人教版高中数学必修1《对数函数及其性质》教案
- 格式:doc
- 大小:3.31 MB
- 文档页数:4
对数函数及其性质教案完整版对数函数及其性质一、教材分析《对数函数》出现在高中数学必修一第二章第二节第二课时。
对数函数是高中数学在指数函数之后的重要初等函数之一,无论从知识角度还是思想方法的角度对数函数与指数函数都有类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活、能力要求也更高。
而且学习对数函数是对指数函数知识和方法的巩固、深化和提高,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。
也为解决函数总和问题及其在实际中的应用奠定良好的基础。
二、学情分析函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.学生在高中有一定的形象思维和抽象思维能力,已经学习了三种基本函数:一次函数、二次函数、反比例函数,已经具有一定的函数基础知识,并且在对数函数之前学习了指数函数,这为过渡到本节的学习起着铺垫作用;具备通过类比指数函数学习来认识对数函数的性质。
因此本节对数函数既是对以前函数知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后学习提供了必要的基础知识.三、教学目标和重点难点依据对教材和学情的分析,遵循《普通高中数学课程标准》对本节的教学要求,将对数函数及其性质此节课的教学目标、重点和难点设置为:(一)教学目标:1.知识与技能:进一步理解对数函数的定义,掌握对数函数的图像和性质;初步利用对数函数的图像与性质来解决简单问题(会求对数函数的定义域;会用对数函数的定义比较两个对数的大小)。
2.过程与方法目标:经过探究对数函数的图像和性质的过程,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力,培养学生严谨的思维和科学正确的计算能力;渗透类比、数形结合、分类讨论等基本数学思想方法。
3.情感态度与价值观目标:在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣,增强学好数学的信心。
2.2.2对数函数及其性质一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。
函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。
必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。
为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。
学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。
最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。
三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。
通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。
§2.2.2 对数函数及其性质(一)学习目标:⒈理解对数函数的意义,掌握对数函数的图象和性质; ⒉进一步体会应用函数图象讨论函数性质的方法. 教学重点:对数函数的图象及其性质.教学难点:对数函数的图象、性质与底数a 的关系. 教学方法:探究、讨论式.教具准备:用《几何画板》演示对数函数的图象与底数a 的关系. 教学过程:(I )新课引入:师:通过前面的学习我们了解到,生物体内碳14含量P 与死亡年数t 之间的关系为:573012t P ⎛⎫= ⎪⎝⎭.由对数与指数的关系,我们可以得到logt P =.这样我们就可以估算出土文物或古代遗址的年代.根据问题的实际意义可知,对于每一个碳14含量P,通过对应关系log t P =,都有唯一确定的年代t 与它对应,所以t 是P 的函数.这就是我们今天将要研究的一种新的函数——对数函数. (II )讲授新课: ⒈对数函数的意义:师:一般地,我们把函数log a y x =(0a >,且1)a ≠叫做对数函数,其中x 是自变量,函数定义域是(0,)+∞.这里为什么要规定“0a >,且1a ≠”呢?生:在对数的定义“log x a a N x N =⇔=”中,我们规定了必须满足条件“0a >,且1a ≠”.师:0a >的来历确实如此,但对于条件1a ≠来说就不仅仅如此了!事实上,在指数式x a N =中,如果1a =,则对于任意的x R ∈,都有11x =,转换成为对数形式后,则不再是我们所学习的函数了.⒉对数函数的图象和性质:师:下面我们利用计算机软件《几何画板》来观察分析对数函数2log y x =和12log y x =的图象之间的关系以及对数函数log a y x =(0a >,且1)a ≠的图象和性质.(引导学生观察图象,填写下表、讨论交流、概括总结对数函数的基本性质)例题:课本62P 例⒎(Ⅲ)课后练习:课本81P 练习⒈⒉;课本82P 习题2.2 A 组⒍ (Ⅳ)课时小结⒈要理解对数函数的意义,根据函数图象理解掌握对数函数的性质; ⒉要逐渐学会利用函数图像分析研究函数的性质. (Ⅴ)课后作业⒈课本82P 习题2.2 A 组⒌⒎ ⒉阅读课本79P ~80P ,思考下列问题:怎样利用对数函数的单调性比较两个对数的大小?所有对数的大小比较都可以用对数函数的性质进行吗?教学后记:§2.2.2 对数函数及其性质(二)学习目标:⒈熟练掌握对数函数的概念、图象、性质;⒉会根据对数函数的定义求函数的定义域,会利用对数函数的单调性比较同底数的对数值的大小.教学重点:对数函数的性质的应用.教学难点:求形如y =. 教学方法:讲练结合. 教具准备:多媒体投影仪. 教学过程:(I )复习回顾:师:上节课,我们学习了对数函数的概念、图象和性质,大家一起来回顾今天,我们将要应用对数函数的相关知识解决一些问题. (II )讲授新课: ⒈求函数的定义域:例⒈求函数y例⒉若函数]41)1([log 22+-+=x a ax y 的定义域为R ,求实数a 的取值范围.解:函数]41)1([log 22+-+=x a ax y 的定义域为R ,即041)1(2>+-+x a ax 恒成立,此时不等式左边若不是二次式,即0=a 时,显然041>+-x 不能恒成立.因此,左边一定是二次式,故00a >∆<且,进而可求得a 的取值范围为,0414)1(2<⨯⨯--a a解得:33()22a -+∈. 说明:已知定义域为全体实数,是041)1()(2>+-+=x a ax x u 恒成立,即该一元二次不等式的解为全体实数,特别注意,a ≠0.当a =0时041)(>+-=x x u 对x 来说是有限制范围的,并根据二次函数图象判定条件为:a >0且Δ<0.⒉对数函数单调性的应用:例⒊课本62P 例⒏例⒋比较下列各组数中两个值的大小:⑴3.2log 1.1与2.2log 2.1; ⑵7.0log 3.0与9.2log 1.2; ⑶b a log 与)10(log 1<<a b a.选题意图:本题考查对数函数的单调性的应用. 解:⑴ 3.2log 1.1>2.2log 1.1>2.2log 2.1;⑵ 7.0log 3.0<1<9.2log 1.2;⑶当b >1时,b a alog 6log 1>;当0<b <1时,b b a alog log 1<说明:不同底对数比较大小的方法:①两数中间插入一个已知数(如1或0等),间接比较两数大小;②根据真数相同而底数不同的两对数函数的单调性比较:如x y 1.1log =与x y 2.1log =,当x >1取同一个值时恒有x x 2.11.1log log >成立.对数的底或真数含字母时,比较大小要讨论.(Ⅲ)课后练习:课本81P 练习⒊;课本82P 习题2.2 B 组⒉ (Ⅳ)课时小结⒈要理解对数函数的意义,根据函数图象理解、掌握对数函数的性质; ⒉要能够熟练运用对数函数的性质解决问题. (Ⅴ)课后作业⒈课本82P 习题2.2 A 组⒏⒉阅读课本80P ~81P 、84P ,思考下列问题:⑴在指数函数x y a =中,x 是y 的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.⑵对数函数log a y x =(0a >,且1)a ≠和指数函数x y a =(0a >,且1)a ≠之间有什么关系?⑶对数函数log a y x =(0a >,且1)a ≠和指数函数x y a =(0a >,且1)a ≠的图象有什么关系?⑷观察对数函数log a y x =(0a >,且1)a ≠和指数函数x y a =(0a >,且1)a ≠的图象,你还能够得到它们的什么性质?教学后记:。
对数函数及其性质(2)一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。
函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。
必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。
为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。
学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。
最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。
三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。
通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。
对数函数及其性质(第一课时)一、教材分析本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教A版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。
对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。
学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。
二、学情分析刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。
由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。
教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。
三、学法.教法分析教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,在积极的双边活动中,学生找到了解决疑难的方法。
整个过程贯穿“怀疑”——“思索”——“发现”——“解惑”四个环节,学生随时对所学知识产生有意注意。
思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。
(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。
(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
这样可发挥学生的主观能动性,有利于提高学生的各种能力。
四、教学目标1知识与技能(1)对数函数的概念,对数函数的图象。
《对数函数及其性质》教学案课程分析:(本课的作用和学习本课的意义)函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.教学构想及目标:知识目标: 1.理解对数函数的概念;2. 2.掌握对数函数的图像和性质,学会其简单的运用;3. 3.通过具体的函数图像的画法逐步认识对数函数的特征。
能力目标: 通过教学培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力。
情感目标: 在活动过程中培养学生的数学应用意识,感受获得成功后的喜悦心情,养成积极合作、大胆交流、虚心学习的良好品质。
教学重点: 理解并掌握对数函数的概念、图像与性质。
教学难点: 对数函数的图像和性质的探究。
教学方法:采用 “从特殊到一般”、“从具体到抽象”的方法,并在教学过程中渗透类比、数形结合、分类讨论等数学思想方法。
师生活动 复习回顾:1、N x N a a a a x log ,10=⇔=≠>则且若2、指数函数及其性质设计意图复习指数函数的图象和性质有利于对数函数的学习,为学习对数函数的定义,图像和性质做铺垫,渗透类比数学思想。
问题情境1:某细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,细胞个数 y 是分裂次数 x 的函数已知分裂的次数x ,就能求出细胞的个数 y 。
问题:已知细胞的个数 y ,如何确定分裂的次数x 呢?问题情境2:某种放射性物质不断变化为其他物质,且每经过一年,这种物质剩留的质量是原来的84%.写出这种物质的剩留量 y ,关于时间 x 的函数关系式。
(设该物质最初的质量为1)已知经过的时间 x ,就能求出该物质的剩留量 y .问题:已知该物质的剩留量 y ,如何求经过的时间 x 呢?这样我们得到了两个关于变量x,y 之间关系的表达式,抛开它们的实际背景,对于正数 y 的每一个给定的值,x 都有xy 2=)(*N x ∈yx 2log =x y 84.0=)0(>x yx 84.0log =惟一确定的值与之相对应. 这样就得到一类新的函数:习惯上,我们用x 表示自变量, y 表示函数,所以有:新知建构:对数函数的概念:一般地,函数叫做对数函数,定义域为探究学习:用描点法做出下列函数的图象(两点一线---定位)1、 3、2、 4、 有教师通过幻灯片演示,再利用几何画板实验,让同学们观察图象。
§2.2.2对数函数及其性质(第一课时)一.教学目标1.知识技能①对数函数的概念,熟悉对数函数的图象与性质规律。
②掌握对数函数的性质,能初步运用性质解决问题。
2.过程与方法让学生通过观察对数函数的图象,发现并归纳对数函数的性质。
3.情感、态度与价值观①培养学生数形结合的思想以及分析推理的能力;②培养学生严谨的科学态度。
二.学法与教学用具1.学法:通过让学生观察、思考、交流、讨论、发现函数的性质;2.教学手段:多媒体计算机辅助教学。
三.教学重点、难点1、重点:理解对数函数的定义,掌握对数函数的图象和性质。
2、难点:底数a对图象的影响及对数函数性质的作用。
四.教学过程1.设置情境实例:古谚:“一尺之木,日截其半,万世不竭…”设木长为x,则x与经过的天数y之间显然存在一种关系式。
先填写下表:则该关系式为:()2yx …………(*)那能否根据(*)式用木长x把经过的天数y表示出来?12y=log x2.探索新知(1)探求对数函数的概念问题1.1:由实例我们能否得到对数函数的一般式? 答:一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞)。
问题 1.2:在函数的定义中,为什么要限定a >0且a ≠1?答: 问题 1.3:为什么对数函数log a y x =(a >0且a ≠1)的定义域是(0,+∞)?答:下面我们来研究函数的图象,并通过图象来研究函数的性质:先完成下表,并根据此表用描点法或用几何画板画出函数2log x y =的图象,再利用几何画板画出0.5log x y =的图象。
2log xy =注意到:2212112222log log log log log log 2x xy x x -====-,若点(x, y)在2log y x =的图象上,则点(x, -y)在12log y x =的图象上. 由于(,x y )与(x,-y )关于x 轴对称,因此,12log y x =的图象与2log y x =的图象关于x 轴对称 . 所以,由此我们可以根据2log y x =的图象画出12log y x =的图象。
对数函数及其性质的教学设计【2篇】篇一:高中数学对数函数教案篇一教学目标1、在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题。
2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。
3、通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性。
教学重点,难点重点是理解对数函数的定义,掌握图像和性质。
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。
教学方法启发研讨式教学用具投影仪教学过程一。
引入新课今天我们一起再来研究一种常见函数。
前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。
这个熟悉的函数就是指数函数。
提问:什么是指数函数?指数函数存在反函数吗?由学生说出是指数函数,它是存在反函数的。
并由一个学生口答求反函数的过程:由得。
又的值域为,所求反函数为。
那么我们今天就是研究指数函数的反函数__对数函数。
2.8对数函数(板书)一。
对数函数的概念1、定义:函数的反函数叫做对数函数。
由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。
如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件。
在此基础上,我们将一起来研究对数函数的图像与性质。
二。
对数函数的图像与性质(板书)1、作图方法提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。
同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。
对数函数及其性质一、教材分析《对数函数》出现在高中数学必修一第二章第二节第二课时。
对数函数是高中数学在指数函数之后的重要初等函数之一,无论从知识角度还是思想方法的角度对数函数与指数函数都有类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活、能力要求也更高。
而且学习对数函数是对指数函数知识和方法的巩固、深化和提高,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。
也为解决函数总和问题及其在实际中的应用奠定良好的基础。
二、学情分析函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.学生在高中有一定的形象思维和抽象思维能力,已经学习了三种基本函数:一次函数、二次函数、反比例函数,已经具有一定的函数基础知识,并且在对数函数之前学习了指数函数,这为过渡到本节的学习起着铺垫作用;具备通过类比指数函数学习来认识对数函数的性质。
因此本节对数函数既是对以前函数知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后学习提供了必要的基础知识.三、教学目标和重点难点依据对教材和学情的分析,遵循《普通高中数学课程标准》对本节的教学要求,将对数函数及其性质此节课的教学目标、重点和难点设置为:(一)教学目标:1.知识与技能:进一步理解对数函数的定义,掌握对数函数的图像和性质;初步利用对数函数的图像与性质来解决简单问题(会求对数函数的定义域;会用对数函数的定义比较两个对数的大小)。
2.过程与方法目标:经过探究对数函数的图像和性质的过程,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力,培养学生严谨的思维和科学正确的计算能力;渗透类比、数形结合、分类讨论等基本数学思想方法。
3.情感态度与价值观目标:在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣,增强学好数学的信心。
§2.2.2对数函数及其性质一.教学目标1.知识技能①理解对数函数的概念,熟悉对数函数的图象与性质规律.②掌握对数函数的性质.2.过程与方法①通过观察对数函数的图象,发现并归纳对数函数的性质.②进一步体会应用函数图象讨论函数性质的方法.3.情感、态度与价值观①通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,培养学生的观察,分析,归纳等逻辑思维能力.②激发学生学习数学的积极性.二.学法与教学用具1.学法:通过让学生观察、思考、交流、讨论、发现函数的性质;2.教学手段:多媒体计算机辅助教学.三.教学重点、难点1、重点:理解对数函数的定义,掌握对数函数的图象和性质.2、难点:底数a对对数函数图象和性质的影响 .四.教学过程(一)创设情境,引入新课在 2. 2. 1 的例 6 中,考古学家利用t log 1 P估算出土文物或古遗址的年代。
根据57302问题的实际意义,我们知道对于每一个炭14 含量 P,通过关系式t log57301 P ,都有唯一2确定的年代与之对应。
t 和P的取值范围我们可以用两个数集来表示,根据函数的定义,我们知道 t 是P的函数。
我们注意到这个函数比较特殊,它的解析式是一个对数的形式,事实上,这是一个很重要的函数模型――对数函数。
对数函数在考古学、生物学以及金融学中有着广泛的应用,因此,我们有必要对这一类特殊的函数进行研究。
今天我们就来学习对数函数及其性质。
(板书课题)(二) 讲授新课:1. 对数函数的定义 一般地,我们把函数y log a x (a 0 ,且 a 1) 叫做对数函数,其中 x 是自变量,函数定义域是(0,) .(板书定义)提问:( 1)在函数的定义中,为什么要规定( 2)为什么对数函数 ylog a x ( a > 0 且a > 0 且 a ≠ 1?a ≠ 1)的定义域是(0, +∞)?组织学生充分讨论、交流,使学生更加理解对数函数的含义, 从而加深对对数函数的理解.答:①根据对数与指数式的关系,知y log a x 可化为 a y x ,由指数的概念,要使a yx 有意义,必须规定 a >0且 a ≠ .(板书注意①规定 a > 0 且 a ≠ )1 1②因为 ylog a x 可化为 x a y ,不管 y 取什么值,由指数函数的性质,a y > 0,所以.(板书注意② x (0,) )师:其实,这里关于a > 0 且 a ≠ 1 的规定与对数的定义中对底数a >0 且 a ≠ 1 的规定是一致的。
2.2.2对数函数及其性质(第一课时)教案
一、教学目标
知识目标:使学生理解对数函数的定义并了解其图象的特点.能力目标:培养学生动手操作的能力以及自主探究数学问题的素养.情感目标:培养学生勇于探索和创新的精神以及优化他们的个性品质.二、教学重点、难点与关键 重点:掌握对数函数的概念及其图象,使学生能初步自觉地、有意识地利用图象
研究对数函数的性质.难点:理解和掌握对数函数的概念,图象特征,区分01a <<和1a >不同条件下的性质.
关键:认识底数a 与对数函数图象之间的关系. 三、教学过程
(一)创设情境,导入新课 由§2.2.1的例题6(即考古学家是如何估算出土文物或古遗址的年代)引入,让学生利用计算器计算并填写下表.
学生填写完毕后,引导他们观察上表,让他们体会“对每一个碳14的含量P 的取值,通过对应关系,生物死亡年数t 都有唯一的值与它对应,并且对不同的P 值,也都有不同的t 值与它对应,从而t 是P 的函数”.
(二)对数函数的概念
1、对数函数的定义函数x log y a =(0>a 且1≠a )称为对数函数.定义域:),0(+∞.2.例题1:求下列函数的定义域。
(1)()
2x log y a = (2)()x log y a -=4 (三)分组讨论,得出对数函数图象及其性质
1、学生分成几个小组并分发第一张表格(印有直角坐标系);然后引导学生通过常规方法(即列表、描点、连线成图)画出四个具体的对数函数x log y 2=、x y 21log =、x y 3log =以及 x y 3
1log =的图象.
生物的死亡年数t
0.001 0.01 0.1 0.3 0.5 碳14的含量P
(x)
log y 2=以2为底数的对数函数的图象
2、发放第二张表格,引导学生通过观察具体对数函数的图象特点和性质归纳出以a (0>a 且1≠a )为底的对数函数的图象和性质.
3、利用几何画板对对数函数图象及其性质再作分析.
(四)例题研究,深化性质
例题2:比较下列各组中两个值的大小.
(1)4.3log 2,5.8log 2 (2)8.1log 3.0,7.2log 3.0
(3)1.5log a ,9.5log a (a >0,且a ≠1)
(五)课堂练习,巩固新知
1.求下列函数的定义域.
(1)5log (1)y x =- (2)21log y x =
(3)x
y 311log 7-= (4
)y =2.比较下列各组中两个值的大小.
(1)6log 10, 8log 10 (2)6log 5.0, 4log 5.0
(3)5.0log 32 6.0log 3
2 (4)6.1log 5.1, 4.1log 5.1
(六)课堂小结,布置作业
课堂小结
1.通过本节课的学习,你学到了那些知识?你又掌握了哪些学习方法?
2.让学生对这一节课所学的内容提出质疑.
布置作业
1、必做题:教材74P A 组 78、
2、选做题:求函数()x x y 416log 1-=+的定义域.
四、板书设计
五、课后反思
1.学生可能把自变量在真数位置的函数都认为是对数函数,应予以及时纠正.
2.若学生质疑对数函数单调性结论的正确性,应先肯定质疑是正确的,因为用图象观察归纳出来的结论,必须经过严格证明才是可靠的!但由于所学知识限制,目前无法严格证明.
六、关于本节课整体设计的思路
这是一节数学概念和性质课.本课的整体设计有两个过程:一是概念的引入→定义→剖析→辨析→运用,是一个由特殊到一般的过程;二是演示函数的图象→观察→探索→交流→抽象概括→运用.两个过程的关键是通过对概念的剖析、定义、辨析,揭示概念的内涵和外延,通过对图象的观察、探索、交流、抽象、概括,认识对数函数性质的本质,是一个运用数形结合思想探索一般规律的过程。
在这两个过程中着重培养学生的思维能力,学习数学概念和数学性质的方法和能力,提高学生学习数学的兴趣,养成良好的学习习惯,形成积极进取、勇于探索、不断创新的品格,提高学生的综合素质.让学生亲身经历这两个过程是教师主导作用的体现,也是实现上述设计意图的根本保证。
于是,本课的教学方法主要以探索发现法为主,教师努力创造平等、民主、热烈、务实、高效的氛围,实现教学目标。
设计例1目的是巩固和辨析对数函数的概念,设计例2的目的目的既是巩固指数函数的性质,又是初步运用所学知识解决实际问题的尝试,为深入理解和运用知识奠定了基础.。