第1章有限元法简介
- 格式:ppt
- 大小:7.24 MB
- 文档页数:59
有限元分析基础第一章有限元法概述在机械设计中,人们常常运用材料力学、结构力学等理论知识分析机械零构件的强度、刚度和稳定性问题。
但对一些复杂的零构件,这种分析常常就必须对其受力状态和边界条件进行简化。
否则力学分析将无法进行。
但这种简化的处理常常导致计算结果与实际相差甚远,有时甚至失去了分析的意义。
所以过去设计经验和类比占有较大比重。
因为这个原因,人们也常常在设计中选择较大的安全系数。
如此也就造成所设计的机械结构整体尺寸和重量偏大,而局部薄弱环节强度和刚度又不足的设计缺陷。
近年来,数值计算机在工程分析上的成功运用,产生了一门全新、高效的工程计算分析学科——有限元分析方法。
该方法彻底改变了传统工程分析中的做法。
使计算精度和计算领域大大改善。
§1.1 有限元方法的发展历史、现状和将来一,历史有限元法的起源应追溯到上世纪40年代(20世纪40年代)。
1943年R.Courant从数学的角度提出了有限元法的基本观点。
50年代中期在对飞机结构的分析中,诞生了结构分析的矩阵方法。
1960年R.W.Clough在分析弹性力学平面问题时引入了“Finite Element Method”这一术语,从而标志着有限元法的思想在力学分析中的广泛推广。
60、70年代计算机技术的发展,极大地促进了有限元法的发展。
具体表现在:1)由弹性力学的平面问题扩展到空间、板壳问题。
2)由静力平衡问题——稳定性和动力学分析问题。
3)由弹性问题——弹塑性、粘弹性等问题。
二,现状现在有限元分析法的应用领域已经由开始时的固体力学,扩展到流体力学、传热学和电磁力学等多个传统的领域。
已经形成了一种非常成熟的数值分析计算方法。
大型的商业化有限元分析软件也是层出不穷,如:SAP系列的代表SAP2000(Structure Analysis Program)美国安世软件公司的ANSYS大型综合有限元分析软件美国航天航空局的NASTRAN系列软件除此以外,还有MASTER、ALGO、ABIQUES、ADINA、COSMOS等。
有限元分析基础第⼀讲第⼀章有限元的基本根念Basic Concepts of the Finite Element Method1.1引⾔(introduction)有限元(FEM 或FEA)是⼀种获取近似边值问题的计算⽅法。
边值问题(boundary valueproblems, 场问题field problem )是⼀种数学问题(mathematical problems)(在所研究的区域,⼀些相关变量满⾜微分⽅程如物理⽅程、位移协调⽅程等且满⾜特定的区域边界)。
边值问题也称为场问题,场是指我们研究的区域,并代表⼀种物理模型。
场变量是满⾜微分⽅程的相关变量,边界条件代表场变量在场边界上特定的值(物理边界转化为数学边界)。
根据所分析物理问题的不同,场变量包括位移、温度、热量等。
1.2有限元法的基本思路 (how does the finite element methods work)有限元法的基本思路可以归结为:将连续系统分割成有限个分区或单元,对每个单元提出⼀个近似解,再将所有单元按标准⽅法组合成⼀个与原有系统近似的系统。
下⾯⽤在⾃重作⽤下的等截⾯直杆来说明有限元法的思路。
等截⾯直杆在⾃重作⽤下的材料⼒学解答图1.1 受⾃重作⽤的等截⾯直杆图1.2 离散后的直杆受⾃重作⽤的等截⾯直杆如图所⽰,杆的长度为L ,截⾯积为A ,弹性模量为E ,单位长度的重量为q ,杆的内⼒为N 。
试求:杆的位移分布,杆的应变和应⼒。
)()(x L q x N -=EAdxx L q EA dx x N x dL )()()(-==-==x x Lx EA q EA dx x N x u 02)2()()((1))(x L EAq dx du x -==ε )(x L AqE x x -==εσ等截⾯直杆在⾃重作⽤下的有限元法解答 (1) 离散化如图1.2所⽰,将直杆划分成n 个有限段,有限段之间通过⼀个铰接点连接。
第一章 绪论有限元发展过程:有限元法在西方起源于收音机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德J.H.Argyrb 教授,于1954—1955年间分阶段在《Aircraft Engineering 》上发表上许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书容提供了有限元法的理论基础。
美国的M.T.Turner 、 R.W.cloagh 、 H.C.martin 和L.J.Topp 等人于1956年发表了了篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,并说明了如何利用计算机进行分析。
美国于1960年在一篇介绍平面应力分析的论文中,首先提出了有限元的名字。
1965年英国及其合作者解决了将有限元法应用于所有场的问题,使有限元法的应用更加广泛。
有限元法的基本思路:有限元法的基本思路和基本原理以结构力学中的位移法为基础,把复杂的结构或连续体看成为有限个单元的组合,各单元彼此在节点处连续而组成整体,把连续体分成有限个单元和节点,称之为离散化,先对单元进行特性分析,然后根据各单元在节点处的平衡协调条件建立方程,综合后作整体分析。
这样一分一合,先离散再综合的过程,就把复杂结构或连续体的计算问题转化为简单单元的分析与综合问题。
有限元分析中可采取三种方法:位移法——取节点位移作为基本未知数力 法——取节点力作为基本未知数混合法——有限元法分析过程:1、结构离散化(单元划分)2、选择位移模式为了能用节点位移表示单元体的位移、应变和应力,在分析连续体时,必须对单元中位移的分布做出一定的假定,也就是假定位移是坐标的某种简单函数,这种函数称为位移模式或位移函数(形函数)。
{}[]{}e u N δ= (1)3、分析单元的力学特性(1)利用几何方程:由位移表达式导出用点位移表示单元应变的关系式 {}[]{}e εδ=B {}ε为单元任一点的应变列阵 (2)非线性有限元线性有限元几何非线性 材料非线性有限元(2)利用物理方程,由应变的表达式导出用节点位移表示单元应力的关系式{}[][]{}[]{}eD D δδε=B = (3) {}δ是单元任一点的应力列阵 []D 是材料的弹性矩阵(3)利用虚功原理建立作用于单元上的节点力和节点位移之间的关系式,即单元的刚度方程(平衡方程)[]{}{}e e K R δ=4、计算等效节点力弹性体经过离散化后,假定力是通过节点从一个单元传递到另一个单元,但是作为实际的连续体,力是从单元的公共边界传递到另一个单元的,因而,这种作用在单元边界上的表面力、体积力、集中力等都需要等效移置到节点上去,所用方法虚功等效。
有限元基础编程百科全书全文共四篇示例,供读者参考第一篇示例:有限元是一种广泛应用在工程领域的数值计算方法,它将连续问题转化为离散问题,通过离散化的数学算法来解决各种工程问题。
有限元分析技术已经成为现代工程领域中不可或缺的工具,它不仅可以用来分析结构、流体、热传等问题,还可以用来模拟各种物理现象和优化设计。
在有限元分析过程中,计算机编程是必不可少的工具,只有通过编程实现数值计算,才能得到准确的解。
有限元基础编程百科全书旨在帮助读者系统地了解有限元方法的基本原理和编程实现技术,掌握有限元分析的思维方式和方法,进而能够应用有限元分析技术解决实际工程问题。
本书将从基础知识到高级技术,全面展示有限元分析技术在工程领域的应用,并提供详细的编程实例和案例分析,帮助读者深入理解有限元方法的精髓。
第一章将介绍有限元分析的基本概念和原理,包括有限元模型的建立、数学背景和离散化技术。
读者将了解有限元方法的基本思想和数学原理,理解有限元分析的基本步骤和流程,为后续学习和实践奠定基础。
第二章将介绍有限元分析中的常用数学方法和算法,如矩阵运算、积分计算和解方程等。
通过学习这些数学方法和算法,读者将能够更好地理解有限元程序的实现原理和数值计算技术,提高编程的效率和精度。
第三章将详细介绍有限元分析中常用的编程语言和软件工具,如MATLAB、Python和ANSYS等。
读者将学习如何使用这些工具进行有限元分析建模、网格划分、求解和后处理,掌握有限元分析软件的使用技巧和调试方法。
第四章将针对具体工程问题,通过编写有限元程序进行实际分析和计算。
读者将学习如何应用有限元方法解决结构强度、热传、流体力学等工程问题,掌握有限元分析的实践技巧和经验。
第五章将介绍有限元程序的优化和并行化技术,通过提高程序的运行效率和计算速度,实现更加复杂和大规模的工程分析。
读者将了解如何通过优化和并行计算技术提高有限元分析的效率和精度,进一步提升工程设计和仿真的水平。
第二章有限元法的基本原理有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。
有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。
2.1等效积分形式与加权余量法加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。
在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。
2.1.1微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组⎛A 1(u )⎫ ⎪A (u )= A 2(u )⎪=0(在Ω内)(2-1) M ⎪⎝⎭域Ω可以是体积域、面积域等,如图2-1所示。
同时未知函数u 还应满足边界条件⎛B 1(u )⎫ ⎪B (u )= B 2(u )⎪=0(在Γ内)(2-2)M ⎪⎝⎭要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。
A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。
微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。
所以在以上两式中采用了矩阵形式。
以二维稳态的热传导方程为例,其控制方程和定解条件如下:A (φ)=∂∂φ∂∂φ(k )+(k )+q =0(在Ω内)(2-3)∂x ∂x ∂y ∂y⎧φ-φ=0⎪B(φ)=⎨∂φ-q=0⎪k⎩∂n (在Γφ上)(在Γq上)(2-4)这里φ表示温度(在渗流问题中对应压力);k是流度或热传导系数(在渗流问题中对应流度K/μ);φ和q是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n是有关边界Γ的外法线方向;q是源密度(在渗流问题中对应井的产量)。