自控原理
- 格式:docx
- 大小:14.40 KB
- 文档页数:2
自动控制理论是研究自动控制一般原理的一门技术科学。
《自动控制原理》也是高校自动化专业的一门专业课。
它是学习后续专业课程的重要基础,也是硕士研究生自动化专业的一门专业课程。
自动控制是指利用附加的设备或装置(称为控制装置或控制器),使机器、设备或生产过程(统称为受控对象)在一定的工作条件或参数(即受控量)下,按照预定的规律自动运行,没有人能直接参与。
自动控制理论是研究自动控制一般原理的一门技术科学。
在其发展初期,它是一种基于反馈理论的自动调节原理,主要用于工业控制。
第二次世界大战期间,为了设计和制造基于反馈理论的飞机和海上自动驾驶仪、火炮定位系统、雷达跟踪系统等军事装备,进一步促进和完善了自动控制理论的发展。
战后,以经典控制理论的传递函数为基础,形成了一套完整的自动控制理论体系,主要研究单输入单输出、线性常数系统的分析与设计问题。
20世纪60年代初,随着现代应用数学和计算机应用的新成果,为了适应航天技术的发展,自动控制理论进入了现代控制理论的新阶段。
主要研究高性能、高精度的多变量参数最优控制问题。
采用的主要方法是基于状态的状态空间方法。
目前,自动控制理论仍处于发展阶段,正在深入到基于控制论、信息论和仿生学的智能控制理论。
为了完成各种复杂的控制任务,被控对象和控制装置之间应以某种方式连接起来,形成一个有机的整体,即自动控制系统。
在自动控制系统中,被控对象的输出即受控量是需要严格控制的物理量。
可能需要保持某些恒定值,如温度、压力或飞行轨迹。
控制装置是控制被控制对象的整个机构。
它可以采用不同的原理和方法来控制被控对象,但它是基于反馈控制原理的最基本的反馈控制系统。
在反馈控制系统中,控制装置对被控制装置的控制功能是来自被控制量的反馈信息,用来不断修正被控制量与被控制量之间的偏差,从而实现对任务控制量的控制。
这就是反馈控制的原理。
同时,《自动控制原理》也是高校自动化专业的主干课程。
它是后续专业课程的重要基础,也是自动化专业的一门专业课程。
自控原理知识点整理自控原理是一种用于管理个人行为的方法,旨在帮助人们通过自我约束和自我管理来实现目标和改变自己。
本文将介绍自控原理的一些关键概念、技巧和工具,以帮助你更好地应用自控原理来管理自己的行为。
1. 自控原理的概念自控原理是通过自我约束,运用意志力自我管理的一种方法。
这种方法可以帮助你克服心理和物质上的挑战,实现个人目标和改变自己的行为。
自控原理认为,人们能够通过自我控制和管理抵制短期诱惑,实现自己的长期目标和愿望。
这一方法可以帮助你在诸多方面做出艰难的决定、改变长期不良习惯,并改善个人生活品质。
2. 自控原理的技巧和工具(1)设定目标要明确目标的明确程度影响着你是否能够坚持下去。
应设立一个具体、可量化的目标,尽可能规定大、小目标之间的时间限制。
(2)掉头思考在决定做某事之前,要考虑一下后果和利益。
这种掉头思考可以帮助你远离即时的欢愉,保持心智清醒,更好地抵制诱惑。
(3)监控自己的行动和反思要时刻注意自己的行为,以确保你始终沿着目标方向前进。
抽出一些时间反思自己的表现,找出行为上的一些问题和欠缺,并设法解决。
(4) 建立压力差机制为让自己更好地控制诱惑,你需要在心理上建立一种压力差机制。
例如,你可以告诉朋友你的目标,这样如果你失败了就会让他们失望。
通过建立压力差机制,你可以在某种程度上让自己需要遵循自己的目标。
(5)给自己一个奖励当你完成了一个艰巨的任务时,一件神秘的特殊待遇将会激励你坚持下去。
给自己一个小小的奖励,可以帮助你保持积极的态度,推动自己迎接下一个挑战。
3. 自控原理的重要性自控原理在个人成长和发展中扮演着至关重要的角色。
成功的个人应该具备自主思考的能力、自我管理的技能、以及控制自己的情绪和行为的能力。
自控原理不仅可以帮助我们解决生活中的日常问题,还可以帮助我们实现长远的个人生涯和人生目标。
总体说来,自控原理可以使人们更好地应对生活中的困难和挑战。
希望本文介绍的相关概念、技巧和工具能够帮助您更好地应用自控原理来管理自己的行为,并取得成功。
自控原理在实际中的应用1. 简介自控原理是工程领域中的一门学科,它研究如何通过各种反馈机制来实现对某个系统或过程的控制。
在实际中,自控原理被广泛应用于各个领域,包括工业生产、能源管理、环境监测、交通控制等等。
2. 工业生产在工业生产中,自控原理的应用尤为重要。
通过自控原理,可以实现对工业生产过程中的参数、质量等进行精确控制,提高生产效率和产品质量。
具体应用包括:•温度控制:自控原理中的温度控制系统可以通过传感器感知环境温度,并通过控制器对加热元件进行控制,使温度保持在设定范围内。
•压力控制:自控原理中的压力控制系统可以实时监测管道或容器中的压力,并通过执行器对阀门或泵进行控制,以保持压力稳定。
•流量控制:自控原理中的流量控制系统可以通过传感器感知流体的流量,并通过执行器对阀门或泵进行控制,以保持流量在设定范围内。
3. 能源管理自控原理在能源管理中也发挥着关键的作用。
通过自控原理,可以实现对能源的有效利用和节约。
具体应用包括:•照明系统:自控原理中的照明控制系统可以根据光线感应或时间设定,自动调节照明灯的亮度和开关,以达到节能的目的。
•空调系统:自控原理中的空调控制系统可以通过感应室内外温度和湿度,并通过执行器对空调设备进行控制,以使室内温度和湿度保持在设定值。
•电力系统:自控原理可以在电力系统中实现对电能的分配和调节,以确保电力供应的稳定和高效。
4. 环境监测自控原理在环境监测中也起到重要的作用。
通过自控原理,可以实时监测环境参数,并采取相应的控制措施。
具体应用包括:•气体监测:自控原理中的气体监测系统可以通过传感器感知环境中的气体浓度,并通过控制器对空气净化设备进行控制,以维护良好的气体环境质量。
•声音监测:自控原理中的声音监测系统可以通过传感器感知环境中的声音强度,并通过控制器对声音发生器进行控制,以实现噪声控制和隔音效果。
•水质监测:自控原理中的水质监测系统可以通过传感器感知水中的各项指标,并通过控制器对水处理设备进行控制,以保证水质的安全和清洁。
自控原理教学大纲
自控原理是控制工程中的基础课程之一,教学大纲通常包含以下内容:
1. 课程简介和基本概念:介绍自控原理的基本概念、发展历史、应用范围和重要性,概述控制系统的基本原理和组成部分。
2. 数学工具:包括微积分、微分方程、线性代数等数学工具的基本概念和应用,为后续控制系统建模和分析提供数学基础。
3. 控制系统的基本组成:介绍控制系统的基本组成部分,包括传感器、执行器、控制器、反馈回路等,以及它们在控制系统中的作用和相互关系。
4. 控制系统建模与传递函数:介绍控制系统的建模方法,包括拉普拉斯变换、传递函数表示等,用于描述系统的动态特性和稳定性。
5. 时域分析:介绍控制系统在时域中的分析方法,包括单位脉冲响应、步跃响应、稳态误差分析等,用于评估系统的动态性能和稳定性。
6. 频域分析:介绍控制系统在频域中的分析方法,包括频率响应、波特图、根轨迹等,用于评估系统的频率特性和稳定性。
7. 经典控制器设计:介绍PID控制器和经典控制器设计的基本原理、参数整定方法和应用,以及控制器在系统中的作用。
8. 稳定性分析:讲解控制系统的稳定性分析方法,包括Routh-Hurwitz准则、Nyquist准则、极点位置和稳定性等概念。
9. 根轨迹法和频率响应设计:详细讲解根轨迹法和频率响应法用于控制系统设计的原理和应用。
10. 现代控制理论概述:简要介绍现代控制理论的基本概念,包括状态空间分析、最优控制、鲁棒控制等。
这些内容构成了自控原理教学大纲的核心部分,目的是使学生掌握控制系统的基本原理、分析方法和设计技术,为他们进一步深入学习和实践提供基础。
具体的教学大纲可能会根据不同学校或教师的教学理念和教学目标有所不同。
自动控制原理公式下面是一些重要的自动控制原理公式:1.连续时间系统的传递函数:传递函数是描述系统输入和输出之间关系的函数。
对于连续时间系统,传递函数表示为s的函数:G(s)=Y(s)/U(s)其中,G(s)是系统的传递函数,Y(s)是系统的输出,U(s)是系统的输入,s是复变量。
2.离散时间系统的传递函数:对于离散时间系统,传递函数表示为z的函数:G(z)=Y(z)/U(z)其中,G(z)是系统的传递函数,Y(z)是系统的输出,U(z)是系统的输入,z是复变量。
3.闭环传递函数:闭环传递函数描述了闭环控制系统的输入和输出之间的关系。
对于连续时间系统,闭环传递函数表示为s的函数:T(s)=Y(s)/R(s)其中,T(s)是闭环传递函数,Y(s)是系统的输出,R(s)是参考输入。
4.控制系统的传递函数表达式:控制系统的传递函数可以表示为系统组成部分的传递函数之间的乘积或相加。
例如,对于一个系统,其传递函数可以表示为:G(s)=G1(s)*G2(s)/(1+G1(s)*G2(s)*H(s))其中,G1(s)和G2(s)是系统的组成部分的传递函数,H(s)是反馈路径的传递函数。
5.极点和零点:极点是系统传递函数的根,决定了系统的稳定性和动态响应。
零点是传递函数等于零的点,对系统的频率响应和稳定性有影响。
6.PID控制器公式:PID控制器是一种常见的反馈控制器,它根据误差信号来调整系统输出。
PID控制器的输出由比例项、积分项和微分项组成,公式表示为:u(t) = Kp * e(t) + Ki * ∫ e(t)dt + Kd * de(t) / dt其中,u(t)是PID控制器的输出,Kp、Ki、Kd是控制器的参数,e(t)是当前时刻的误差信号,∫ e(t)dt和de(t) / dt分别是误差信号的积分和微分。
这些公式只是自动控制原理中的一小部分,涵盖了控制系统的建模和调节方法。
自动控制原理公式是自动控制工程师和研究人员分析和设计自动控制系统的重要工具。
1、自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备、或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律运行。
2、扰动破坏系统输入量和输出量的规律和信号。
3、自动控制系统为了实现各种复杂的控制任务,首先要将被控对象和控制装置按照一定的方式连接起来,组成一个有机总体,这就是自动控制系统。
4、反馈及负反馈通常我们把取出输出量送回到输入端,并与输入信号相比较产生偏差信号的过程,成为反馈。
若反馈的信号是与输入信号相减,使产生的偏差越来越小,则称为负反馈。
5、自动控制系统基本控制方式反馈控制方式、开环控制方式、复合控制方式。
6、反馈控制是自动控制系统最基本的控制方式,也是应用最广泛的一种控制方式。
除此之外,还有开环控制方式和复合控制方式,他们都有各自的特点和不同的使用场合,近几十年来,以现代数学为基础,引入电子计算机的新的控制方式也有了很大发展,如最优控制、自适应控制、模糊控制等。
7、开环控制方式是指控制装置与被控对象之间只有顺向作用而没有反向联系的控制过程,按这种方式组成的系统称为开环控制系统。
9、按扰动控制方式在技术上较按偏差控制方式简单,但它只适用于扰动是可测量的场合,而且一个补偿装置只能补偿一种扰动因素,对其余扰动均不起补偿作用。
10、自动控制系统有多种分类方法按控制方式可分为开环控制、反馈控制、复合控制等;按元件类型可分为机械系统、电器系统、机电系统、液压系统、气动系统、生物系统等;按系统功用可分为温度控制系统、压力控制系统、位置控制系统等;按系统特性可分为线性系统和非线性系统、连续系统和离散系统、定常系统和时变系统、确定性系统和不确定性系统等;按输入量变化规律可分为恒值控制系统、随动系统和程序控制系统等。
为了全面反应自动控制系统的特点,常常将上述各种分类方法组合应用。
11、离散系统是指系统的某处或多处的信号为脉冲序列或数码形式,因而信号在时间上是离散的,连续信号经过采样开关的采样就可以转换成离散信号。
自动控制工程的原理和实现自动控制工程,简称自控工程,是一种应用广泛的工程技术。
其主要目的是运用现代电子技术和计算机技术,对复杂的生产过程、设备以及系统进行智能化控制与管理,以提高生产效率和降低生产成本。
本文将就自动控制工程的原理和实现进行探讨。
一、自动控制概述自动控制是一种典型的复杂技术系统。
其基本含义是,在工程实践中,通过电子技术、计算机技术等多种技术手段,按照一定的规律和目标,在设备、生产过程和物流系统等各个环节上,实现自动化、智能化、高效化和精准化的控制和管理。
目前,自动控制技术已广泛应用于工业、交通、医疗、金融、环保等各个领域。
二、自动控制工程的原理自动控制工程的原理主要基于控制论、信号处理、电子技术和计算机技术等多学科的基础理论。
其主要的控制模型可以分为开环控制和闭环控制两种。
开环控制是一种基于设定值对被控对象进行直接控制的方法。
其优点是控制精度高,实现简单,但对于受到外界因素影响变化较大的生产过程或系统,由于缺乏反馈控制,往往会出现偏差。
闭环控制是在开环控制的基础上加入了反馈控制。
它根据测量信号和设定值,调整控制量,实现对被控对象的高精度控制。
三、自动控制工程的实现自动控制工程实现的关键是对系统或被控对象进行建模和控制算法的设计。
其中,系统建模是实现自动控制的基础,是确定控制方法和实现控制的前提。
控制算法的设计则需要根据被控对象的特性和控制需求,选择合适的控制方法和算法。
目前,自动控制工程的实现主要分为如下几个步骤:1.系统建模:先对被控对象进行建模分析,建立合理的数学模型,并进行参数标定和验证。
2.控制算法设计:设计合理的控制算法,选择适当的传感器和执行器,并进行系统调试和验证。
3.控制系统实现:根据系统建模和控制算法设计,对控制系统硬件和软件进行实现和集成。
其中,硬件实现包括自动控制电路和伺服驱动器等,而软件实现则是利用计算机语言编写控制程序。
4.控制系统测试和调试:完成控制系统的集成和实现后,进行系统测试和调试,验证控制效果是否符合控制需求。
自控原理:1、自控原理的精髓概括:负反馈。
2、自控原理的任务:在没有人直接参与情况下,利用控制装置操纵被控对象,使被控量等于期望值。
3、传递函数的概念:对线性定常系统,在零初试条件下,系统的输出变量拉氏变换与输入变量拉氏变换的比。
4、一、二阶系统的参数与含义:一阶系统参数T,时间常数,表征系统惯性;二阶系统参数固有频率和阻尼比,阻尼比影响超调量,固有频率影响振荡频率,最佳阻尼比为0.707。
5、稳态误差的计算方法:终值定理。
6、根轨迹的含义:开环传递函数中某个参数从零变到无穷时,闭环特征根在s 平面上移动的轨迹。
可用于求解系统稳定的参数范围。
7、系统稳定要求:所有特征根均具有负实部。
系统快速性好要求:特征根远离虚轴。
系统平稳性好要求:特征根与负实轴成正负45度夹角附近。
8、什么是系统的频率特性:在正弦输入下,线性定常模型输出的稳态分量与输入的复数比。
9、评价一个系统常用的时域和频域指标:时域指标主要针对的是阶跃响应,包括超调量、调节时间、上升时间、稳态误差(开环增益影响稳态误差)。
频域指标主要针对开环频率特性,包括截止频率、相稳定裕度、模稳定裕度。
10、列举几种校正方式:串联校正(包括超前校正、滞后校正)、反馈校正、前置校正等。
11、非线性系统的两种分析方法:相平面法和描述函数法。
12、现代控制理论的重要分析方法是什么,它与经典的传递函数分析方法有什么优势:状态空间分析方法。
传递函数只能描述单输入单输出系统,且为零初始条件,状态空间发同样适用于多输入多输出系统,而且初始状态可以不为0。
13、同一个系统,如果状态变量选择不同,状态方程也会不同。
通过可逆线性变换可以将系统的状态方程改变形式,但系统没变,系统的特征方程和特征根也没变,传递函数阵也没变,只是表达形式上变了。
14、可控与可观的概念:可控性就是回答“系统的状态能否控制”,可观性就是回答“状态的变化能否由输出反映出来”。
具体定义为:一线性定常系统,若存在某输入u能在一个有限的时间t,使系统的状态由任一初态x0转移到另一任意状态x1,则称此系统可控;若在有限时间内,根据输出值y和输入值u,能够确定系统的初始状态x0的每一个分量,则称此系统可观。
自控系统的基础知识自控系统是指通过感知环境、分析信息,再对系统执行相应的控制操作,以实现系统的稳定运行和性能优化的一种系统。
它在工业控制、自动化设备以及生活中的应用越来越广泛。
在了解自控系统的基础知识之前,我们先来了解一下自控系统的工作原理。
一、自控系统的工作原理自控系统的工作原理可以简单概括为感知-判断-控制的过程。
首先,自控系统通过传感器感知系统或环境中的各种参数,如温度、湿度、压力等。
然后,通过信号处理和数据分析,对感知到的信息进行判断和识别,确定当前的系统状态和所需控制策略。
最后,通过执行器输出相应的控制信号,对系统进行调节和控制,使系统保持在期望的状态或实现特定的目标。
这个过程是一个不断反馈和调整的过程,以保持系统的稳定性和性能优化。
二、自控系统的组成自控系统通常由四个基本组成部分构成:传感器、执行器、控制器和反馈。
传感器用于感知系统或环境中的各种参数,并将感测到的信息转化为电信号传递给控制器。
执行器根据控制器发送的控制信号,对系统进行相应的调节或操作。
控制器是自控系统的核心,负责对感测到的信息进行分析、判断和控制策略的生成。
反馈则用于将执行器产生的效果或系统的实际状态反馈给控制器,以进行下一轮的控制调节。
这个反馈过程起到了检测和纠正系统误差的作用,使系统能够更加精确地控制。
三、自控系统的分类自控系统可以根据不同的标准进行分类。
按照系统的性质,可以将自控系统分为开环系统和闭环系统。
开环系统只根据系统的输入进行控制,忽略系统的输出和实际状态。
闭环系统则通过反馈机制,实时感知系统的实际状态,并根据反馈信息对系统进行调节和纠正。
闭环系统相对于开环系统具有更高的控制精度和稳定性。
根据系统的控制方式,自控系统又可以分为模拟控制系统和数字控制系统。
模拟控制系统使用模拟信号进行控制,电压、电流等为代表;数字控制系统则通过将信号进行数字化处理,使用数字信号进行控制操作。
数字控制系统具有更高的控制精度和可靠性。
自控原理1、自动控制科学:研究自动控制共同规律的技术科学。
2、自动控制:在无人直接参与的情况下,利用控制装置(称控制器),使机器设备或生产过程(统称被控对象)的某个工作状态或参数(称被控量)自动地按照预定的规律运行。
3、反馈控制原理:反馈是控制理论的核心内容,其控制原理把系统的输出量反送到输入端,与输入端的给定量比较产生偏差量,根据偏差量设计控制器使被控系统下一步的偏差量变小,以此循环,系统的偏差量小到允许的范围甚至消失。
故反馈控制原理即为按偏差控制的原理。
4、自动控制系统的基本组成:被控对象与控制装置,其中控制装置基本组成为:测量装置、给定环节、比较环节、放大环节、执行机构与校正装置。
5、自动控制系统的分类:①按控制方式分:开环控制系统、闭环控制系统和复合控制系统;②按输入信号特征分:恒值控制系统、随动系统、程序控制系统;③按系统特性分:连续系统和离散系统;定常系统和时变系统;线性系统和非线性系统,其中线性系统具有叠加性和齐次性(**自动控制原理主要分析线性定常系统):叠加性:n个输入同时产生的输出等于各个输入单独作用的输出之和;齐次性:输入增加或减少k倍时,其对应的输出也相应增加或减少k 倍。
6、对控制系统的基本要求:稳、快、准。
注1:测试信号的选取条件为:数学表达式尽可能简单,尽可能反映系统在实际工作中所受到的实际输入,容易在现场或实验室获得,同时该信号能够使系统工作在最不利情况。
注2:由幂级数或傅里叶级数可知,实际输入可近似看成是阶跃函数、斜坡函数和抛物线函数的组合或者是正弦函数的组合。
注3:一般认为阶跃输入对系统而言是比较严峻的工作状态,如果系统在阶跃函数的作用下也能满足性能要求,那么其他情况也应该是令人满意的。
注4:自控这门课其实就是做两件事,第一件是分析系统,分析系统稳定性与性能指标,即认识系统;第二件是对系统进行校正,即改造系统。
自控原理
自控原理是指在一个系统中,通过设定目标、监测实际状况,然后通过反馈来对系统进行调整,以使系统能够自我调节、自我控制的一种原理。
自控原理被广泛运用于许多领域,如工程控制系统、生态系统、经济系统等。
自控原理在工程控制系统中的应用
在工程控制系统中,自控原理起着至关重要的作用。
工程控制系统是指通过传感器获取系统的状态信息,然后通过执行器对系统进行控制,以实现系统的预期目标。
自控原理在工程控制系统中的应用可以帮助系统实现自动化控制,提高系统的稳定性和效率。
自控原理在生态系统中的应用
生态系统是一个复杂的系统,包括了许多生物和非生物组成部分。
在生态系统中,自控原理可以帮助系统自我调节,保持生态平衡。
例如,生物通过自觉的选择食物和生存环境,以维持生态系统的稳定性。
同时,自控原理也可以帮助人类更好地保护和管理生态系统,以实现人与自然的和谐共生。
自控原理在经济系统中的应用
在经济系统中,自控原理可以帮助企业实现自我调节和自我控制。
通过设定目标、监测市场状况,企业可以及时调整经营策略,提高竞争力。
同时,政府也可以通过自控原理来制定经济政策,以促进经济的稳定增长。
综上所述,自控原理作为一种普遍适用的原理,可以帮助系统实现自我调节、自我控制,提高系统的稳定性和效率。
通过深入理解和运用自控原理,我们可以更好地管理和优化各种系统,实现系统的良性发展。
自控原理知识点整理自控原理的知识点自控原理是指人们在实现目标时所采取的自我控制行为。
它是一个基本的心理学理论,被广泛应用于教育、管理、治疗等领域。
以下是自控原理的一些知识点。
1. 自我观察自我观察是指人们对自己的行为、情绪和思维过程进行观察和反思。
通过自我观察,人们可以更好地了解自己,发现自己的优点和缺点,从而更好地进行自我控制。
2. 目标设定目标设定是指人们对自己想要达到的目标进行明确和具体的设定。
一个良好的目标应该是具体、可度量、有挑战性和与个人价值观相符合的。
3. 自我评价自我评价是指人们对自己的行为进行评价和反思。
良好的自我评价应该客观、公正、具体和建设性的,帮助人们更好地了解自己,并进一步改进自己的行为。
4. 自我强化自我强化是指人们通过奖励自己来增强自己的行为。
一个良好的自我强化应该是及时、具体、有意义和与个人目标相符合的。
5. 自我惩罚自我惩罚是指人们通过惩罚自己来纠正自己的行为。
一个良好的自我惩罚应该是公正、合理、具体和建设性的。
6. 自我监控自我监控是指人们对自己的行为进行监控和反馈。
通过自我监控,人们可以更好地了解自己的行为,并及时纠正不良行为。
7. 意志力意志力是指人们通过自我控制来实现自己的目标。
良好的意志力可以帮助人们克服困难,坚持自己的目标,并最终实现成功。
8. 级联效应级联效应是指人们在实现一个目标时,会对其他方面的行为产生影响。
良好的自我控制行为可以带动其他方面的行为,从而实现全面的自我控制。
9. 意识和无意识人们的自我控制行为可以同时作用于意识和无意识层面。
良好的自我控制行为可以帮助人们克服无意识层面的负面行为,从而实现更全面的自我控制。
10. 精力管理精力管理是指人们通过管理自己的精力来实现自我控制。
良好的精力管理可以帮助人们克服疲劳、焦虑等负面情绪,从而更有效地实现自我控制。
自控原理是一种重要的心理学理论,通过学习和应用自控原理的知识点,人们可以更好地实现自我控制,从而更好地实现自己的目标。
自控原理
自动控制理论是研究自动控制共同规律的技术科学,时自动控制原理也是现在高校自动化专业的一门主干课程,是学习后续专业课的重要基础,也是自动化专业硕士研究生入学必考的专业课。
自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。
自动控制理论是研究自动控制共同规律的技术科学。
它的发展初期,是以反馈理论为基础的自动调节原理,主要用于工业控制,二战期间为了设计和制造飞机及船用自动驾驶仪,火炮定位系统,雷达跟踪系统以及其他基于反馈原理的军用设备,进一步促进并完善了自动控制理论的发展。
到战后,以形成完整的自动控制理论体系,这就是以传递函数为基础的经典控制理论,它主要研究单输入-单输出,线形定常数系统的分析和设计问题。
20世纪60年代初期,随着现代应用数学新成果的推出和电子计算机的应用,为适应宇航技术的发展,自动控制理论跨入了一个新阶段——现代控制理论。
他主要研究具有高性能,高精度的多变量变参数的最优控制问题,主要采用的方法是以状态为基础的状态空间法。
目前,自动控制理论还在继续发展,正向以控制论,信息论,仿生学为基础的智能控制理论深入。
为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。
在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,
它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。
在反馈控制系统中,控制装置对被控装置施加的控制作用,是取自被控量的反馈信息,用来不断修正被控量和控制量之间的偏差从而实现对被控量进行控制的任务,这就是反馈控制的原理。
同时自动控制原理也是现在高校自动化专业的一门主干课程,是学习后续专业课的重要基础,也是自动化专业硕士研究生入学必考的专业课。
该课不仅是自动控制专业的基础理论课,也是其他专业的基础理论课,目前信息科学与工程学院开设本课程的专业有计算机、电子信息、检测技术。
该课程不仅跟踪国际一流大学有关课程内容与体系,而且根据科研与学术的发展不断更新课程内容,从而提高自动化及相关专业的整体学术水平。