糖的有氧分解和无氧分解
- 格式:ppt
- 大小:6.99 MB
- 文档页数:23
曹老师:关于糖的无氧酵解以及有氧呼吸时产生能量计算的一点点疑问糖的分解代谢过程所产生的能量可分为俩部分,一部分时通过底物水平磷酸化产生的,还有一部分时辅酶I或辅酶II被还原时进入呼吸链与能量偶联产生的,也就是氧化磷酸化。
底物水平磷酸化:无氧酵解时有俩步底物水平磷酸化产生ATP:一、1,3-二磷酸甘油酸至三磷酸甘油酸。
二、磷酸烯醇式丙酮酸至烯醇式丙酮酸。
共2ATP。
(2*2=4)(2*2=4)之后进入有氧氧化后,仅有一步底物水平磷酸化产生的GTP(也是高能磷酸键):琥珀酰~CoA被羧化成琥珀酸。
(1*2=2)(1*2=2)氧化磷酸化:正常无氧呼吸时不存在氧化磷酸化,因为没有氧气可提供,但是无氧酵解三磷酸甘油醛脱氢所产生的NADH+H+可以在有氧呼吸时进入呼吸链被利用。
(NADH+H+)由于此处是无氧酵解,无氧酵解是在胞液内进行,所以此处的NADH+H+只有通过穿梭作用才可以将氢传进线粒体中的呼吸链而偶联产生能量,穿梭途径有两个:一、苹果酸穿梭,此处NADH+H+进入线粒体后依然是形成NADH+H+进入呼吸链。
二、α-磷酸甘油穿梭,此处NADH+H+进入线粒体后是以FADH2的方式进入呼吸链的。
(3*2=6/2*2=4)(2.5*2=5/1.5*2=3)这应该是算出的结果总会有俩个ATP差值的原因。
有氧呼吸时会有五步氧化磷酸化获得能量的步骤:1丙酮酸被丙酮酸脱氢酶复合体催化生成乙酰CoA。
(NADH+H+)(3*2=6)(2.5*2=5)2异柠檬酸脱氢生成α-酮戊二酸(NADH+H+)(3*2=6)(2.5*2=5)3α-酮戊二酸通过α-酮戊二酸脱氢酶系生成琥珀酰CoA。
(NADH+H+)(3*2=6)(2.5*2=5)4琥珀酸脱氢生成延胡索酸。
(FADH2)(2*2=4)(1.5*2=3)5苹果酸脱氢生成草酰乙酸。
(NADH+H+)(3*2=6)(2.5*2=5)根据生化书本上可以看出1molNADH+H+经过呼吸链氧化后可以生成3molATP,1 molFADH2经过呼吸链氧化后可以生成2molATP。
第一章运动的能量代谢一、名词解释ATP稳态、糖的有氧分解、糖的无氧酵解、基础代谢、基础代谢率、基础状态ATP稳态:集体在能量转换过程中维持其ATP恒定含量的现象称为ATP稳态。
糖的有氧分解:葡萄糖或糖原在有氧条件下,氧化成CO2和H2O,并再合成ATP的过程称为糖的有氧氧化。
糖的无氧酵解:葡萄糖或糖原在不需要氧的情况下分解生成乳酸,并释放能量生成ATP的过程,称糖的无氧分解或酵解基础代谢:指人体在基础状态下的能量代谢。
(65%)基础代谢率:单位时间内的基础代谢。
基础状态:指室温20℃~25℃、清晨、空腹、清醒而又极其安静的状态。
二、选择题1、磷酸原系统和乳酸能系统供能的共同特点是 A 。
A.都不需要氧B.都产生乳酸C.都能维持较长时间D.都可以产生大量ATP2、在较剧烈运动时,肌肉中高能磷酸化物的变化情况是 B 。
A.CP含量变化不大B.ATP含量变化不大C.CP生成较多D.ATP含量大幅度下降3、从机体能量代谢的整个过程来看,其关键的环节是 D 。
A.糖酵解B.糖类有氧氧化C.糖异生D.ATP的合成与分解4、评定乳酸能系统能力的常用指标是 B 。
A.肌红蛋白的含量B.血乳酸水平C.30米冲刺跑D.无氧阈值5、三种物质在胃内排空由快到慢的顺序是 B 。
A.蛋白质、糖类、脂肪B.糖类、蛋白质、脂肪C.糖类、脂肪、蛋白质D.蛋白质、脂肪、糖类6、剧烈运动时,肌肉中含量明显上升的物质是B 。
A.CPB. 乳酸C. 水D. CO27、剧烈运动时,肌肉中含量首先减少的物质是 C 。
A.ATPB.CPC. 葡萄糖D.脂肪酸8、酮体是脂肪代谢不彻底的产物,是在C 部位形成。
A. 肾脏B.心脏C.肝脏D.骨骼肌9、进行一段时间训练,60米跑速提高了,而跑后血乳酸含量却比训练前减少,这说明D 。
A.糖类的有氧供能比例增大B.肌红蛋白含量增多C.脂肪供能比例增大D.ATP-CP供能比例增大10、马拉松跑的后期,能源利用情况是 D 。
DNA的变性和复性:(1)变性:DNA双链之间以氢键连接,氢键是一种次级键,能量较低,易受破坏,在某些理化因素作用下,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,即为DNA变性。
(2)复性:变性DNA在适当条件下,两条互补链可重新恢复天然的双螺旋构象,这种现象称为复性。
热变性的DNA经缓慢冷却后即可复性,这一过程也叫退火,一般认为,比Tm值低25℃的温度是DNA复性的最佳条件。
分子杂交:两条来源不同但有碱基互补关系的DNA单链分子,或DNA单链分子与RNA分子,在去掉变性条件后互补的区段能够退火复性形成双链DNA分子或DNA/RNA异质双链分子,这一过程叫分子杂交。
增色效应和减色效应:(1)增色效应:将DNA的稀盐酸溶液加热到80~100度时,双螺旋结构解体,两条链分开形成单链,由于双螺旋分子内部的碱基暴露,260nm紫外线吸收值升高,这种现象称为增色效应。
(2)减色效应:核酸的光吸收值通常比各个核苷酸成分的光吸收值之和小30%~40%,这是由于在有规律的双螺旋结构中碱基紧密的堆积在一起造成的,这种现象称为减色效应。
回文结构:指DNA序列中,以某一中心区域为对称轴,其两侧的碱基对顺序正读和反读都相同的双螺旋结构,即对称轴一侧的片段旋转180℃后,与另一侧片段对称重复。
Tm值:通常把增色效应达到一半时的温度或DNA双螺旋结构失去一半时的温度叫该DNA 的熔点或熔解温度,用Tm表示。
Chargaff定律:所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),即嘌呤的总含量与嘧啶的总含量相等(A+G=T+C)。
DNA 的碱基组成具有种的特异性,但没有组织和器官的特异性。
另外生长发育阶段、营养状态和环境的改变都不影响DNA的碱基组成。
碱基配对:由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是A(腺嘌呤)一定与T(胸腺嘧啶)配对,G(鸟嘌呤)一定与C(胞嘧啶)配对,反之亦然。
糖的无氧分解、有氧氧化的部位和过程糖是一类常见的有机化合物,它在生物体内主要作为能量的来源。
糖的代谢过程可以分为无氧分解和有氧氧化两个部分。
无氧分解是指在缺氧条件下,糖分子被分解成较小的分子,产生能量的过程。
无氧分解主要发生在细胞质中的胞浆中,主要是在细胞质中进行的。
该过程包括糖的糖酵解和乳酸发酵两个步骤。
糖酵解是一种将糖分子分解为较小的分子的过程,产生能量。
这个过程主要发生在糖酵解途径中,最重要的是糖原途径。
在糖原途径中,葡萄糖分子首先经过一系列酶催化反应被分解成两个三碳分子的化合物——丙酮酸和磷酸甘油酸,然后进一步分解为丙酮酸和磷酸甘油酸的分子,最后产生乳酸和能量。
这个过程在无氧条件下进行,产生的乳酸可以通过肌肉组织中的乳酸脱氢酶进一步转化为乳酸酸根离子,从而继续进行乳酸酸根离子酵解。
乳酸酸根离子酵解可以产生乳酸酸根离子和乙醛,乙醛可以进一步氧化为乙酸。
这个过程可以在肌肉组织进行,并产生少量的能量。
乳酸发酵是另一种将糖分子分解为小分子的过程,主要发生在无氧条件下。
在这种情况下,葡萄糖分子被分解成乳酸和能量。
乳酸发酵通常发生在一些低氧环境下的微生物,如乳酸菌和酵母菌中。
这个过程可以快速产生能量,但产生的乳酸会在体内积累,容易导致肌肉疲劳。
有氧氧化是指在氧气存在的条件下,糖分子被进一步分解成二氧化碳和水,并产生更多的能量。
有氧氧化主要发生在线粒体中的线粒体。
该过程可以分为三个阶段:糖酵解反应、三羧酸循环和氧化磷酸化。
糖酵解反应是糖分子被分解为两个较小的分子的过程。
在糖酵解反应中,葡萄糖分子首先经过一系列酶催化反应被分解成两个三碳分子的化合物——丙酮酸和磷酸甘油酸,然后进一步分解为丙酮酸和磷酸甘油酸的分子,最后产生乳酸和能量。
这个过程在线粒体的线粒体质膜中进行,称为线粒体糖酵解。
三羧酸循环是糖分子在线粒体中被完全氧化的过程。
在三羧酸循环中,糖分子经过一系列酶催化反应,被逐步氧化为二氧化碳和水,并释放出更多的能量。
1.氨基酸残基:氨基酸由于其部分基团参与了肽键的形成,剩余的结构部分则称氨基酸残基。
2.α—碳原子:有机物中和官能团直接相连的碳原子3.两性电解质:同时带有可解离为负电荷和正电荷基团的电解质。
如氨基酸。
4.氨基酸的等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。
5.肽:两个或两个以上氨基酸通过肽键共价连接形成的聚合物。
自然界中主要是由组成蛋白质的20种氨基酸形成的肽类。
根据组成氨基酸残基数目的多少,可分为寡肽和多肽。
蛋白质则属于多肽。
6.肽键:一个氨基酸的羧基与另一氨基酸的氨基发生缩合反应脱水成肽时,羧基和氨基形成的酰胺键。
具有类似双键的特性,除了稳定的反式肽键外,还可能出现不太稳定的顺式肽键。
7.蛋白质的等电点:对于每个蛋白都存在一个pH使它的表面净电荷为零即等电点。
8.蛋白质的沉淀反应:用物理化学的方法将蛋白质沉淀,以达到某种目的。
有盐析、有机溶剂沉淀、重金属盐沉淀和生物碱试剂沉淀,钱两种用于蛋白质纯化分离,第三种用于结合重金属盐,第四种用于除去血浆中的蛋白质。
9.盐析:无机盐离子从蛋白质分子的水膜中夺取水分子,破坏水膜,使蛋白质分子相互结合发生沉淀10.盐溶:在蛋白质水溶液中,假如少量的中性盐,会增加蛋白质表面的电荷,曾强蛋白质分子与水分子的作用,从而使蛋白质在水溶液中的溶解度增大。
11.蛋白质的变性:在某些理化因素下,蛋白质的一级结构保持不变,空间结构发生改变,由天然状态变成了变性状态,从而引起生物功能的丧失以及物化性质的改变。
12.蛋白质的复性:有些蛋白质尤其是较小的蛋白质,变性后在适当条件下尅恢复折叠状态,并恢复全部生物活性,这种现象称为复性。
13.二面角:在多肽链里,Cα碳原子刚好位于互相连接的两个肽平面的交线上。
Cα碳原子上的Cα-N和Cα-C都是单键,可以绕键轴旋转,其中以Cα-N旋转的角度称为ф,而以Cα-C 旋转的角度称为ψ,这就是α-碳原子上的一对二面角。
糖类彻底氧化分解的产物糖类含有碳、氢、氧三种元素。
所以彻底氧化分解的产物是碳和氢元素的氧化物,即:二氧化碳和水。
扩展资料:一、糖类的生理功用:①氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。
②作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。
③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。
④转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。
二、糖的无氧酵解:糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。
其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。
糖的无氧酵解代谢过程可分为四个阶段:1. 活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。
这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。
2. 裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮 + 3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。
3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。
此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。
丙酮酸激酶为关键酶。
4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH 重新氧化为NAD+。
即丙酮酸→乳酸。
三、糖无氧酵解的调节:主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。