pi)
0
即K*=0时:闭环极点 si=开环极点pi
当K*→∞时,闭环特征方程 :
m
(s
i 1
zi )
1 K*
n
(s
i 1
pi)
0
K*→∞
m
(s
i 1
zi
)
0
即K*→∞时,闭环极点 si=开环零点zi
当m 时n, 有n-m 条的终点在无穷远点
n
n
K*
s
i 1 m
pi
i 1
s
zi
K*
lim
s
s
i 1
m
s
i 1
pi zi
lim snm s
12
说明:
1)有限开环零、极点:zi,pi 无限开环零、极点:∞
根轨迹起于开环极点,终于开环零点
2)在绘制其他参数根轨迹时,可能会出现 m>n 的情况,
H(s)
其中:Mi (s) (s zi1 )( s zi2 ); Ni (s) (s pi1 )( s pi2 ) i 1,2
开环零点:M1(s)M2(s) 0 开环极点:N1(s)N2(s) 0
闭环传递函数:s
K1 M1 ( s) N 2 s
K*M1(s)M2(s) N1(s)N2(s)
1 绘制依据 ——根轨迹方程
R(s) _
C(s) G(s)
闭环的特征方程:1 G(s)H(s) 0
H(s)
即:G(s)H(s) 1 ——根轨迹方程(向量方程)
用幅值、幅角的形式表示:
G(s)H(s) 1