DE,勾股定理求出AE,即可判断②;连接CG,由折叠得AG=AB=AC,根据等边对等角求出∠ACG=∠AGC,得到∠HCG=∠HGC,即可判断③;过点F作FM⊥AB于点M,先求出∠BAG=90°,由折叠得∠BAF=∠GAF=45°,MF=3BM,设BM=x,则AM=MF=3x,求出S△ABF,再得到AD=CD=AB=1+3x,根据S菱形ABCD-S△ABF 求出四边形AFCD的面积,即可判断④.【详解】解:连接AC,∵四边形ABCD是菱形,∴AD=CD,∠D=∠ABC=60°,∴△ACD是等边三角形,∵E是CD边的中点,∴AG⊥CD,∴∠AED=∠GEH=90°,由折叠得∠G=∠B=60°,∴∠CHF=∠EHG=30°,∵∠C=180°-∠B=120°,∴∠CFH=30°,故①正确;∵∠DAE=90°-∠D=30°,∴AD=2DE,∴AE=AD2-DE2=3DE,∴DE AE =DE3DE=33,即DE=33AE,故②正确;连接CG,由折叠得AG=AB=AC,∴∠ACG=∠AGC,∵∠ACD=∠AGF=60°,∴∠HCG=∠HGC,∴CH=GH,故③正确;过点F作FM⊥AB于点M,∵∠BAD=180°-∠B=120°,∠DAE=30°,∴∠BAG=90°,由折叠得∠BAF=∠GAF=45°,∴∠AFM=45°=∠BAF,∴AM=FM,∵∠BFM=90°-∠B=30°,∴MF=3BM,设BM=x,则AM=MF=3x,∴AB=1+3x,S△ABF=12×1+3x⋅3x=3+32x2,∵AD=CD=AB=1+3x,∴AE=3 21+3x=3+32x,∴S菱形ABCD=CD⋅AE=1+3x⋅3+32x=3+23x2,∴四边形AFCD的面积=S菱形ABCD -S△ABF=3+23x2-3+32x2=3+332x2,∴S△ABF:S四边形AFCD =3+32x2:3+332x2=33≠35,故④错误;故选:B.【点睛】此题考查了菱形的性质,勾股定理,直角三角形30度角的性质,三线合一的性质,等边三角形的判定和性质,熟练掌握各知识点并综合应用是解题的关键.16(2023·浙江·九年级期末)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O 折叠菱形,使B,B 两点重合,MN是折痕.若B M=1,则CN的长为.【答案】4【分析】连接AC、BD,如图,利用菱形的性质得OC=12AC=3,OD=12BD=4,∠COD=90°,再利用勾股定理计算出CD =5,接着证明ΔOBM ≅ΔODN 得到DN =BM ,然后根据折叠的性质得BM =B M =1,从而有DN =1,于是计算CD -DN 即可.【详解】解:连接AC 、BD ,如图,∵点O 为菱形ABCD 的对角线的交点,∴OC =12AC =3,OD =12BD =4,∠COD =90°,在Rt ΔCOD 中,CD =32+42=5,∵AB ⎳CD ,∴∠MBO =∠NDO ,在ΔOBM 和ΔODN 中∠MBO =∠NDOOB =OD ∠BOM =∠DON,∴ΔOBM ≅ΔODN ,∴DN =BM ,∵过点O 折叠菱形,使B ,B ′两点重合,MN 是折痕,∴BM =B M =1,∴DN =1,∴CN =CD -DN =5-1=4,故答案为:4.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了菱形的性质.17(2023秋·重庆·九年级专题练习)如图,在菱形ABCD 中,BC =4,∠B =120°,点E 是AD 的中点,点F 是AB 上一点,以EF 为对称轴将△EAF 折叠得到△EGF ,以CE 为对称轴将△CDE 折叠得到△CHE ,使得点H落到EG 上,连接AG .下列结论错误的是()A.∠CEF =90°B.CE ∥AGC.FG =1.6D.CF AB=145【答案】D【分析】A .由折叠的性质可以知道EF 和CE 分别是∠AEG 和∠DEG 的平分线,同时∠AED 是平角,所以可知∠CEF =90°,故选项A 正确;B .由题意和折叠的性质可以知道EF ⊥AG 、EF ⊥CE ,就可以得到CE ∥AG ,选项B 正确;C 和D .过点C 作CM ⊥AB 于点M ,∠CBA =120°,可得BM =2,CM =23.设BF =a ,可以得到FG =AF =4-a ,FM =BF +BM =a +2.根据折叠的性质可得CG =CD=4,根据勾股定理,求得a =2.4,即可得到FG =1.6,CF =5.6,所以CF AB=5.64=75.故选项C 正确,选项D 错误.【详解】解:A .由折叠可知EF 和CE 分别是∠AEG 和∠DEG 的平分线.又∵∠AED =180°,∴∠CEF =∠CEG +∠FEG =12∠AED =12×180°=90°,故选项A 正确.B .又∵点A 与点G 关于EF 对称,∴EF ⊥AG ,又∵EF ⊥CE ,∴CE ∥AG ,故选项B 正确.C 和D .如答图,过点C 作CM ⊥AB 于点M .∵∠CBA =120°,∴∠CBM =60°,∵BC =4,∴易知BM =2,CM =23,设BF =a ,∴FG =AF =4-a ,FM =BF +BM =a +2,∵点E 是AD 的中点,折叠后点H 落到EG 上,∴点G 与点H 重合,CG =CD =4.易知点C ,G ,F 共线,∴CF =FG +CG =4-a +4=8-a .∵FM 2+CM 2=CF 2,∴a +2 2+23 2=8-a 2,解得a =2.4.∴FG =4-2.4=1.6,CF =8-a =8-2.4=5.6,∴CF AB=5.64=75,故选项C 正确,选项D 错误.综上,故选:D .【点睛】本题考查翻折变换(折叠问题)、菱形的性质、勾股定理,熟练掌握翻折的性质是解答本题的关键.模型4.三角形中的翻折模型【模型解读】18(2023·内江九年级期中)如图,在Rt △ABC 的纸片中,∠C =90°,AC =7,AB =25.点D 在边BC 上,以AD 为折痕将△ADB 折叠得到△ADB ,AB 与边BC 交于点E .若△DEB 为直角三角形,则BD 的长是.【答案】17或【分析】由勾股定理可以求出的长,由折叠可知对应边相等,对应角相等,当为直角三角形时,可以分为两种情况进行考虑,分别利用勾股定理可求出的长.【详解】解:在中,,(1)当时,如图1,过点作,交的延长线于点,由折叠得:,,设,则,,在中,由勾股定理得:,即:,解得:(舍去),,因此,.(2)当时,如图2,此时点与点C重合,由折叠得:,则,设,则,,在△中,由勾股定理得:,解得:,因此.故答案为:17或.【点睛】本题考查了翻折变换,直角三角形的性质,勾股定理等知识,解题的关键是:分类讨论思想的应用注意分类的原则是不遗漏、不重复.19(2023年四川省成都市数学中考真题)如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=.【答案】377【分析】过点G 作GM ⊥DE 于M ,证明△DGE ∽△CGD ,得出DG 2=GE ×GC ,根据AD ∥GM ,得AGGE=73=DMME,设GE =3,AG =7,EM =3n ,则DM =7n ,则EC =DE =10n ,在Rt △DGM 中,GM 2=DG 2-DM 2,在Rt △GME 中,GM 2=GE 2-EM 2,则DG 2-DM 2=GE 2-EM 2,解方程求得n =34,则EM=94,GE =3,勾股定理求得GM ,根据正切的定义,即可求解.【详解】解:如图所示,过点G 作GM ⊥DE 于M ,∵CD 平分∠ACB 交AB 于点D ,DE ∥BC ∴∠1=∠2,∠2=∠3∴∠1=∠3∴ED =EC∵折叠,∴∠3=∠4,∴∠1=∠4,又∵∠DGE =∠CGD ∴△DGE ∽△CGD ∴DG CG =GEDG∴DG 2=GE ×GC∵∠ABC =90°,DE ∥BC ,则AD ⊥DE ,∴AD ∥GM ∴AG GE=DMME ,∠MGE =∠A ,∵AG GE=73=DM ME 设GE =3,AG =7,EM =3n ,则DM =7n ,则EC =DE =10n ,∵DG 2=GE ×GC ∴DG 2=3×3+10n =9+30n 在Rt △DGM 中,GM 2=DG 2-DM 2在Rt △GME 中,GM 2=GE 2-EM 2∴DG 2-DM 2=GE 2-EM 2即9+30n -7n 2=32-3n 2解得:n =34∴EM =94,GE =3则GM =GE 2-ME 2=32-942=374∴tan A =tan ∠EGM =ME MG=94374=377故答案为:377.【点睛】本题考查了求正切,折叠的性质,勾股定理,平行线分线段成比例,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.20(2023·湖北襄阳·统考中考真题)如图,在△ABC 中,AB =AC ,点D 是AC 的中点,将BCD 沿BD 折叠得到△BED ,连接AE .若DE ⊥AB 于点F ,BC =10,则AF 的长为.【答案】210【分析】取BC 中点H ,连接AH ,取CH 中点G ,连接DG ,作DM ⊥BE 于点M .设EF =a ,由折叠可知AD =CD =DE =x 则DF =x -a ,得到cos ∠ABC =cos ∠BED ,从而推导出a =25x,由三角形中位线定理得到BG =152,从而推导出△EMD ≌△CGD AAS ,得到四边形MBGD 是正方形,DG =152,AH =15,最后利用勾股定理解答即可.【详解】解:取BC 中点H ,连接AH ,取CH 中点G ,连接DG ,作DM ⊥BE 于点M .∵AB =AC ,H 为BC 的中点,∴AH ⊥BC,AD =CD ,BH =HC =5.∵点D 是AC 的中点,∴DG 是△AHC 的中位线,∴DG ∥AH ,则DG ⊥BC 于点G ,设EF =a ,由折叠可知AD =CD =DE =x 则DF =x -a ,∵AB =AC ,∴AB =2x ,∠ABC =∠ACB ,又由折叠得∠ACB =∠BED ,BE =BC =10,∴∠ABC =∠BED ,∴cos ∠ABC =cos ∠BED ,即BH AB=EF EB ,∴52x =a 10,解得:a =25x ,∴DF =x -a =x -25x ,∵DG 是△AHC 的中位线,∴CG =12CH =52,AH =2DG ,∴BG =152,由折叠知∠DEM =∠DCG ,ED =CD ,在△EMD 和△CGD 中,∠DEM =∠DCG∠DME =∠DGC ED =CD,∴△EMD ≌△CGD AAS ,∴DG =MD .∵DE ⊥AB ,∴∠EFB =90°,∴∠DEB +∠EBF =90°.又∵∠CAH +∠ACB =90°,且∠ACB =∠DEB ,∴∠EBF =∠CAH ,∴∠EBF +∠ABC =90°,∴∠DMB =∠MBG =∠BGD =90°,∴四边形MBGD 是正方形,∴DG =BG =152,∴AH =2DG =15.在Rt △AHC 中,AH 2+HC 2=AC 2,∴152+52=2x 2,解得:x =5102,∴a =10,x -a =3102,即AD =5102,DF =3102,在Rt △AFD 中,AF =AD 2-DF 2=210.故答案为:210.【点睛】本题考查了折叠的性质,等腰三角形的性质,勾股定理,解直角三角形,正方形的判定及性质等,解答本题的关键是设边长,根据勾股定理列方程求解.21(2023·湖北武汉·统考中考真题)如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG=EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.模型5.圆中的翻折模型(弧翻折必出等腰)如图,以圆O 的一条弦BC 为对称轴将弧BC 折叠后与弦AB 交于点D ,则CD =CA特别的,若将弧BC 折叠后过圆心,则CD =CA ,∠CAB =60°22(2022秋·浙江宁波·九年级校考期末)如图,⊙O 是△ABC 的外接圆,AB =BC =4,把弧AB 沿弦AB 向下折叠交BC 于点D ,若点D 为BC 中点,则AC 长为()A.1B.2C.22D.6【答案】C【分析】由等腰三角形的性质可得∠ACB =∠BAC ,由折叠的性质和圆周角定理可得∠ACB =∠ABD +∠BAD 可得∠ABD =∠CAD ,可证△ACD ∽△BCA ,可得CD AC=ACBC ,即可求解.【详解】解:如图,连接AD ,∵AB =BC =4,∴∠ACB =∠BAC ,∵点D 为BC 中点,∴BD =CD =2,∵弧AB 沿弦AB 向下折叠交BC 于点D ,∴AB=ADB,∴∠ACB =∠ABD +∠BAD ,∵∠BAC =∠BAD +∠CAD ,∴∠ABD =∠CAD ,又∵∠ACB =∠ACD ,∴△ACD ∽△BCA ,∴CD AC =AC BC ,∴2AC=AC 4,∴AC =8=22(负值舍去),故选:C .【点睛】本题考查了三角形外接圆与外心,等腰三角形的性质,折叠的性质,相似三角形的判定和性质,证明三角形相似是解题的关键.23(2023·广东广州·统考一模)如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则∠ACD 的度数等于( ).。
平移旋转和翻折的坐标变换平移、旋转和翻折是数学中常用的坐标变换方法,可以通过这些变换将图形在平面上进行移动、旋转和翻折。
本文将深入探讨平移、旋转和翻折的坐标变换,介绍其原理和应用。
一、平移的坐标变换平移是一种简单的坐标变换方法,它可以将图形在平面上进行平移,即保持图形的形状和大小不变,在平面上沿着指定的方向移动。
平移操作的坐标变换公式为:(x', y') = (x + a, y + b)其中,(x, y)为原图形的坐标,(x', y')为平移后图形的坐标,a和b分别为图形在x轴和y轴方向上的平移距离。
以一个简单的例子来说明平移的坐标变换。
假设有一个正方形,其顶点坐标为A(0, 0)、B(0, 3)、C(3, 3)、D(3, 0),现在需要将该正方形在x轴方向上平移4个单位,y轴方向上平移2个单位。
根据平移的坐标变换公式,可以计算出平移后的坐标:A'(0+4, 0+2) = A'(4, 2)B'(0+4, 3+2) = B'(4, 5)C'(3+4, 3+2) = C'(7, 5)D'(3+4, 0+2) = D'(7, 2)通过计算可得到平移后的新坐标。
二、旋转的坐标变换旋转是一种常用的坐标变换方法,它可以将图形在平面上绕着指定点旋转一定角度。
顺时针旋转的角度用负值表示,逆时针旋转的角度用正值表示。
旋转操作的坐标变换公式为:(x', y') = (xcosθ - ysinθ, xsinθ + ycosθ)其中,(x, y)为原图形的坐标,(x', y')为旋转后图形的坐标,θ为旋转的角度,(xc, yc)为指定的旋转中心点的坐标。
以一个简单的例子来说明旋转的坐标变换。
假设有一个三角形,其顶点坐标为A(0, 0)、B(3, 0)、C(0, 2),现在需要将该三角形绕原点顺时针旋转90度。
讲义内容一、轴对称图形● 轴对称图形:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。
● 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。
4.对称轴是到线段两端距离相等的点的集合。
二、折叠问题1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.三、解题技巧1、动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.例1 矩形(1)如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.(2).如图,沿矩形ABCD的对角线BD折叠,点C落在点E的位置,已知BC=8cm,AB=6cm,求折叠后重合部分的面积.例2正方形如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D重合.MN为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.例3 三角形在△ABC中,已知AB=2a,∠A=30°,CD是AB边的中线,若将△ABC沿CD对折起来,折叠后两个小△ACD与△BCD重叠部分的面积恰好等于折叠前△ABC的面积的.(1)当中线CD等于a时,重叠部分的面积等于;(2)有如下结论(不在“CD等于a”的限制条件下):①AC边的长可以等于a;②折叠前的△ABC的面积可以等于;③折叠后,以A、B为端点的线段AB与中线CD平行且相等.其中,结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”).例4在△ABC中,已知∠A=80°,∠C=30°,现把△CDE沿DE进行不同的折叠得△C′DE,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE沿DE折叠在四边形ADEB内,则求∠1+∠2的和;(2)如图(2)把△CDE沿DE折叠覆盖∠A,则求∠1+∠2的和;(3)如图(3)把△CDE沿DE斜向上折叠,探求∠1、∠2、∠C的关系.例5 圆如图,正方形ABCD的边长为2,⊙O的直径为AD,将正方形的BC边沿EC折叠,点B落在圆上的F点,求BE的长中考链接(2010年河南中考)(1)操作发现,如图,矩形中,是的中点,将沿折叠后得到,且点在矩形内部.小明将延长交于点,认为,你同意吗?说明理由.(2)问题解决保持(1)中的条件不变,若,求的值.(3)类比探究保持(1)中的条件不变,若,求的值.中考链接(2009年河南中考)动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为 .[(2012河南省)如图,在中,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为。
图形的翻折与旋转一、复习导入1.在平面内某一个图形绕一个中心旋转若干角度得到另一个图形的过程叫旋转变换。
2.翻折变换是将某一个图形沿着直线对折,翻折前后的两个图形关于这条直线轴对称。
3本质上旋转与翻折后的民原图形是全等形。
其中作用可将一些分散的元素通过翻折和旋转集中起来,旋转常用于边相等的等腰三角形、等边三角形及正方形等图形中。
二、典型例题 例1.如图,点A 是硬币圆周上一点,硬币与数轴相切于原点O (点A 与O 重合),假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A 重合,在以半径为2个单位长度在圆O 中,BC ⌒的长等于AA ’的长,则BC ⌒所对的圆心角的度数为小结:以圆滚动为背景,考查圆的周长的基本概念的基础题目。
考查实际情况中的数学问题。
1A(O)123A例2. 矩形ABCD 在边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿l 向右作无滑动地翻滚,当它翻滚至类似于开始的位置A 、B 、C 、D 时,则顶点A 所经过的路线长是小结:对于例1、例2共同之处,所考查的知识点均是以圆的周长作为知识背景,在运动过程中体会,抽象出。
例3. 如图在Rt ∆ABC 中,AB =AC ,D 、E 是斜边BC 上的两点,且∠DAE =45。
,将∆ADC 绕点A 顺时针旋转90。
后,得到∆AFB ,连接EF ,下列结论:① ∆AED ≌∆AEF ② ∆ABE ≌∆ACD ③ BE+DC =DE ④ BE 2+ DC 2=DE 2 其中一定正确的是________结论:边边若相等,旋转做实验。
CAABD ADABC D l例4.如图:梯形ABCD 中,AD ∥BC 且AB ⊥DB,AD=3,BC=5,将腰DC 绕点D 逆时针旋转90度至DE ,连结AE ,过点E 作EF ⊥AD 交AD 的延长线于F ,则EF 的长为例5.如图: 在等边三角形ABC 中,边长AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60度得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是BAA例6.如图:等腰三角形ABC 中,P 是斜边BC 的中点,以P 为顶点的直角边分别与边AB 、AC 交于E 、F 点,连接EF ,当∠EPF 绕顶点P 旋转时,∆PEF 边始终是等腰直角三角形,说明理由。
圆中的重要模型-圆中的翻折模型知识储备:1、翻折变换的性质:翻折前后,对应边相等,对应角相等,对应点之间的连线被折痕垂直平分;2、圆的性质:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等;同弧或等弧所对的圆周角相等;3、等圆相交:如图,圆O和圆G为两个相等的圆,圆O和圆G相交,相交形成的弦为AB,则弦AB为整个图形的对称轴,圆心O和圆心G关于AB对称,弧ACB和弧ADB为等弧,且关于AB对称;4、弧翻折(即等圆相交):如图,以弦BC为对称轴,将弧BC翻折后交弦AB于点D,那么弧CDB所在的圆圆G与圆O是相等的圆,且两个圆关于BC对称,故圆心O、G也关于BC对称。
模型1.圆中的翻折模型(弧翻折必出等腰)如图,以圆O的一条弦BC为对称轴将弧BC折叠后与弦AB交于点D,则CD=CA特别的,若将弧BC折叠后过圆心,则CD=CA,∠CAB=60°九年级校联考阶段练习)如图,ABC是O的内接三角形,将劣弧,则O的半径长为(1224是O的直径,且是O上一点,将弧,则(1)AC)劣弧BC的长是是O的直径,是O的弦,15=︒,将CE CE翻折,交为O的两条弦,,则O的半径为(统考二模)如图,O的直径是O上一点,将,则图中阴影部分的面积为(4π4π2π将O沿弦AB)85422355是O上5个点,若,此时,图中阴影部分恰好形成一个“钻戒型的O折叠,弧已知ABC是⊙九年级专题练习)如图,在O中,AB为O的直径,弦OA上的点E处(点E不与点交O于点M,连结,若AM=为弦的O与AB相切于点是O的切线;)将O中BC以下部分沿直线,若翻折后的弧过AB,并交AC23,且翻折后的弧恰好过点A,则O的半径为17.(2023·江苏无锡·九年级校联考期中)如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为AB,P是半径OB上一动点,Q是AB上的一动点,连接PQ.(1)当∠POQ=时,PQ有最大值,最大值为;(2)如图2,若P是OB中点,且QP⊥OB于点P,求BQ的长;(3)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积.18.(2023·江西萍乡·校考模拟预测)如图(1)AB是O的直径,且2AB=,点C是半圆AB的中点,点P 是BC上一动点,将AP沿直线AP折叠交AB于点D,连接PD,PB.(1)求证:PD PB=;(2)当点D与点O重合时,如图(2),求BP的长.专题04 圆中的重要模型-圆中的翻折模型知识储备:1、翻折变换的性质:翻折前后,对应边相等,对应角相等,对应点之间的连线被折痕垂直平分;2、圆的性质:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等;同弧或等弧所对的圆周角相等;3、等圆相交:如图,圆O和圆G为两个相等的圆,圆O和圆G相交,相交形成的弦为AB,则弦AB为整个图形的对称轴,圆心O和圆心G关于AB对称,弧ACB和弧ADB为等弧,且关于AB对称;4、弧翻折(即等圆相交):如图,以弦BC为对称轴,将弧BC翻折后交弦AB于点D,那么弧CDB所在的圆圆G与圆O是相等的圆,且两个圆关于BC对称,故圆心O、G也关于BC对称。
名称是否是轴对称图形对称轴有几条对称轴的位置线段是2条垂直平分线或线段所在的直线角是1条角平分线所在的直线长方形是2条对边中线所在的直线正方形是4条对边中线所在的直线和对角线所在的直线圆是无数条直径所在的直线平行四边形不是0条【例题精讲】1、画出图形的另一半,使它成为一个轴对称图形。
2、2、画出下列图形的对称轴。
3、如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A′B′C′D′E′F′.下列判断错误的是()A.AB=A′B′B.BC∥B′C′C.直线l⊥BB′D.∠A′=120°4、如图,ΔABC与ΔA’B’C’关于直线l对称,则∠B的度数为()A.50°B.30°C.100°D.90°(第4题)(第5题)5、做如下操作:在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于点D.将△ABD作关于直线AD的轴对称变换,所得的像与△ACD重合,对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线、底边上的中线和高互相重合.由上述操作可得出的是________.(将正确结论的序号都填上)【知识巩固】1.以下图形中对称轴的数量小于3的是()A.B. C.D.2.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.3.下列图案属于轴对称图形的是()A.B.C.D.4.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.5.如图,直角△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.106.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.4 B.3 C.2 D.17.下列手机屏幕解锁图案中不是轴对称图形的是()A. B.C.D.8.以下五家银行行标中,是轴对称图形的有()A.1个B.2个C.3个D.4个9.下列“表情图”中,属于轴对称图形的是()A.B.C.D.10.有下列图形:(1)一个等腰三角形;(2)一条线段;(3)一个角;(4)一个长方形;(5)两条相交直线;(6)两条平行线.其中轴对称图形共有()A.3个B.4个C.5个D.6个11.下列说法错误的是()A.关于某条直线对称的两个三角形一定全等B.轴对称图形至少有一条对称轴C.全等三角形一定能关于某条直线对称D.角是轴对称的图形12.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM13.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条14.以下微信图标不是轴对称图形的是()A. B.C.D.15.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线之间对称D.周长相等的两个三角形一定关于某条直线之间对称16.中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是()A.B.C. D.17.义务教育阶段,我们学习了很多平面几何图形,有一种美丽的图形,它具有独特的对称美,有无数条对称轴,这种图形是()A.等边三角形B.正方形C.正六边形 D.圆18.下列的几何图形中,一定是轴对称图形的有()A.4个B.3个C.2个D.1个19.如图,点N1,N2,…,N8将圆周八等分,连接N1N2,、N1N8、N4N5后,再连接一对相邻的两点后,形成的图形不是轴对称图形,则连接的这条线段可能是()A.N2N3 B.N3N4 C.N5N6 D.N7N820.如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A.正三角形 B.正方形C.正五边形 D.正六边形21.一个汽车牌在水中的倒影为,则该车牌照号码.22.等边三角形是一个轴对称图形,它有条对称轴.23.从数学对称的角度看,下面的几组大写英文字母:①ANEC;②RBSM;③XIHZ;④ZDWH,不同于另外一组的是.24.如图,三角形1与和成轴对称图形,整个图形中共有条对称轴.25.在“线段、圆、等边三角形、正方形、角”这五个图形中,对称轴最多的图形是.26.下列图表是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是(填序号)27.如图,已知正方形的边长为4cm,则图中阴影部分的面积为cm2.28.如图,AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是.29.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的面积是.30.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有个.31.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有种.【课后小结】参考答案。
平移旋转和翻折的变换规律平移、旋转和翻折是几种常见的几何变换规律,它们在数学、物理、工程和计算机图形等领域中都有广泛的应用。
通过对物体进行平移、旋转或翻折,可以改变其位置、形状和方向,从而实现对几何结构的转换和处理。
本文将深入探讨平移、旋转和翻折的变换规律,帮助读者更好地理解和运用这些重要的几何概念。
一、平移变换平移变换是指将一个几何图形沿着某个方向移动一定的距离,而不改变其形状和方向。
平移变换可以通过向量表示,假设有一个向量(a, b),表示平面上的平移向量,那么对于平面上的点P(x, y),经过平移变换后的点P'的坐标可以表示为P' = P + (a, b)。
具体来说,对于二维平面上的图形,其每个点的坐标都分别增加平移向量的分量,从而实现整体平移的效果。
在三维空间中,平移变换同样可以通过向量表示,假设有一个向量(a, b, c),表示三维空间中的平移向量,那么对于空间中的点P(x, y, z),经过平移变换后的点P'的坐标可以表示为P' = P + (a, b, c)。
与二维平移类似,三维空间中的图形的每个点的坐标都分别增加平移向量的分量,实现整体平移的效果。
二、旋转变换旋转变换是指将一个几何图形绕着某个点或轴心旋转一定的角度,而不改变其位置和形状。
旋转变换可以通过矩阵表示,假设有一个旋转矩阵R,对于二维平面上的点P(x, y),经过旋转变换后的点P'的坐标可以表示为P' = R * P。
具体来说,旋转矩阵可以根据旋转角度和旋转中心点的位置进行计算,从而实现对二维平面上的图形进行旋转变换。
在三维空间中,旋转变换同样可以通过矩阵表示,假设有一个旋转矩阵R,对于空间中的点P(x, y, z),经过旋转变换后的点P'的坐标可以表示为P' = R * P。
与二维旋转类似,三维空间中的旋转矩阵可以根据旋转角度和旋转轴心的位置进行计算,实现对空间中的图形进行旋转变换。
小学数学点知识归纳平移旋转与翻折小学数学点知识归纳:平移、旋转与翻折数学作为一门基础学科,既要注重学生对基本概念的掌握,又要培养学生的思维能力和解决问题的能力。
在小学数学中,平移、旋转和翻折是重要的几何变换概念,本文将对这些知识进行归纳总结,并探讨其在小学数学中的教学。
一、平移平移是指在平面上保持形状和大小不变的情况下,将图形沿着一定方向进行移动的几何变换。
在平移中,图形的每一个点都按照相同的方向和距离进行移动。
平移有以下几个重要的特点:1. 平移后的图形与原图形全等。
平移不改变图形的形状和大小,因此平移后的图形与原图形全等。
这也是平移与其他几何变换(如旋转和翻折)的区别之一。
2. 平移是由向量描述的。
平移是由一个向量来描述的,这个向量既包括平移的方向,也包括平移的距离。
在平移时,我们可以选取任意一点作为起点,通过向量来确定平移的方向和距离。
3. 平移的性质:保持向量平行关系、保持直线平行关系、保持角度大小关系等。
平移不仅可以保持向量平行关系,还可以保持直线平行关系以及角度大小关系。
这些性质使得平移在解决实际问题中有着广泛的应用。
二、旋转旋转是指在平面上围绕某一点或某一直线进行旋转的几何变换。
旋转有以下几个重要的特点:1. 旋转后的图形与原图形形状相同,大小可以相同也可以不同。
旋转过程中,图形的形状保持相同,但其大小可以相同也可以不同。
这取决于旋转的角度。
2. 旋转是由旋转中心和旋转角度来描述的。
旋转的中心可以是图形上的一个点,也可以是平面上的某一直线。
旋转角度可以为正也可以为负,表示顺时针或逆时针旋转。
3. 旋转的性质:保持向量的大小和相对位置不变、保持角度大小不变等。
旋转可以保持向量的大小和相对位置不变,还可以保持角度大小不变。
这些性质使得旋转在解决几何问题和构造图形等方面有着重要的应用。
三、翻折翻折是指在平面上绕一条直线将图形进行镜像的几何变换。
翻折有以下几个重要的特点:1. 翻折后的图形与原图形形状完全相同,只是位置关系发生变化。