3第二章、压力容器基本结构
- 格式:ppt
- 大小:5.42 MB
- 文档页数:33
第二章压力容器的基本知识§2-1压力容器一、压力(一)压力及单位均匀地垂直作用于单位面积上的力,实际上就是压强。
MKS制→国际单位制(SI)→1牛顿/米2=1Pa(帕斯卡)=10-6MPaCGS制→1dyn/cm2(达因/厘米2)=1μbar(微巴)=10-6bar工程单位→1Kgf/cm2(公斤力/厘米2)=1工程大气压(at)(atm)标准大气压或物理大气压→在纬度为450的海平面上(即重力加速度为9.80665米/秒2处),大气的压力相当于在每平方厘米的面积上作用着1.0332公斤力。
表压力——压力表上所指示的压力值是指容器中的压力与容器周围大气压力之差,这个压力值称作表压力,是相对值。
绝对压力——表压力+容器周围的大气压力。
(二)压力的形成——用分子论来解释气体的分子与分子之间存有很大的间隙,分子引力甚小,因而分子在其中就可以不受分子力的约束而作无规则的运动。
无数个分子频繁地碰撞器壁的结果,自然就会对器壁产生一个持续而稳定的垂直作用力,这样就形成了气体的压力。
气体压力的大小决定于在单位时间内气体分子对器壁的碰撞次数和每个分子对器壁冲击力的大小。
碰撞次数取决于:①单位容积内气体的分子数;②分子的平均运动速度。
冲击力取决于:①气体的分子质量(一般是一定的);②分子的运动速度。
所以气体的压力与它的分子的平均运动速度的平方以及单位容积内的气体分子数成正比。
二、压力容器定义及其运行特性(一)压力容器的定义承受流体介质压力的密闭壳体都可属于压力容器。
我们能考虑的压力容器是指那些相对来说比较容易发生事故,而且事故的危害性比较大的特殊设备。
它们需要由专门的机构进行监督,并按规定的技术管理规范进行制造和使用。
压力容器的界限,国际上还没有一个完全统一的规定,它的界限范围就应该从发生事故的可能性和事故危害性的大小来考虑。
一般来说,压力容器发生爆炸事故时,其危害的严重程度与压力容器的工作介质,工作压力及容积有关。
压力容器基本知识压力容器是用于储存和输送压缩气体、液体、蒸汽等介质的装置,广泛应用于化工、石油、医药、食品等行业。
作为一种高风险的装置,压力容器的使用需要严格遵守相关法律法规和标准规范,具有一定的技术难度和安全风险。
本文将介绍压力容器的基本知识,包括其结构、性能、使用和检验等方面。
一、压力容器的结构压力容器的结构一般由内胆、外壳、支承、法兰、疏水阀和减压阀等部分构成。
其中,内胆是容器贮存介质的内层,由合金钢或不锈钢等材料制成;外壳是保护和支撑内胆的外层,通常由碳素钢或钢板制成,也有采用钛合金、铝合金等材料的;支承是将容器固定在地面上的构件,通常由钢筋混凝土或钢制支架制成;法兰是用于接口连接和密封的部分,通常由铸钢或锻钢制成,密封材料通常采用橡胶、铜垫片等;疏水阀和减压阀则是用于排出液体和控制压力的部分,通常由铜、钢等材料制成。
二、压力容器的性能压力容器具有多种性能指标,其中最重要的包括使用压力、使用温度、容积等。
使用压力是指容器能够承受的最大工作压力,根据使用压力的不同,压力容器分为低压容器、中压容器和高压容器三种,低压容器一般使用压力不超过0.1MPa,中压容器使用压力为0.1~10MPa,高压容器使用压力超过10MPa。
使用温度是指容器所处的温度范围,根据不同介质的蒸发压力和温度范围确定,一般为-20~200℃。
容积是指所保存介质的容积大小,根据实际需求而定,一般从几升到几百万升不等。
三、压力容器的使用压力容器的使用需要严格遵守国家的法律法规和行业标准,同时也需要根据实际情况制定详细的安全管理制度和操作规程。
在容器使用过程中,需要注意以下几点:1.定期检查容器的外观和内部结构,确保容器无损伤、无泄露、无裂纹等异常情况。
2.严格控制容器内部压力和温度,避免超压或过热引起的安全事故。
3.对容器内所储存的介质进行科学合理管理,防止介质变质、腐蚀等影响容器使用寿命和安全性的问题。
4.遵守容器操作规程,确保安全装置齐全、运行正常,禁止在容器内进行任何异常操作。
压力容器基本结构及制造过程压力容器通常是由板、壳组合而成的焊接结构。
受压元件中,圆柱形筒体、球罐(或球形封头)、椭圆形封头、碟形封头、球冠形封头、锥形封头和膨胀节所对应的壳分别是圆柱壳、球壳、椭球壳、球冠+环壳、球冠、锥壳和环形板+环壳。
而平盖(或平封头)、环形板、法兰、管板等受压元件分别对应于圆平板、环形板(外半径与内半径之差大于10倍的板厚)、环(外半径与内半径之差小于10倍的板厚)以及弹性基础圆平板。
上述7种壳和4种板可以组合成各种压力容器结构形式,再加上密封元件、支座、安全附件等就构成了一台完整的压力容器。
图1-1为一台卧式压力容器的总体结构图,下面结合该图对压力容器的基本组成作简单介绍。
筒体筒体的作用是提供工艺所需的承压空间,是压力容器最主要的受压元件之一,其内直径和容积往往需由工艺计算确定。
圆柱形筒体(即圆筒)和球形筒体是工程中最常用的筒体结构。
筒体直径较小(一般小于1000mm)时,圆筒可用无缝钢管制作,此时筒体上没有纵焊缝;直径较大时,可用钢板在卷板机上卷成圆筒或用钢板在水压机上压制成两个半圆筒,再用焊缝将两者焊接在一起,形成整圆筒。
由于该焊缝的方向和圆筒的纵向(即轴向)平行,因此称为纵向焊缝,简称纵焊缝。
若容器的直径不是很大,一般只有一条纵焊缝;随着容器直径的增大,由于钢板幅面尺寸的限制,可能有两条或两条以上的纵焊缝。
另外,长度较短的容器可直接在一个圆筒的两端连接封头,构成一个封闭的压力空间,也就制成了一台压力容器外壳。
但当容器较长时,由于钢板幅面尺寸的限制,就需要先用钢板卷焊成若干段筒体(某一段筒体称为一个筒节),再由两个或两个以上筒节组焊成所需长度的筒体。
筒节与筒节之间、筒体与端部封头之间的连接焊缝,由于其方向与筒体轴向垂直,因此称为环向焊缝,简称环焊缝。
圆筒按其结构可分为单层式和组合式两大类。
1、单层式筒体筒体的器壁在厚度方向是由一整体材料所构成,也就是器壁只有一层(为防止内部介质腐蚀,衬上的防腐层不包括在内)。
压力容器基本结构压力容器是在内部压力作用下能够承受外力而不破裂的封闭容器。
压力容器的基本结构是由容器本体、管道和附件三部分组成。
一、容器本体容器本体是压力容器中最重要的部分,其主要作用是承受内部压力并保证容器的完整性。
为了保证容器的强度,采用的材料必须具有高的强度和刚度。
目前,压力容器中最常用的材料是碳钢、不锈钢、铝合金和复合材料等。
1.1碳钢容器碳钢容器是最常用的容器,其优点是价格便宜、良好的可塑性和韧性,并且工艺也比较简单。
但是,碳钢容器强度较低,易受腐蚀和氢致脆化的影响。
1.2不锈钢容器不锈钢容器具有良好的耐腐蚀性和机械强度,适用于要求较高的化学反应设备、食品加工设备等。
但是,不锈钢容器相对于碳钢容器成本较高。
1.3铝合金容器铝合金容器具有良好的韧性和抗腐蚀能力,还具有轻量化的优势。
铝合金容器最适合用于高海拔地区和空间站等载人航天器中。
1.4复合材料容器复合材料容器的优点是具有高的强度和刚度、良好的耐腐蚀性和轻量化的优势。
目前,复合材料容器主要用于航空航天等高要求的领域。
二、管道管道是容器中流体输送的通道。
管道的连接应该稳定可靠,尤其是在容器受压时更应注意,管道连接的强度和紧密性必须保证。
不同的容器根据不同的要求选择不同的管道材料。
三、附件附件包括安全阀、压力表、温度计、液位计等,它们的作用是保证容器的安全性和正常运行。
安全阀是用来释放压力的,能够承受容器的内部压力和外部工作环境的环境压力,以便在容器的压力过高时放出压力,保证容器的安全性。
压力表和温度计则用来监测容器的内部压力和温度,以便及时调整。
液位计则用来监测容器内部的液位,以防溢出或泄漏。
压力容器是一种非常重要的设备,在各个行业上有广泛的应用。
在选择压力容器材料时必须根据容器的使用环境、承受压力和温度等因素来选择。
同时,在安装和使用时必须严格按照规定操作,注意容器的安全性。