数学高一-示范教案6指数函数、幂函数、对数函数增长的比较
- 格式:doc
- 大小:4.24 MB
- 文档页数:8
学习目标 1.了解三种函数的增长特征。
2.初步认识“直线上升”“指数爆炸”和“对数增长”.3.尝试函数模型的简单应用.知识点一同类函数增长特点思考同样是增函数,当x从2变到3,y=2x到y=10x的纵坐标增加了多少?梳理当a〉1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.当x〉0,n>1时,幂函数y=x n是增函数,并且当x〉1时,n越大其函数值的增长就越快.知识点二指数函数、幂函数、对数函数的增长差异思考当x从1变到10,函数y=2x,y=x2和y=lg x的纵坐标增长了多少?梳理一般地,在区间(0,+∞)上,尽管指数函数y=a x(a>1)、幂函数y=x n(n〉0)与对数函数y=log a x(a〉1)都是增函数,但它们的增长速度不同,而且不在同一个档次上.随着x的增大,y=a x(a>1)的增长速度越来越快,会远远超过幂函数y=x n(n〉0)的增长速度,而对数函数y=log a x(a>1)的增长速度越来越慢,因此总会存在一个x0,当x>x0时,就有________________________(a>1,n>0).类型一根据图像判断函数的增长速度例1函数f(x)=2x和g(x)=x3的图像如图所示.设两函数的图像交于点A(x1,y1),B(x2,y2),且x1〈x2。
(1)请指出图中曲线C1,C2分别对应的函数;(2)结合函数图像,判断f(6),g(6),f(2 013),g(2 013)的大小.反思与感悟判断函数的增长速度,一个是从x增加相同量时,函数值的增长量的变化;另一方面,也可从函数图像的变化,图像越陡,增长越快.跟踪训练1函数f(x)=lg x,g(x)=0。
3x-1的图像如图所示.(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)以两图像交点为分界点,对f(x),g(x)的大小进行比较.类型二函数增长模型的应用例2假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0。
§6指数函数、幂函数、对数函数增长的比较,[学生用书P67])三种函数的增长趋势当a>1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.当x>0,n>1时,幂函数y=x n显然也是增函数,并且当x>1时,n越大其函数值的增长就越快.由于指数函数值增长非常快,人们常称这种现象为“指数爆炸”.1.判断正误(正确的打“√”,错误的打“×”)(1)函数y=x2比y=2x增长的速度更快些.()(2)当a>1,n>0时,在区间(0,+∞)上,对任意的x,总有log a x<x n<a x成立.()答案:(1)×(2)×2.下列函数中增长速度最快的是()A.y=x2B.y=x3C.y=x4D.y=x7解析:选D.四个选项中的函数都是幂函数,且指数均为正数,选项D中y=x7的指数7最大,则函数y=x7的增长速度最快.3.下列函数中,增长速度最快的是()A.y=2x B.y=3xC.y=5x D.y=10x解析:选D.四个选项中的函数都是指数函数,且底数均大于1,D项中底数10最大,则函数y=10x的增长速度最快.4.下列函数增长速度最快的是()A.y=log2x B.y=log6xC.y=log8x D.y=lg x解析:选A.四个选项中的对数函数在区间(0,+∞)上均是增函数,选项A中y=log2x 的底数2最小,则函数y=log2x增长速度最快.5.当x越来越大时,函数y=3x,y=x5,y=ln x,y=1 000x2中,增长速度最快的是________.解析:由于指数型函数的增长是爆炸式增长,则当x越来越大时,函数y=3x增长速度最快.答案:y=3x三种函数模型的性质(1)尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(x>0,n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y =x n (x >0,n >1)的增长速度,而y =log a x (a >1)的增长速度则会越来越慢,因此,总会存在一个x 0,当x >x 0时,就会有log a x <x n <a x .(2)指数函数、对数函数、幂函数的性质如下表.函数性质y =a x (a >1) y =log a x (a >1) y =x n (n >0)在(0,+∞)上的增减性 增函数 增函数 增函数增长速度 越来越快 越来越慢 相对平稳图像的变化 随x 增大逐渐表现为与y 轴平行 随x 增大逐渐表现为与x 轴平行随n 值变化而不同指数函数、幂函数、对数函数增长的差异[学生用书P67]函数f (x )=1.1x,g (x )=ln x +1,h (x )=x 12的图像如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,e ,a ,b ,c ,d 为分界点).【解】 由指数爆炸、对数增长、幂函数增长的差异可得曲线C 1对应的函数是f (x )=1.1x,曲线C 2对应的函数是h (x )=x 12,曲线C 3对应的函数是g (x )=ln x +1.由题图知,当0<x <1时,f (x )>h (x )>g (x ); 当1<x <e 时,f (x )>g (x )>h (x ); 当e <x <a 时,g (x )>f (x )>h (x ); 当a <x <b 时,g (x )>h (x )>f (x ); 当b <x <c 时,h (x )>g (x )>f (x ); 当c <x <d 时,h (x )>f (x )>g (x ); 当x >d 时,f (x )>h (x )>g (x ).指数函数、对数函数和幂函数增长差异的判断方法(1)根据函数的变化量的情况对函数增长模型进行判断.(2)根据图像判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图像上升的快慢,即随着自变量的增大,图像最“陡”的函数是指数函数;图像趋于平缓的函数是对数函数.1.函数f (x )=2x 和g (x )=x 3的图像如图所示.设两函数的图像交于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数;(2)结合函数图像,判断f(6),g(6),f(2 017),g(2 017)的大小.解:(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x1<2,9<x2<10,所以x1<6<x2,2 017>x2.从图像上可以看出,当x1<x<x2时,f(x)<g(x),所以f(6)<g(6).当x>x2时,f(x)>g(x),所以f(2 017)>g(2 017).又g(2 017)>g(6),所以f(2 017)>g(2 017)>g(6)>f(6).几种增长函数模型的应用[学生用书P68]某公司为了实现1 000万元利润目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不能超过5万元,同时奖金不能超过利润的25%,现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司要求?【解】借助计算器或计算机作出函数y=5,y=0.25x,y=log7x+1,y=1.002x的图像如图所示:观察图像发现,在区间[10,1 000]上模型y=0.25x,y=1.002x的图像都有一部分在y=5的上方,这说明只有按模型y=log7x+1进行奖励才能符合公司要求,下面通过计算确认上述判断.对于模型y=0.25x,它在区间[10,1 000]上是单调递增的,当x∈(20,1 000]时,y>5,因此该模型不符合要求.对于模型y=1.002x,利用计算器,可知1.002806≈5.005,由于y=1.002x是增函数,故当x∈(806,1 000]时,y>5,因此,也不符合题意.对于模型y=log7x+1,它在区间[10,1 000]上是递增的且当x=1 000时,y=log71 000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y=log7x+1奖励时,奖金是否超过利润x的25%,即当x∈[10,1 000]时,利用计算器或计算机作f(x)=log7x+1-0.25x的图像,由图像可知f(x)是减函数,因此f(x)≤f(10)≈-0.316 7<0,即log7x+1<0.25x.所以当x∈[10,1 000]时,y<0.25x.这说明,按模型y=log7x+1奖励不超过利润的25%.综上所述,模型y=log7x+1符合公司要求.实际问题中对几种增长模型的选择技巧(1)指数函数增长模型适合于描述增长速度快的变化规律.(2)对数函数增长模型比较适合于描述增长速度平缓的变化规律.(3)幂函数增长模型介于上述两者之间,适合一般增长的变化规律.2.下面给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是()A.指数函数:y=2tB.对数函数:y=log2tC.幂函数:y=t3D.二次函数:y=2t2解析:选A.由图像可知,该函数模型应为指数函数.易错警示未能理解图表信息而致误如图所示,圆弧型声波DFE从坐标原点O点向外传播.若D是DFE与x轴的交点,设OD=x(0≤x≤a),圆弧型声波DFE在传播过程中扫过平行四边形OABC的面积为y(图中阴影部分),则函数y=f(x)的图像大致是()【解析】从题目所给的背景图形中不难发现:在声波未传到C点之前,扫过图形的面积不断增大,而且增长得越来越快.当到达C点之后且离开A点之前,因为OA∥BC,所以此时扫过图形的面积呈匀速增长.当离开A点之后,扫过图形的面积会增长得越来越慢.所以函数图像刚开始应是下凹的,然后是一条上升的线段,最后是上凸的.故选A.【答案】 A本例易分析不细致,不考虑增加的快慢而误选C或D,此类问题虽不用计算,但需对增加的速度大小有深刻的理解,找准匀速增加,加速增加,减速增加的分界点,分段考虑对比才能得出正确答案.1.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用()A.一次函数B.二次函数C.指数型函数D.对数型函数解析:选D.在A、B、C、D所对应的四种函数中,只有D中函数开始增长迅速后来增长越来越慢.2.下列函数中,随着x的增长,增长速度最快的是()A.y=50B.y=1 000xC.y=0.4×2x-1D.y=11 000ex解析:选D.指数函数y=a x,在a>1时呈爆炸式增长,而且a越大,增长速度越快,选D.3.三个变量y1,y2,y3随着变量x的变化情况如下表:x 1 3 5 7 9 11y1 5 135 625 1 715 3 645 6 655y2 5 29 245 2 189 19 685 177 149y3 5 6.10 6.61 6.95 7.2 7.4则关于x() A.y1,y2,y3B.y2,y1,y3C.y3,y2,y1D.y1,y3,y2解析:选C.通过指数型函数,对数型函数,幂函数型函数的增长规律比较可知,对数型函数的增长速度越来越慢,变量y3随x的变化符合此规律;指数型函数的增长是爆炸式增长,y2随x的变化符合此规律;幂函数型函数的增长速度越来越快,y1随x的变化符合此规律,故选C.4.已测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:y=x2+1,乙:y =3x-1.若又测得(x,y)的一组对应值为(3,10.2),则选用________作为拟合模型较好.解析:对于甲:x=3时,y=32+1=10,对于乙:x=3时,y=8,因此用甲作为拟合模型较好.答案:甲,[学生用书P141(单独成册)])[A基础达标]1.某种动物繁殖的数量y与繁殖次数x的关系如表:x 1 2 3 …y 1 3 7 …①y=2x-1;②y=x2-1;③y=2x-1;④y=x2-x+1.A.①②B.③④C.②③D.②④解析:选B.将x =1,y =1代入可知②不满足;将x =3,y =7代入可知①不满足,故只有③④满足.2.下面对函数f (x )=log 12x 与g (x )=⎝⎛⎭⎫12x 在区间(0,+∞)上的增减情况的说法正确的是( )A .f (x )的减小速度越来越慢,g (x )的减小速度越来越快B .f (x )的减小速度越来越快,g (x )的减小速度越来越慢C .f (x )的减小速度越来越慢,g (x )的减小速度越来越慢D .f (x )的减小速度越来越快,g (x )的减小速度越来越快 解析:选C.由两函数的图像特征知选C.3.四人赛跑,假设他们跑过的路程f i (x )(i ∈{1,2,3,4})和时间x (x >1)的函数关系分别是f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 2x ,f 4(x )=2x ,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( )A .f 1(x )=x 2B .f 2(x )=4xC .f 3(x )=log 2xD .f 4(x )=2x解析:选D.显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f 4(x )=2x ,故选D.4.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x 倍,需经过y 年,则函数y =f (x )的图像大致为( )解析:选 D.设该林区的森林原有蓄积量为a ,由题意可得ax =a (1+0.104)y ,故y =log 1.104x (x ≥1),函数为对数函数,所以函数y =f (x )的图像大致为D 中图像,故选D.5.若x ∈(0,1),则下列结论正确的是( )A .2x>x 12>lg x B .2x>lg x >x 12C .x 12>2x >lg xD .lg x >x 12>2x解析:选A.结合y =2x ,y =x 12及y =lg x 的图像易知,当x ∈(0,1)时,2x >x 12>lg x . 6.如图,与函数y =2x,y =5x,y =x 12,y =log 0.5x ,y =log 0.3x 相对应的图像依次为________.(只填序号)解析:(1)(2)分别为y =5x和y =2x的图像;(3)为y =x 12的图像;(4)(5)分别为y =log 0.3x 和y =log 0.5x 的图像.答案:(2)(1)(3)(5)(4)7.已知函数f (x )=lg(2x -b )(x ≥1)的值域是[0,+∞),则b 的值为________.解析:因为x ≥1,所以f (x )≥lg(2-b ),所以lg(2-b )=0,即2-b =1,所以b =1. 答案:1 8.已知某工厂生产某种产品的月产量y 与月份x 满足关系y =a ·0.5x +b ,现已知该厂今年1月份、2月份生产该产品分别为1万件、1.5万件,则此厂3月份该产品产量为________.解析:由⎩⎨⎧1=a ·0.51+b ,1.5=a ·0.52+b , 得⎩⎨⎧a =-2,b =2,所以y =-2×0.5x +2,所以3月份产量为y =-2×0.53+2=1.75(万件). 答案:1.75万件9.函数f (x )=lg x ,g (x )=0.3x -1的图像如图所示.(1)指出图中曲线C 1,C 2分别对应哪一个函数;(2)比较两函数的增长差异(以两图像交点为分界点,对f (x ),g (x )的大小进行比较). 解:(1)C 1对应的函数为g (x )=0.3x -1, C 2对应的函数为f (x )=lg x . (2)当x ∈(0,x 1)时,g (x )>f (x ), 当x ∈(x 1,x 2)时,g (x )<f (x ), 当x ∈(x 2,+∞)时,g (x )>f (x ).10.小明在调查某班小学生每月的人均零花钱时,得到了下列一组数据:x (月份) 2 3 4 5 6 …y (元) 1.40 2.56 5.31 11 21.30 …小明选择了模型y =x 12,他的同学却认为模型y =23更合适.(1)你认为谁选择的模型较好?并简单说明理由;(2)试用你认为较好的数学模型来分析大约在几月份小学生的平均零花钱会超过100元?(参考数据lg 2=0.301 0,lg 3=0.477 1)解:(1)根据表格提供的数据,画出散点图,并结合y =x 12及y =2x 3的图像(如图所示),观察可知,这些点基本都落在y =2x 3的图像上或附近,因此用y =2x 3这一模型更符合.(2)当2x3=100时,2x =300.则x =log 2300=lg 300lg 2=2+lg 3lg 2≈8.230.所以x =9.所以大约在9月份小学生的平均零花钱会超过100元.[B 能力提升]11.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e -kt .已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( )A .125B .100C .75D .50解析:选C.由已知,得49a =a ·e -50k ,所以e -k =⎝⎛⎭⎫49150.设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e -kt 1,所以827=(e -k )t 1=⎝⎛⎭⎫49t 150,所以t 150=32,t 1=75.12.某商店每月利润稳步增长,去年12月份的利润是当年1月份利润的k 倍,则该商店去年每月利润的平均增长率为________.解析:设平均增长率为p ,则k =(1+p )11,故p =11k -1.答案:11k -113.某企业常年生产一种出口产品,由于技术革新后,该产品的产量平稳增长.记2010年为第1年,且前4年中,第x 年与年产量f (x )(万件)之间的关系如下表所示:若f (x )f (x )=ax +b ,f (x )=2x +a ,f (x )=log 12x +a .(1)找出你认为最适合的函数模型,并说明理由,然后求出相应的解析式(所求a 或b 的值保留1位小数);(2)因遭受某国对该产品进行反倾销的影响,2017年的年产量比预计减少30%,试根据所建立的函数模型,确定2017年的年产量.解:(1)符合条件的是f (x )=ax +b , 若模型为f (x )=2x +a ,则由f (1)=21+a =4,得a =2, 即f (x )=2x +2,此时f (2)=6,f (3)=10,f (4)=18,与已知相差太大,不符合. 若模型为f (x )=log 12x +a ,则f (x )是减函数,与已知不符合.由已知得⎩⎨⎧a +b =4,3a +b =7,解得⎩⎨⎧a =1.5,b =2.5,所以f (x )=1.5x +2.5,x ∈N *.(2)2017年预计年产量为f (8)=1.5×8+2.5=14.5, 2017年实际年产量为14.5×(1-30%)=10.15(万件).14.(选做题)一个叫迈克的百万富翁碰到一件奇怪的事. 一个叫吉米的人对他说,我想和你订立个合同,在整整一个月中,我每天给你10万元,而你第一天只需要给我1分钱,以后每天给我的钱数是前一天的两倍.迈克非常高兴,他同意订立这样的合同.试通过计算说明,谁将在合同中获利?解:在一个月(按31天计算)的时间里,迈克每天得到10万元,增长的方式是直线增长,经过31天后,共得到31×10=310万元,而吉米,第1天得到1分, 第2天得到2分, 第3天得到4分,第4天得到8分,…第20天得到219分,…第31天得到230分,使用计算器计算可得1+2+4+8+16+ (230)2 147 483 647分≈2 147.48万元.所以在这份合同中吉米纯获利约为2 147.48-310=1 837.48万元,迈克破产了.同理当这个月有29天或30天时吉米获利,当这个月有28天时,迈克得到28×10=280万元.而吉米可得1+2+4+…+227=268 435 455分≈268.44万元,这时迈克将获利280-268.44=11.56万元.综上所述,只有在二月且只有28天时,迈克才获利,否则吉米获利.。
精 品 教 学 设 计《指数函数、幂函数、对数函数增长的比较》设计理念:以建构主义理论为支持,以问题思考——实践认知———实验探究————巩固知识为主线,注重新课引入,通过分析比较降次思想,构造商式函数二种方法比较函数增长的快慢更好的掌握这节课的内容教学目标:知识目标:会用二种方法比较函数增长的快慢,明确指数函数增长的快慢特点能力目标:渗透分类、比较、归纳的数学思想情感目标:注重数学知识与实际生活得紧密联系,增强数学的趣味性,提高学生学习数学的兴趣教学重点:函数增长快慢的比较教学难点:降次思想,构造商式函数教学准备:制作ppt,几何画板,学生提前预习教学过程:一、问题思考1.指数函数x y a = (1a >),对数函数log a y x =(1a >)和幂函数n y x = (n>0)在区间(0,)+∞上的单调性如何?2、对于这三种增加的函数,它们的函数值的增长快慢有何差别呢?二、实践认知观察函数2x y =,100(0)y x x =>,2log y x =的自变量与函数值(取近似值)的对应表,思考这三个函数的增长快慢如何?三、实验探究利用几何画板画出指数函数、幂函数和对数函数的图象,观察图象比较函数增长的快慢.1、观察函数2x y =,2(0)y x x =>,2log y x =的图像,这三个函数的增长快慢如何?2、观察函数2x y =,2(0)y x x =>的图像,有几个交点?3、比较2x y =,3(0)y x x =>增长的快慢.4、比较2x y =,100(0)y x x =>增长的快慢.四、降次思想采用降次的方法可以比较函数增长的快慢:对于函数2x y =与100(0)y x x =>,由图象知不便于比较,若分别对函数2x y =,100(0)y x x =>两边取以2为底的对数,则得到函数y x =和2100log y x =,这样就只需比较函数y x =和2100log y x =的增长情况.五、构造商式函数 构造商式函数1002()(0)xh x x x=>,只需观察函数()h x 与1的大小关系. 六、归纳总结若1,0a n >>,那么当x 足够大时,一定有log .x n a a x x >>。
指数函数幂函数对数函数增长的比较教案
指数函数、幂函数和对数函数增长的比较教案
教学目标
通过本教案的学习,学生将能够:
理解指数函数、幂函数和对数函数的定义;
理解指数函数、幂函数和对数函数的增长特点;
比较指数函数、幂函数和对数函数在不同增长情况下的差异。
教学步骤
1.引入
引导学生回顾函数的基本概念,并复习函数的图像、定义域和值域的表示方法。
2.指数函数
定义:指数函数是形如y=a^x的函数,其中a是常数且大于0,x是自变量。
指数函数的图像特点:
当a>1时,函数呈现上升的指数增长趋势;
当0<a<1时,函数呈现下降的指数增长趋势。
3.幂函数
定义:幂函数是形如y=x^a的函数,其中a是常数,x是自变量。
幂函数的图像特点:
当a>1时,函数呈现上升的幂函数增长趋势;
当0<a<1时,函数呈现下降的幂函数增长趋势。
4.对数函数
定义:对数函数是形如y=log<sub>a</sub>(x)的函数,其中a是常数且大于0,x是自变量。
对数函数的图像特点:
当a>1时,函数呈现上升的对数增长趋势;
当0<a<1时,函数呈现下降的对数增长趋势。
§6指数函数、幂函数、对数函数增长的比较整体设计教学分析函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的,通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.三维目标1.借助信息技术,利用函数图像及数据表格,比较指数函数、对数函数以及幂函数的增长差异.2.恰当运用函数的三种表示方法(解析式、表格、图像),并借助信息技术解决一些实际问题.3.让学生体会数学在实际问题中的应用价值,培养学生学习兴趣.重点难点教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.教学难点:应用函数模型解决简单问题.课时安排1课时教学过程导入新课思路1.(情境导入)国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g,据查,目前世界年度小麦产量为6亿吨,但不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、幂函数的增长差异.思路2.(直接导入)我们知道,对数函数y=log a x(a>1),指数函数y=a x(a>1)与幂函数y=x n(n>0)在区间(0,+∞)上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、幂函数的增长差异.推进新课新知探究提出问题①在区间,+上判断y=log2x,y=2x,y=x2的单调性.②列表并在同一坐标系中画出三个函数的图像.③结合函数的图像找出其交点坐标.④请在图像上分别标出使不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围.⑤由以上问题你能得出怎样结论?讨论结果:①在区间(0,+∞)上函数y=log2x,y=2x,y=x2均为单调增函数.063图1③从图像看出y=log2x的图像与另外两函数的图像没有交点,且总在另外两函数的图像的下方,y=2x的图像与y=x2的图像有两个交点(2,4)和(4,16).④不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围分别是(2,4)和(0,2)∪(4,+∞).9162536图2容易看出:y=2x的图像与y=x2的图像有两个交点(2,4)和(4,16),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x<x2,有时x2<2x.但是,当自变量x越来越大时,可以看到,y=2x的图像就像与x轴垂直一样,2x的值2x图3一般地,对于指数函数y=a x(a>1)和幂函数y=x n(n>0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,a x会小于x n,但由于a x 的增长快于x n的增长,因此总存在一个x0,当x>x0时,就会有a x>x n.同样地,对于对数函数y=log a x(a>1)和幂函数y=x n(n>0),在区间(0,+∞)上,随着x的增大,log a x增长得越来越慢,图像就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,log a x可能会大于x n,但由于log a x的增长慢于x n的增长,因此总存在一个x0,当x>x0时,就会有log a x<x n.综上所述,尽管对数函数y=log a x(a>1),指数函数y=a x(a>1)与幂函数y=x n(n>0)在区间(0,+∞)上都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,就会有log a x<x n<a x.虽然幂函数y=x n(n>0)增长快于对数函数y=log a x(a>1)增长,但它们与指数增长比起来相差甚远,因此指数增长又称“指数爆炸”.应用示例思路1例1 试利用计算器来计算2500的近似值.活动:学生思考,教师提示,计算这样一个大的数,用计算器无法直接计算.如何计算呢?我们可以充分利用幂的运算性质,再结合计算器的利用来求其近似值.解:第一步,利用科学计算器算出210=1 024=1.024×103;第二步,再计算2100,因为2100=(210)10=(1.024×103)10=1.02410×1030,所以,我们只需要用科学计算器算出1.02410≈1.267 7,则2100≈1.267 7×1030;第三步,再计算2500,因为(2100)5≈(1.267 7×1030)5,我们只需要用科学计算器算出1.267 75≈3.274 0,从而算出2500≈3.27×10150.点评:在设计计算方法时,要考虑到科学计算器能计算的位数.如果函数值非常大,我们常常用科学记数法表示,并且根据需要保留一定数目的有效数字.例 2 在自然界中,有些种群的世代是隔离,即每一代的生活周期是分离的,例如很多一年生草本植物,在当年结实后死亡,第二年种子萌发产生下一代.假设一个理想种群,其每个个体产生2个后代,又假定种群开始时有10个个体,到第二代时,种群个体将上升为20个,以后每代增加1倍,依次为40,80,160,…,试写出计算过程,归纳种群增长模型,说明何种情况种群上升,种群稳定,种群灭亡.活动:学生仔细审题,理解题目的含义,教师指导,注意归纳总结.解:设N t表示t世代种群的大小,N t+1表示t+1世代种群的大小,则N0=10;N1=10×2=20;N2=20×2=40;N3=40×2=80;N4=80×2=160;….由上述过程归纳成最简单的种群增长模型,由下式表示:N t+1=R0·N t,其中R0为世代净繁殖率.如果种群的R 0速率年复一年地增长,则 N 1=R 0N 0, N 2=R 0N 1=R 20N 0, N 3=R 0N 2=R 30N 0, … N t =R t 0N 0.R 0是种群离散增长模型的重要参数,如果R 0>1,种群上升;R 0=1,种群稳定;0<R 0<1,种群下降;R 0=0,雌体没有繁殖,种群在一代中死亡.思路2例3 一工厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100时,每多订购1个,订购的全部零件的单价就降低0.02元,但最低出厂单价不低于51元.(1)一次订购量为多少个时,零件的实际出厂价恰为51元?(2)设一次订购量为x 个时,零件的实际出厂价为p 元,写出p =f (x ).(3)当销售商一次订购量分别为500,1 000个时,该工厂的利润分别为多少? (一个零件的利润=实际出厂价-成本)解:(1)设一次订购量为a 个时,零件的实际出厂价恰好为51元,则a =100+60-510.02=550个.(2)p =f (x )=⎩⎪⎨⎪⎧60,0<x ≤100,62-x50,100<x <550,其中x ∈N+.51,x ≥550,(3)当销售商一次订购量为x 个时,该工厂的利润为y ,则y =(p -40)x =⎩⎪⎨⎪⎧20x ,0<x ≤100,22x -x 250,100<x <550,11x ,x ≥550.其中x ∈N +,故当x =500时,y =6 000;当x =1 000时,y =11 000.点评:方程中的未知数设出来后可以参与运算,函数解析式为含x ,y 的等式.例4 甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:图4甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只. 乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个. 请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数.(2)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?请说明理由.(3)哪一年的规模(即总产量)最大?请说明理由.活动:观察函数图像,学生先思考或讨论后再回答,教师点拨、提示: 先观察图像得出相关数据,利用数据找出函数模型. 解:由题意可知,甲图像经过(1,1)和(6,2)两点, 从而求得其解析式为y 甲=0.2x +0.8, 乙图像经过(1,30)和(6,10)两点, 从而求得其解析式为y 乙=-4x +34.(1)当x =2时,y 甲=0.2×2+0.8=1.2,y 乙=-4×2+34=26,y 甲·y 乙=1.2×26=31.2.所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万只.(2)第1年出产鳗鱼1×30=30(万只),第6年出产鳗鱼2×10=20(万只),可见,第6年这个县的鳗鱼养殖业规划比第1年缩小了.(3)设当第m 年时的规模总产量为n ,那么n =y 甲·y 乙=(0.2m +0.8)(-4m +34)=-0.8m 2+3.6m +27.2=-0.8(m 2-4.5m -34)=-0.8(m -2.25)2+31.25.因此,当m =2时,n max =31.2, 即第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万只. 知能训练某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图5(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图5(2)的抛物线段表示.(1)写出图5(1)表示的市场售价与时间的函数关系式P =f (t ); 写出图5(2)表示的种植成本与时间的函数关系式Q =g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(1) (2)图5 (注:市场售价和种植成本的单位:元/102kg ,时间单位:天) 活动:学生在黑板上书写解答.教师在学生中巡视其他学生的解答,发现问题及时纠正. 解:(1)由图5(1)可得市场售价与时间的函数关系式为f (t )=⎩⎪⎨⎪⎧300-t ,0≤t ≤200,2t -300,200<t ≤300. 由图5(2)可得种植成本与时间的函数关系式为g (t )=1200(t -150)2+100,0≤t ≤300.(2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎩⎪⎨⎪⎧-1200t 2+12t +1752,0≤t ≤200,-1200t 2+27t -1 0252,200<t ≤300.当0≤t ≤200时,配方整理,得h (t )=-1200(t -50)2+100,所以当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理,得h (t )=-1200(t -350)2+100,所以当t =300时,h (t )取得区间[200,300]上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.点评:本题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.拓展提升 探究内容①在函数应用中如何利用图像求解析式. ②分段函数解析式的求法.③函数应用中的最大值、最小值问题.举例探究:(2007山东省青岛高三教学质量检测,理21)某跨国公司是专门生产健身产品的企业,第一批产品A 上市销售40天内全部售完,该公司对第一批产品A 上市后的国内外市场销售情况进行调研,结果如图6(1)、(2)、(3)所示.其中图6(1)的折线表示的是国外市场的日销售量与上市时间的关系;图6(2)的抛物线表示的是国内市场的日销售量与上市时间的关系;图6(3)的折线表示的是每件产品A 的销售利润与上市时间的关系.图6(1)分别写出国外市场的日销售量f (t )、国内市场的日销售量g (t )与第一批产品A 上市时间t 的关系式;(2)第一批产品A 上市后的哪几天,这家公司的国内和国外日销售利润之和超过6 300万元?分析:1.利用图像求解析式,先要分清函数类型再利用待定系数法求解析式. 2.在t ∈[0,40]上,有几个分界点,请同学们思考应分为几段. 3.回忆函数最值的求法.解:(1)f (t )=⎩⎪⎨⎪⎧2t ,0≤t ≤30,-6t +240,30<t ≤40,g (t )=-320t 2+6t (0≤t ≤40).(2)每件A 产品销售利润h (t )=⎩⎪⎨⎪⎧3t ,0≤t ≤20,60,20≤t ≤40.该公司的日销售利润F (t )=⎩⎪⎨⎪⎧3t ⎝ ⎛⎭⎪⎫-320t 2+8t ,0≤t ≤20,60⎝ ⎛⎭⎪⎫-320t 2+8t ,20≤t ≤30,60⎝ ⎛⎭⎪⎫-320t 2+240,30≤t ≤40,当0≤t ≤20时,F (t )=3t ⎝ ⎛⎭⎪⎫-320t 2+8t ,先判断其单调性. 设0≤t 1<t 2≤20,则F (t 1)-F (t 2)=3t 1⎝ ⎛⎭⎪⎫-320t 21+8t 1-3t 2⎝ ⎛⎭⎪⎫-320t 22+8t 2 =-920(t 1+t 2)(t 1-t 2)2.∴F (t )在[0,20]上为增函数. ∴F (t )max =F (20)=6 000<6 300.当20<t ≤30时,令60⎝ ⎛⎭⎪⎫-320t 2+8t >6 300, 则703<t <30; 当30<t ≤40时,F (t )=60⎝ ⎛⎭⎪⎫-320t 2+240<60⎝ ⎛⎭⎪⎫-320×302+240=6 300.故在第24,25,26,27,28,29天日销售利润超过6 300万元.点评:1.利用图像求解析式,先要分清函数类型再利用待定系数法求解析式,重点是找出关键点.2.在t ∈[0,40]上,有几个分界点,t =20,t =30两点把区间分为三段. 3.二次函数的最值可用配方法,另外利用单调性求最值也是常用方法之一. 课堂小结本节学习了:①指数函数、对数函数、二次函数的增长差异.②幂函数、指数函数、对数函数的应用.作业习题3—6 1,2.设计感想本节设计从精彩的故事开始,让学生从故事中体会数学带来的震撼,然后借助计算机感受不同函数模型的巨大差异.接着通过最新题型训练学生利用函数模型解决实际问题的能力;并且重点训练了由图像转化为函数解析式的能力,因为这是高考的一个重点.本节的每个例题都很精彩,可灵活选用.备课资料[备选例题]某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府对该项特产的销售投资收益为:每年投入x 万元,可获得利润P =-1160(x -40)2+100万元.当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在规划后对该项目每年都投入60万元的销售投资,在未来10年的前5年中,每年都从60万元中拨出30万元用于修建一条公路,5年修成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每年投入x 万元,可获利润Q =-159160(60-x )2+1192(60-x )万元.问从10年的累积利润....看,该规划方案是否可行? 解:在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元.则10年的总利润为W 1=100×10=1 000(万元).实施规划后的前5年中,由题设P =-1160(x -40)2+100,知每年投入30万元时,有最大利润P max =7958(万元).前5年的利润和为7958×5=3 9758(万元).设在公路通车的后5年中,每年用x 万元投资于本地的销售,而用剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=⎣⎢⎡⎦⎥⎤-1160x -2+100×5+⎝ ⎛⎭⎪⎫-159160x 2+1192x ×5=-5(x -30)2+4 950. 当x =30时,(W 2)max =4 950(万元).从而10年的总利润为3 9758+4 950(万元).∵3 9758+4 950>1 000,∴该规划方案有极大实施价值.(设计者:邓新国)。
《指数函数、幂函数、对数函数增长的比较》本节是第三章第六节内容,专门研究指数函数、对数函数、幂函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节学习,可以引导学生积极的展开观察、思考和探究活动。
【知识与能力目标】1、由前面学习指数函数的图像、幂函数的图像和对数函数的图像的基础上,列表画出函数的图像;2、会利用指数函数、幂函数的图像和对数函数的图像对比研究函数的增长快慢。
【过程与方法目标】1、让学生借助表格和图形了解指数函数的图像、幂函数的图像和对数函数的图像之间的关系,以及变化;2、学会类比研究问题,利用数性结合的思想研究函数的性质。
【情感态度价值观目标】使学生通过学习指数函数、幂函数的图像和对数函数的图像对比研究函数的增长快慢,在学习的过程中体会“指数爆炸”的含义,增强学习函数的积极性和自信心。
【教学重点】列表观察指数函数的图像、幂函数的图像和对数函数的图像的增长快慢。
【教学难点】指数函数的图像、幂函数的图像和对数函数的图像。
电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。
一、导入部分[互动过程1]◆教学重难点◆◆课前准备◆◆教材分析◆教学过程◆教学目标复习:指数函数、幂函数、对数函数的图像与性质. 请你画出函数222,,log x xy y x y ===的草图,并观察比较函数图像的变化。
你能判断出哪个函数的函数值随的增长速度增长的比较快吗? 二、研探新知,建构概念 [互动过程2]提出问题:当1a >时,指数函数xy a =是增函数,并且当a 越大时,其函数值的增长就越快。
当1a >时,指数函数log xa y =是增函数,并且当a 越大时,其函数值的增长就越快。
当0,1x n >>时,幂函数ny x =显然也是增函数,并且当n 越大时,其函数值的增长就越快。
那么对于这三种增加的函数,它们的函数值的增长快慢有何差别呢?我们通过对三个具体函数10022,(0),log x xy y x x y ==>= 的函数值(取近似值)的比较,来体会它们增长的快慢。
课前预习学案一、预习目标对于基本的实际问题能抽象出数学模型。
二、预习内容(预习教材P95~ P98,找出疑惑之处)阅读:澳大利亚兔子数“爆炸”有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面课内探究学案一、学习目标1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;3. 恰当运用函数的三种表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.学习重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
学习难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。
二、学习过程典型例题例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?反思:① 在本例中涉及哪些数量关系?如何用函数描述这些数量关系?② 根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.变式训练1 某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机. 现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有多少台计算机被感染?例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:0.25y x =;7log 1y x =+; 1.002x y =.问:其中哪个模型能符合公司的要求?反思: ① 此例涉及了哪几类函数模型?本例实质如何?② 根据问题中的数据,如何判定所给的奖励模型是否符合公司要求?变式训练2经市场调查分析知,某地明年从年初开始的前n 个月,对某种商品需求总量()f n (万件)近似地满足关系()()()()113521,2,3,,12150f n n n n n =+-=.写出明年第n 个月这种商品需求量()g n (万件)与月份n 的函数关系式.四、反思总结解决应用题的一般程序:① 审题:弄清题意,分清条件和结论,理顺数量关系;② 建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;③ 解模:求解数学模型,得出数学结论;④ 还原:将用数学知识和方法得出的结论,还原为实际问题的意义.五、当堂达标:课本108页2题课后练习与提高1. 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x 次后得到的细胞个数y 为( ).A .12x y += B. y =21x - C. y =2x D. y =2x2. 某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( ).A. 一次函数B. 二次函数C. 指数型函数D. 对数型函数3. 一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,它的解析式为( ).A. y =20-2x (x ≤10)B. y =20-2x (x <10)C. y =20-2x (5≤x ≤10)D. y =20-2x (5<x <10)4. 某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则销量y 与投放市场的月数x 之间的关系可写成 .5. 如图,是某受污染的湖泊在自然净化过程中,某种有害物质的剩留量y 与净化时间t (月)的近似函数关系:t y a =(t ≥0,a >0且a ≠1).有以下叙述① 第4个月时,剩留量就会低于15; ② 每月减少的有害物质量都相等;③ 若剩留量为111,,248所经过的时间分别是123,,t t t ,则123t t t +=其中所有正确的叙述是 .6.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新价标在价目卡上,并注明按该价20%销售. 这样,仍可获得25%的纯利.求此个体户给这批服装定的新标价与原标价之间的函数关系.1 2 3 t (月)。
示范教案{§6指数函数、幂函数、对数函数增长的比较}整体设计教学分析函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的,通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.三维目标1.借助信息技术,利用函数图像及数据表格,比较指数函数、对数函数以及幂函数的增长差异.2.恰当运用函数的三种表示方法(解析式、表格、图像),并借助信息技术解决一些实际问题.3.让学生体会数学在实际问题中的应用价值,培养学生学习兴趣.重点难点教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.教学难点:应用函数模型解决简单问题.课时安排1课时教学过程导入新课思路1.(情境导入)国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g,据查,目前世界年度小麦产量为6亿吨,但不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、幂函数的增长差异.思路2.(直接导入)我们知道,对数函数y=log a x(a>1),指数函数y=a x(a>1)与幂函数y=x n(n>0)在区间(0,+∞)上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、幂函数的增长差异.推进新课新知探究提出问题①在区间0,+∞上判断y=log2x,y=2x,y=x2的单调性.②列表并在同一坐标系中画出三个函数的图像.③结合函数的图像找出其交点坐标.④请在图像上分别标出使不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围.⑤由以上问题你能得出怎样结论?讨论结果:①在区间(0,+∞)上函数y=log2x,y=2x,y=x2均为单调增函数.x 0.20.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4…y=2x 1.149 1.5162 2.639 3.482 4.959 6.063810.556…y=x20.040.361 1.96 3.24 4.84 6.67911.56…y=log2x-2.322-0.73700.4850.848 1.138 1.379 1.585 1.766…图1③从图像看出y=log2x的图像与另外两函数的图像没有交点,且总在另外两函数的图像的下方,y=2x的图像与y=x2的图像有两个交点(2,4)和(4,16).④不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围分别是(2,4)和(0,2)∪(4,+∞).x 012345678…y=2x1248163264128256…y=x201491625364964图2容易看出:y=2x的图像与y=x2的图像有两个交点(2,4)和(4,16),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x<x2,有时x2<2x.但是,当自变量x越来越大时,可以看到,y=2x的图像就像与x轴垂直一样,2x的值快速增长,x2比起2x来,几乎有些微不足道,如图3和下表所示.x 01020304050607080…y=2x1 1 0241.05E+061.07E+091.10E+121.13E+151.15E+181.18E+211.21E+24…y=x20100400900 1 600 2 500 3 600 4 900 6 400…图3一般地,对于指数函数y=a x(a>1)和幂函数y=x n(n>0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,a x会小于x n,但由于a x 的增长快于x n的增长,因此总存在一个x0,当x>x0时,就会有a x>x n.同样地,对于对数函数y=log a x(a>1)和幂函数y=x n(n>0),在区间(0,+∞)上,随着x的增大,log a x增长得越来越慢,图像就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,log a x可能会大于x n,但由于log a x的增长慢于x n的增长,因此总存在一个x0,当x>x0时,就会有log a x<x n.综上所述,尽管对数函数y=log a x(a>1),指数函数y=a x(a>1)与幂函数y=x n(n>0)在区间(0,+∞)上都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,就会有log a x<x n<a x.虽然幂函数y=x n(n>0)增长快于对数函数y=log a x(a>1)增长,但它们与指数增长比起来相差甚远,因此指数增长又称“指数爆炸”.应用示例思路1例1 试利用计算器来计算2500的近似值.活动:学生思考,教师提示,计算这样一个大的数,用计算器无法直接计算.如何计算呢?我们可以充分利用幂的运算性质,再结合计算器的利用来求其近似值.解:第一步,利用科学计算器算出210=1 024=1.024×103;第二步,再计算2100,因为2100=(210)10=(1.024×103)10=1.02410×1030,所以,我们只需要用科学计算器算出1.02410≈1.267 7,则2100≈1.267 7×1030;第三步,再计算2500,因为(2100)5≈(1.267 7×1030)5,我们只需要用科学计算器算出1.267 75≈3.274 0,从而算出2500≈3.27×10150.点评:在设计计算方法时,要考虑到科学计算器能计算的位数.如果函数值非常大,我们常常用科学记数法表示,并且根据需要保留一定数目的有效数字.例2 在自然界中,有些种群的世代是隔离,即每一代的生活周期是分离的,例如很多一年生草本植物,在当年结实后死亡,第二年种子萌发产生下一代.假设一个理想种群,其每个个体产生2个后代,又假定种群开始时有10个个体,到第二代时,种群个体将上升为20个,以后每代增加1倍,依次为40,80,160,…,试写出计算过程,归纳种群增长模型,说明何种情况种群上升,种群稳定,种群灭亡.活动:学生仔细审题,理解题目的含义,教师指导,注意归纳总结. 解:设N t 表示t 世代种群的大小,N t +1表示t +1世代种群的大小,则N 0=10;N 1=10×2=20;N 2=20×2=40;N 3=40×2=80;N 4=80×2=160;…. 由上述过程归纳成最简单的种群增长模型,由下式表示:N t +1=R 0·N t ,其中R 0为世代净繁殖率.如果种群的R 0速率年复一年地增长,则 N 1=R 0N 0, N 2=R 0N 1=R 20N 0, N 3=R 0N 2=R 30N 0, … N t =R t 0N 0.R 0是种群离散增长模型的重要参数,如果R 0>1,种群上升;R 0=1,种群稳定;0<R 0<1,种群下降;R 0=0,雌体没有繁殖,种群在一代中死亡.思路2例3 一工厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100时,每多订购1个,订购的全部零件的单价就降低0.02元,但最低出厂单价不低于51元.(1)一次订购量为多少个时,零件的实际出厂价恰为51元?(2)设一次订购量为x 个时,零件的实际出厂价为p 元,写出p =f (x ).(3)当销售商一次订购量分别为500,1 000个时,该工厂的利润分别为多少? (一个零件的利润=实际出厂价-成本)解:(1)设一次订购量为a 个时,零件的实际出厂价恰好为51元,则a =100+60-510.02=550个.(2)p =f (x )=⎩⎪⎨⎪⎧60,0<x ≤100,62-x50,100<x <550,其中x ∈N+.51,x ≥550,(3)当销售商一次订购量为x 个时,该工厂的利润为y ,则y =(p -40)x =⎩⎪⎨⎪⎧20x ,0<x ≤100,22x -x 250,100<x <550,11x ,x ≥550.其中x ∈N +,故当x =500时,y =6 000;当x =1 000时,y =11 000.点评:方程中的未知数设出来后可以参与运算,函数解析式为含x ,y 的等式.例4 甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:图4甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只.乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个.请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数.(2)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?请说明理由.(3)哪一年的规模(即总产量)最大?请说明理由.活动:观察函数图像,学生先思考或讨论后再回答,教师点拨、提示:先观察图像得出相关数据,利用数据找出函数模型.解:由题意可知,甲图像经过(1,1)和(6,2)两点,从而求得其解析式为y甲=0.2x+0.8,乙图像经过(1,30)和(6,10)两点,从而求得其解析式为y乙=-4x+34.(1)当x=2时,y甲=0.2×2+0.8=1.2,y乙=-4×2+34=26,y甲·y乙=1.2×26=31.2.所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万只.(2)第1年出产鳗鱼1×30=30(万只),第6年出产鳗鱼2×10=20(万只),可见,第6年这个县的鳗鱼养殖业规划比第1年缩小了.(3)设当第m年时的规模总产量为n,那么n=y甲·y乙=(0.2m+0.8)(-4m+34)=-0.8m2+3.6m+27.2=-0.8(m2-4.5m-34)=-0.8(m-2.25)2+31.25.因此,当m=2时,n max=31.2,即第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万只.知能训练某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图5(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图5(2)的抛物线段表示.(1)写出图5(1)表示的市场售价与时间的函数关系式P=f(t);写出图5(2)表示的种植成本与时间的函数关系式Q=g(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(1) (2)图5 (注:市场售价和种植成本的单位:元/102kg ,时间单位:天) 活动:学生在黑板上书写解答.教师在学生中巡视其他学生的解答,发现问题及时纠正. 解:(1)由图5(1)可得市场售价与时间的函数关系式为f (t )=⎩⎪⎨⎪⎧300-t ,0≤t ≤200,2t -300,200<t ≤300. 由图5(2)可得种植成本与时间的函数关系式为g (t )=1200(t -150)2+100,0≤t ≤300.(2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ), 即h (t )=⎩⎪⎨⎪⎧-1200t 2+12t +1752,0≤t ≤200,-1200t 2+27t -1 0252,200<t ≤300.当0≤t ≤200时,配方整理,得h (t )=-1200(t -50)2+100,所以当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理,得h (t )=-1200(t -350)2+100,所以当t =300时,h (t )取得区间[200,300]上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.点评:本题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.拓展提升 探究内容①在函数应用中如何利用图像求解析式. ②分段函数解析式的求法.③函数应用中的最大值、最小值问题.举例探究:(2007山东省青岛高三教学质量检测,理21)某跨国公司是专门生产健身产品的企业,第一批产品A 上市销售40天内全部售完,该公司对第一批产品A 上市后的国内外市场销售情况进行调研,结果如图6(1)、(2)、(3)所示.其中图6(1)的折线表示的是国外市场的日销售量与上市时间的关系;图6(2)的抛物线表示的是国内市场的日销售量与上市时间的关系;图6(3)的折线表示的是每件产品A 的销售利润与上市时间的关系.图6(1)分别写出国外市场的日销售量f (t )、国内市场的日销售量g (t )与第一批产品A 上市时间t 的关系式;(2)第一批产品A 上市后的哪几天,这家公司的国内和国外日销售利润之和超过6 300万元?分析:1.利用图像求解析式,先要分清函数类型再利用待定系数法求解析式. 2.在t ∈[0,40]上,有几个分界点,请同学们思考应分为几段. 3.回忆函数最值的求法.解:(1)f (t )=⎩⎪⎨⎪⎧2t ,0≤t ≤30,-6t +240,30<t ≤40,g (t )=-320t 2+6t (0≤t ≤40).(2)每件A 产品销售利润h (t )=⎩⎪⎨⎪⎧3t ,0≤t ≤20,60,20≤t ≤40.该公司的日销售利润F (t )=⎩⎪⎨⎪⎧3t ⎝ ⎛⎭⎪⎫-320t 2+8t ,0≤t ≤20,60⎝ ⎛⎭⎪⎫-320t 2+8t ,20≤t ≤30,60⎝ ⎛⎭⎪⎫-320t 2+240,30≤t ≤40,当0≤t ≤20时,F (t )=3t ⎝ ⎛⎭⎪⎫-320t 2+8t ,先判断其单调性. 设0≤t 1<t 2≤20,则F (t 1)-F (t 2)=3t 1⎝ ⎛⎭⎪⎫-320t 21+8t 1-3t 2⎝ ⎛⎭⎪⎫-320t 22+8t 2 =-920(t 1+t 2)(t 1-t 2)2.∴F (t )在[0,20]上为增函数. ∴F (t )max =F (20)=6 000<6 300.当20<t ≤30时,令60⎝ ⎛⎭⎪⎫-320t 2+8t >6 300, 则703<t <30; 当30<t ≤40时,F (t )=60⎝ ⎛⎭⎪⎫-320t 2+240<60⎝ ⎛⎭⎪⎫-320×302+240=6 300.故在第24,25,26,27,28,29天日销售利润超过6 300万元.点评:1.利用图像求解析式,先要分清函数类型再利用待定系数法求解析式,重点是找出关键点.2.在t ∈[0,40]上,有几个分界点,t =20,t =30两点把区间分为三段. 3.二次函数的最值可用配方法,另外利用单调性求最值也是常用方法之一. 课堂小结 本节学习了:①指数函数、对数函数、二次函数的增长差异.②幂函数、指数函数、对数函数的应用.作业习题3—6 1,2.设计感想本节设计从精彩的故事开始,让学生从故事中体会数学带来的震撼,然后借助计算机感受不同函数模型的巨大差异.接着通过最新题型训练学生利用函数模型解决实际问题的能力;并且重点训练了由图像转化为函数解析式的能力,因为这是高考的一个重点.本节的每个例题都很精彩,可灵活选用.备课资料[备选例题]某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府对该项特产的销售投资收益为:每年投入x 万元,可获得利润P =-1160(x -40)2+100万元.当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在规划后对该项目每年都投入60万元的销售投资,在未来10年的前5年中,每年都从60万元中拨出30万元用于修建一条公路,5年修成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每年投入x 万元,可获利润Q =-159160(60-x )2+1192(60-x )万元.问从10年的累积利润....看,该规划方案是否可行? 解:在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元.则10年的总利润为W 1=100×10=1 000(万元).实施规划后的前5年中,由题设P =-1160(x -40)2+100,知每年投入30万元时,有最大利润P max =7958(万元).前5年的利润和为7958×5=3 9758(万元).设在公路通车的后5年中,每年用x 万元投资于本地的销售,而用剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=⎣⎢⎡⎦⎥⎤-1160x -402+100×5+⎝⎛⎭⎪⎫-159160x 2+1192x ×5=-5(x -30)2+4 950. 当x =30时,(W 2)max =4 950(万元).从而10年的总利润为3 9758+4 950(万元).∵3 9758+4 950>1 000,∴该规划方案有极大实施价值.(设计者:邓新国)。