奥赛知识讲座(课件)__第二讲___等差数列
- 格式:doc
- 大小:32.50 KB
- 文档页数:5
第2讲 等差数列1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 考试要求项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.01聚焦必备知识知识梳理1.等差数列的有关概念(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于__________________,那么这个数列就叫做等差数列.这个常数叫做等差数列的_________,符号表示为a n+1-a n=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=________,其中A 叫做a与b 的等差中项.2.等差数列的有关公式(1)通项公式:a n=______________________________.(2)前n项和公式:S n=__________________=______________.4.等差数列与函数的关系(1)等差数列{a n}的通项公式可写成a n=_____________,当d≠0时,它是关于n的_______________,它的图象是直线y=dx+(a1-d)上横坐标为正整数的均匀分布的一系列____________的点.拓展1.数列{a n }为等差数列的充要条件是a n =kn +b (k ,b ∈R ).2.若数列{a n }的前n 项和为S n ,则“数列{a n }为等差数列”的充要条件是“S n =an 2+bn (a ,b ∈R )”.3.在等差数列{a n }中,若a 1>0,d <0,则S n 存在最大值;若a 1<0,d>0,则S n 存在最小值.常用结论1.思考辨析(在括号内打“ √”或“×”)(1)等差数列{a n }的单调性是由公差d 决定的.( )(2)等差数列的前n 项和公式是常数项为0的二次函数.( )(3)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( )(4)数列{a n }为等差数列的充要条件是∀n ∈N *,都有2a n +1=a n +a n +2.( )夯基诊断√×√√2.回源教材(1)已知在等差数列{a n }中,a 4+a 8=20,a 7=12,则a 4=________.答案:6由a4+a 8=2a 6=20,故a 6=10,故d =a 7-a 6=2,所以a 4=a 6-2d =6.(2)等差数列{a n }的前n 项和为S n ,且S 10=2,S 20=8,则S 30=_______.答案:18由于S10,S 20-S 10,S 30-S 20成等差数列,所以2×(8-2)=2+S 30-8,解得S 30=18.(3)等差数列{a n}的前n项和为S n,且S6=3(a5+3),a4=-1,则其公差d=____________.答案:-202突破核心命题例1 (1)(2023全国甲卷)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A.25B.22C.20D.15考 点 一等差数列基本量的运算C(2)(2024·重庆一诊)设等差数列{a n}的前n项和为S n,5S9=9a9-36,B则a4=( )A.-2B.-1C.1D.21.等差数列的通项公式及前n 项和公式共涉及五个量a 1,n ,d ,a n ,S n ,知道其中三个就能求出另外两个(简称“知三求二”).2.确定等差数列通项公式的关键是求出两个最基本的量,即首项a 1和公差d .反思感悟训练1 (1)(2024·北京通州区期末)在等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,则a n =( )A.5n -16B.5n -11C.3n -8D.3n -5A(2)《周髀算经》有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影长之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,问芒种日影长为(一丈=十尺=一B百寸)( )A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸2等差数列的判定与证明判断数列{a n }是等差数列的常用方法(1)定义法.(2)等差中项法.(3)通项公式法.(4)前n 项和公式法.反思感悟训练2 已知在数列{a n}中,a1=1,a n=2a n-1+1(n≥2,n∈N*),记b n=log2(a n+1).(1)判断{b n}是否为等差数列,并说明理由;(2)求数列{a n}的通项公式.例3 (2024·湖北联考)已知{a n }是各项均为正数的等差数列,S n 为其前n 项和,且a 6+2a 7+a 10=20,则当a 7·a 8取最大值时,S 10=( )A.10B.20C.25D.50考 点 二等差数列性质的应用考向 1项的性质D例4 (2024·广州天河区期末)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层地面的中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且上、中、下三层共有扇面形石板(不含天心石)3402块,则中层共有扇面形石板( )A.1125块B.1134块C.1143块D.1152块2和的性质BB 记从中间向外每环扇面形石板数为{a n},则{a n}是等差数列,且公差d=9,a1=9.设每层有k环,则n=3k,S n=3402,{a n}是等差数列,则S k,S2k-S k,S3k-S2k也成等差数列,所以2(S2k-S k)=S k+(S3k-S2k),所以S n=3(S2k-S k)=3402,则S2k-S k=1134.3前n项和的最值例5 等差数列{a n}中,设S n为其前n项和,且a1>0,S3=S11,则当n 为多少时,S n 最大?1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1).(2)S 2n -1=(2n -1)a n .(3)依次k 项和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列.反思感悟3.求等差数列前n项和的最值,常用的方法:(1)邻项变号法,利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值.(2)函数法,利用公差不为零的等差数列的前n项和S n=An2+Bn(A≠0)为二次函数,通过二次函数的性质求最值.CC(3)(2024·河南名校第四次联考)在等差数列{a n }中,a 1-2a 2=6,S 3=-27,当S n 取得最小值时,n 的值为( )A.4或5 B.5或6C.4D.5A03限时规范训练(四十一)A 级 基础落实练1.(2024·河南名校联考)已知数列{a n }是各项均为正数的等差数列,a 5=10,且a 4·a 6=96,则公差为( )A.-2B.2C.-2或2D.4B B 设等差数列{a n }的公差为d ,∵a 4·a 6=(a 5-d )(a 5+d )=(10-d )(10+d )=96,∴d =2或d =-2,∵a n >0,∴d >0,∴d =2,故选B.2.(2023·咸阳质量检测)在等差数列{a n }中,若a 2+2a 6+a 10=120,则a 3+a 9=( )A.30B.40C.60D.80C C 由等差数列的性质可得a 2+2a 6+a 10=4a 6=120,所以a 6=30,所以a 3+a 9=2a6=60,故选C.3.(2024·台州第一次质量评估)已知数列{a n }满足对于∀m ,n ∈N *,a m+n =a m +a n .若a 2023=2023,则a 1=( )A.1B.2C.3D.2023A A 令m =1,则a n +1=a 1+a n ,故a n +1-a n =a 1,∵a 1为常数,故数列{a n }是等差数列,公差为a 1,∴a 2023=a 1+(2023-1)a 1=2023a 1=2023,则a 1=1,故选A.4.天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,……,依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”,……,依此类推.1911年中国爆发推翻清朝专制帝制、建立共和政体的全国性革命,这一年是辛亥年,史称“辛亥革A命”.1949年新中国成立,请推算新中国成立的年份为( )A.己丑年B.己酉年C.丙寅年D.甲寅年A 根据题意可得,天干是以10为公差的等差数列,地支是以12为公差的等差数列,从1911年到1949年经过38年,且1911年为“辛亥”年,以1911年的天干和地支分别为首项,则38=3×10+8,则1949年的天干为己,38=12×3+2,则1949年的地支为丑,所以1949年为己丑年.5.(2024·济南莱芜一中阶段考)设等差数列{a n}的前n项和为S n,若S3=D16,S6=8,则S12=( )A.-50B.-60C.-70D.-80D 由等差数列的性质可知,S3,S6-S3,S9-S6,S12-S9成等差数列,且该数列的公差为(S6-S3)-S3=-8-16=-24,则S9-S6=(S6-S3)-24=-32,所以S12-S9=(S9-S6)-24=-56,因此S12=S3+(S6-S3)+(S9-S6)+(S12-S9)=-80.6.(2023·合肥期末)等差数列{a n }的前n 项和为S n ,公差不为0,若S 5=S 10,则( )A.S 5=0B.S 8=0C.S 15=0D.S 17=0C C 设等差数列{a n }的首项为a 1,公差为d ,d ≠0,由已知S 5=S 10得a 6+a 7+a 8+a 9+a 10=0,即5a 8=0,所以a 8=0,。
第二讲等差数列一、等差数列的基本知识(一)数列的基本知识(1)1,2,3,4,5,6……(2)2,4,6,8,10,12……(3)5,10,15,20,25,30像这样按一定的顺序排列的一列数叫做数列。
其中每一个数叫做这个数列的项,在第一个位置上的数列叫做这个数列的第一项(首项),在最后一个位置上的数叫做这个数列的末项,在第几个位置上的数就叫第几项。
(二)等差数列的基本知识(1)1,2,3,4,5,6……1 1 1 1 1 (公差=1)(2)2,4,6,8,10,12……2 2 2 2 2 (公差=2)(3)5,10,15,20,25,305 5 5 5 5 (公差=5)从第2项起,每一项与前一项的差都相等,像这样的数列叫做等差数列,这个差叫做等差数列的公差。
二、等差数列的项数列:1、3、5、7、9、11……2 2 2 2 2第2项:3=1+2 首项+公差×1第3项:5=1+2×2 首项+公差×2第4项:7=1+2×3 首项+公差×3第5项:9=1+2×4 首项+公差×(5-1)第6项:11=1+2×5 首项+公差×(6-1)等差数列的某一项=首项+公差×(项数-1)例1 已知数列2,5,8,11,14……(1)求它的第10项是多少?(2)它的第98项是多少?(3)197是这个数列中的第几项?(4)这个数列各项被几除有相同的余数?分析:首项= 公差=解:(1)(2)(3)(4)答:等差数列项的有关规律:等差数列的某一项=首项+公差×(项数-1)等差数列的项数=(末项-首项)÷公差+1等差数列的每一项除以它的公差,余数相同。
练习:1、一串数:5,8,11,14,17……,197。
(1)它的第21项是多少?(2)这串数共有多少个?2、有一串数组成等差数列,第一项是4,第51项是154。
等差数列ppt标题:等差数列一、引言数列是数学中的一个概念,是由一组按一定顺序排列的数依次组成的序列。
而等差数列是其中一种常见的数列。
本次演讲主题为等差数列,将主要介绍等差数列的定义、性质以及实际应用。
二、等差数列的定义等差数列是指数列中的相邻两项之差是一个常数。
首先,我们来看等差数列的一般形式:an = a1 + (n-1)d。
其中,an 表示第n个数,a1表示首项,d表示公差,n表示项数。
等差数列的公差是数列中相邻两项之间的差别。
三、等差数列的性质1. 公差的性质:等差数列中,所有相邻两项之差都相等。
2. 总和的公式:等差数列的前n项和Sn可以通过公式Sn = (n/2)(a1+an)进行计算。
即,前n项和等于项数n与首项和末项之和的乘积的一半。
3. 通项公式:等差数列的第n个数(通项)可以通过公式an = a1 + (n-1)d得到。
4. 等差中项:若等差数列的项数n是奇数,则中间项是n/2+1;若n是偶数,则中间两项分别是n/2和n/2+1。
四、等差数列的应用1. 排列组合:等差数列的应用在排列组合中是很常见的。
通过等差数列的性质,可以轻松解题。
2. 数学建模:等差数列在数学建模中有广泛应用。
例如,用等差数列可以描述连续变化的数据,从而进行预测和分析。
3. 经济学:等差数列的应用在经济学中也很重要。
例如,用等差数列可以对某一指标的连续变化进行分析和预测,从而为经济决策提供参考。
五、总结通过本次演讲,我们简要介绍了等差数列的定义、性质以及应用。
等差数列在数学中起到了很重要的作用,通过掌握等差数列的性质和应用,可以更好地理解和应用数学知识。
让我们一起探索更多有趣的数学概念吧!。
第02讲等差数列教学目标掌握等差数列的基本概念,首项、末项、公差等;掌握等差数列的常用公式,并能灵活运用.知识梳理一、数列的概念按一定顺序排成的一列数叫做数列.数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项.数列中共有的项的个数叫做项数.如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列二、等差数列与公差一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差.三、常用公式等差数列的总和=(首项+末项)⨯项数÷2项数=(末项-首项)÷公差+1末项=首项+公差⨯(项数-1)首项=末项-公差⨯(项数-1)公差=(末项-首项)÷(项数-1)等差数列(奇数个数)的总和=中间项⨯项数中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.典例分析考点一:等差数列的基本认识例1、下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.①6,10,14,18,22, (98)②1,2,1,2,3,4,5,6;③1,2,4,8,16,32,64;④9,8,7,6,5,4,3,2;⑤3,3,3,3,3,3,3,3;⑥1,0,1,0,l,0,1,0;【考点】等差数列的基本认识【解析】①是,公差d=4.②不是,因为数列的第3项减去第2项不等于数列的第2项减去第1项.③不是,因为4-2≠2-1.④是,公差d=l.⑤是,公差d=0.⑥不是,因为第1项减去第2项不等于第2项减去第3项.例2、把比100大的奇数从小到大排成一列,其中第21个是多少?【考点】等差数列的基本认识【解析】该数列为等差数列,首项为101,公差为2,第21个数的项数为21.则101+(21-1)×2=141例3、已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?【考点】等差数列的基本认识【解析】把数列列出来:83,89,95,101,107,113,119,125,131,137,143,149,155,161,167,173,179,185,191答案:191例4、2、4、6、8、10、12、是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最小的一个.【考点】等差数列公式的简单运用【解析】利用等差数列的“中项定理”,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值,五个连续偶数的中间一个数应为320564÷=,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.答案:60例5、5、8、11、14、17、20、,这个数列有多少项?它的第201项是多少?65是其中的第几项?【考点】等差数列公式的简单运用【解析】它是一个无限数列,所以项数有无限多项.第n项=首项+公差1(),所以,第201n⨯-项532011605(),即65是n=-÷+= =+⨯-=(),对于数列5,8,11,,65,一共有:6553121第21项.答案:无限多项;第201项是605;65是第21项考点二:等差数列求和例1、一个等差数列2,4,6,8,10,12,14,这个数列各项的和是多少?【考点】等差数列的求和【解析】根据中项定理,这个数列一共有7项,各项的和等于中间项乘以项数,即为:8756⨯=.答案:56例2、15个连续奇数的和是1995,其中最大的奇数是多少?【考点】等差数列的求和【解析】由中项定理,中间的数即第8个数为:199515133÷=,所以这个数列最大的奇数即第15个数是:1332158147()+⨯-=答案:147例3、小马虎计算1到2006这2006个连续整数的平均数.在求这2006个数的和时,他少算了其中的一个数,但他仍按2006个数计算平均数,结果求出的数比应求得的数小1.小马虎求和时漏掉的数是.【考点】等差数列的求和【解析】少的这个数应该给每一个数都补上1,才能使结果正确,共要补上2006,因此这个漏掉的数是2006.例4、下列数阵中有100个数,它们的和是多少?1112131920121314202113141521222021222829【考点】数阵中的等差数列【解析】方法一:用基本公式算所给数列的和,可以一行行算,或者一列列算,然后把所得的和相加.(比较慢,这里不再写具体过程)方法二:每一行或者每一列的和均构成一个等差数列,利用等差数列和=中间项⨯项数.先看行,因为是偶数行没有中间项,首项1112201120102155=+++=+⨯÷=(),末项2021292029102245=+++=+⨯÷=()或者155********=+-⨯=().这100个数之和1552451022000=+⨯÷=().按列算同上.方法三:从右上到左下的对角线上的数都是20,沿此对角线对折,上下重叠的两数之和都是40,所以这100个数的平均数是20,这100个数之和201002000=⨯=.答案:2000考点三:等差数列的应用例1、已知数列:2,1,4,3,6,5,8,7,,问2009是这个数列的第多少项?【考点】等差数列的公式运用【解析】偶数项的排列规律是:1、3、5、7,奇数项的排列规律是:2、4、6、8,方法一:可以看出两个数列都是等差数列.由于2009是奇数,所以在偶数项数列中,它的项数是:2009121005+÷=(),所以在整个数列中,2009的项数是100522010⨯=,所以2009是这个数列的第2010项.方法二:仔细观察能发现,在整个数列中,奇数的项数是该数1+,偶数的项数是该数2÷,所以2009是这个数列的第200912010+=项.答案:2010例2、在11~45这35个数中,所有不被3整除的数的和是多少? 【考点】等差数列的公式运用【解析】先求被3整除的数的和;11~45中能被3整除的数有12,15,…,45,和为:121542451245122342++++=+⨯÷=();于是,满足要求的数的和为:1145342980342638++-=-=().答案:638例3、如图2,用火柴棍摆出一系列三角形图案,按这种方式摆下去,当N =5时,按这种方式摆下去,当N =5时,共需要火柴棍 根.【考点】找规律计算【解析】找规律3,3+6,3+6+9…,N =5时,需要火柴棍3+6+9+12+15=45 答案:45例4、将一些半径相同的小圆按如下所示的规律摆放:第1个图形中有6个小圈,第2个图形中有10个小圈,第3个图形中有16个小圈,第4个图形中有24个小圈,…,依此规律,第6个图形有___________个小圈.【考点】找规律计算2010年,第8届,希望杯,4年级,1试【解析】除周围4个小圆外,中间小圆的规律是1×2,2×3,3×4,……,第6个图有6×7+4=46个小圆.答案:46➢ 课堂狙击1、在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?实战演练【解析】(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)÷公差+1,便可求出.(2)根据公式:末项=首项+公差⨯(项数-1)解:项数=(201-3)÷3+1=67末项=3+3⨯(201-1)=603答:共有67个数,第201个数是6032、全部三位数的和是多少?【解析】所有的三位数就是从100~999共900个数,观察100、101、102、……、998、999这一数列,发现这是一个公差为1的等差数列.要求和可以利用等差数列求和公式来解答.解:(100+999)⨯900÷2=1099⨯900÷2=494550答:全部三位数的和是494550.3、求下列方阵中所有各数的和:1、2、3、4、……49、50;2、3、4、5、……50、51;3、4、5、6、……51、52;……49、50、51、52、……97、98;50、51、52、53、……98、99.【解析】这个方阵的每一横行(或竖行)都各是一个等差数列,可先分别求出每一横行(或竖行)数列之和,再求出这个方阵的和.解:每一横行数列之和:第一行:(1+50)⨯50÷2=1275第二行:(2+51)⨯50÷2=1325第三行:(3+51)⨯50÷2=1375……第四十九行:(49+98)⨯50÷2=3675第五十行:(50+99)⨯50÷2=3725方阵所有数之和:1275+1325+1375+……+3675+3725=(1275+3725)⨯50÷2=1250004、若干人围成16圈,一圈套一圈,从外向内圈人数依次少6人,如果共有912人,问最外圈有多少人?最内圈有多少人?【解析】从已知条件912人围成16圈,一圈套一圈,从外到内各圈依次减少6人,也就是告诉我们这个等差数列的和是912,项数是16,公差是6.题目要求是的等差数列末项a n−a1=d ×(n-1)=6×(16-1)=90(人)解:an +a1=S⨯2÷n=912⨯2÷16=114(人)外圈人数=(90+114)÷2=102(人)内圈人数=(114-90)÷2=12(人)答:最外圈有102人,最内圈有12人.5、有一串数,已知第一个数是6,而后面的每一个数都比它前面的数大4,这串数中第2003个数是.【解析】6+4⨯(2003-1)=6+4⨯2002=80146、一个剧院共有25排座位,从第一排起,以后每排都比前一排多2个座位,第25排有70个座位,这个剧院共有个座位.【解析】末项=2+(100+1)⨯2=200÷和=(2+200)⨯1002=101007、一个五层书架共放了600本书,已知下面一层都比上面一层多10本书.最上面一层放本书,最下面一层放本书.【解析】100、140中间一层本数:600÷5=120(本)最上面一层:12-10⨯2=100(本)最下面一层:120+1⨯2=140(本8、有10只盒子,54个乒乓球,能不能把54个乒乓球放进盒子中去,使各盒子的乒乓球数不相等?【解析】题中要求办不到.9、有一堆粗细均匀的圆木,堆成如下图的形状,最上面一层有7根园木,每面下层增加1根,最下面一层有95根,问:这堆圆木一共有多少根?【解析】7+95=102(根)95-7+1=89(层)102⨯89÷2=4539(根)答:这堆圆木一共有4539根.10、有一个六边形点阵,如下图,它的中心是一个点,算做第一层,第二层每边有两个点,第三层每边有三个点……这个六边形点阵共100层,问,这个点阵共有多少个点?【解析】第100层有点:6+(99-1)⨯6=6+98⨯6 =6⨯99 =594(个)点阵只有点: 1+(6+594)⨯99÷2 =1+600⨯99÷2 =29701(个) 答:这个点阵共有点29701个.➢ 课堂反击1、观察右面的五个数:19、37、55、a 、91排列的规律,推知a =________ . 【解析】19+18=37,37+18=55,所以a =55+18=73 答案:732、2,5,8,11,14……是按照规律排列的一串数,第21项是多少? 【考点】等差数列的基本认识【解析】此数列为一个等差数列,将第21项看做末项.末项=2+(21-1)×3=62 答案:623、在等差数列6,13,20,27,…中,从左向右数,第 _______个数是1994. 【考点】等差数列公式的简单运用【解析】每个数比前一个数大7,根据求通项1(1)n a a n d =+-的公式得1()1n n a a d =-÷+,列式得:(19946)7284-÷= 2841285+=即第285个数是1994.答案:2854、有20个数,第1个数是9,以后每个数都比前一个数大3.这20个数相加,和是多少?【考点】等差数列的求和【解析】末项是:9201366+-⨯=(),和是:966202750+⨯÷=()答案:7505、把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?【考点】等差数列的求和【解析】由题可知:由210拆成的7个数一定构成等差数列,则中间一个数为210730÷=,所以,这7个数分别是15、20、25、30、35、40、45.即第1个数是15,第6个数是40.答案:406、已知数列2、3、4、6、6、9、8、12、,问:这个数列中第2000个数是多少?第2003个数是多少?【考点】等差数列的公式运用【解析】奇数项的排列规律是:2、4、6、8,偶数项的排列规律是:3、6、9、12,可以看出奇数项与偶数项都成等差数列,先求出要求的两个数各自在等差数列中的项数:第2000个数在偶数项等差数列中是第200021000÷=个数,第2003个数在奇数项等差数列中是第2003121002+÷=()个数,所以第2000个数是31000133000+-⨯=(),第2003个数是21002122004+-⨯=().答案:20047、把248分成8个连续偶数的和,其中最大的那个数是多少?【考点】等差数列的公式运用【解析】平均数:248÷8=31,第4个数:31-1=30.第1个数:30-6=24,末项:24+(8-1)×2=38.即:最大的数为38.答案:388、观察下列四个算式:201=20,202=10,104=52,528=516.从中找出规律,写出第五个算式:.【考点】找规律计算,2009年,希望杯,第七届,六年级,二试【解析】发现规律,第5个算式为516÷16=5256.答案:52569、若干个硬币排成左下图,每个硬币所在行的硬币数与所在列的硬币数相减得出一个差(大数减小数),如对于a,差为7-5=2,所有差的总和为.【考点】数阵中的等差数列【解析】根据题目要求操作找规律发现第一行第一个圈为0,和为0第二行第一个圈为1,第二个圈为0,和为1第三行第一个圈为2,第二个圈为1,第三个圈为0和为123+=第四行第一个圈为3,第二个圈为2,第三个圈为1,第四个圈为0,和为1+2+3=6……所以这些差有7个1,6个2,5个3,4个4,3个5,2个6,1个7和为71+62+53+44+35+26+17⨯⨯⨯⨯⨯⨯⨯=7+12+15+16+15+12+7=84答案:841、从1开始的奇数:1,3,5,7,……其中第100个奇数是_____.【考点】等差数列的基本认识【解析】1992、(2006年,第4届,希望杯,4年级,1试)观察下列算式:2+4=6=2×3,直击赛场2+4+6=12=3×42+4+6+8=20=4×5……然后计算:2+4+6+……+100= .【考点】找规律计算【解析】等式右边第一个乘数等于等式左边加数的个数,100以内的偶数有50个,所以2+4+6+……+100=50×51=2550答案:25503、(2005年,第3届,走美杯,5年级,决赛)从正整数1~N 中去掉一个数,剩下的(N 一1)个数的平均值是15.9,去掉的数是_____.【考点】等差数列的公式运用【解析】因为“剩下的(N -1)个数的平均值是15.9”,所以(N -1)是10的倍数,且N 在15.9×2=31.8左右,推知N =31.去掉的数是(1+2+3+…+31)-15.9×30=496-477=19.答案:19一、等差数列的定义 ⑴定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项.项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示;和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()重点回顾②项数公式:项数=(末项-首项)÷公差+1③求和公式:和=(首项+末项)⨯项数÷2(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.➢本节课我学到➢我需要努力的地方是学霸经验。
第二讲等差数列
一、等差数列的基本知识
(一)数列的基本知识
(1)1,2,3,4,5,6……
(2)2,4,6,8,10,12……
(3)5,10,15,20,25,30
像这样按一定的顺序排列的一列数叫做数列。
其中每一个数叫做这个数列的项,在第一个位置上的数列叫做这个数列的第一项(首项),在最后一个位置上的数叫做这个数列的末项,在第几个位置上的数就叫第几项。
(二)等差数列的基本知识
(1)1,2,3,4,5,6……
1 1 1 1 1 (公差=1)
(2)2,4,6,8,10,12……
2 2 2 2 2 (公差=2)
(3)5,10,15,20,25,30
5 5 5 5 5 (公差=5)
从第2项起,每一项与前一项的差都相等,像这样的数列叫做等差数列,这个差叫做等差数列的公差。
二、等差数列的项
数列:1、3、5、7、9、11……
2 2 2 2 2
第2项:3=1+2 首项+公差×1
第3项:5=1+2×2 首项+公差×2
第4项:7=1+2×3 首项+公差×3
第5项:9=1+2×4 首项+公差×(5-1)
第6项:11=1+2×5 首项+公差×(6-1)
等差数列的某一项=首项+公差×(项数-1)
例1 已知数列2,5,8,11,14……(1)求它的第10项是多少?(2)它的第98项是多少?(3)197是这个数列中的第几项?(4)这个数列各项被几除有相同的余数?
分析:首项= 公差=
解:(1)
(2)
(3)(4)
换尿布,宁可不vnknhjgknhjkjkbvcnb 婢女进口货女客观vkbbvnkjvghnjgk。
/共和国脚后跟狂欢节那个好几个好几个好几个很难共患难共和国脚后跟好几个结核杆菌和交换机固化剂固化剂韩国翡翠谷反对党防空洞风纪扣敌人混入大幅度房改房大家回顾房改房换购哈哈防盗锁各地华人地方鬼画符梵蒂冈梵蒂冈恢复对东方红该地方官地方官梵蒂冈氟化钙韩国梵蒂冈梵蒂冈地方官防盗广泛地个地方韩国地方鬼画符电话个梵蒂冈恢复过法国合肥东方队洒洒会降低速度分段纺纱简典分解方法的活动黄金分割惊魂甫定惊魂甫定黄金防盗饭跟饭跟饭跟饭和饭跟饭跟饭跟饭规定广东跟福建解放军疯疯癫癫肺结核负疚感和封建割据和解放军交换机经济
答:
等差数列项的有关规律:
等差数列的某一项=首项+公差×(项数-1)
等差数列的项数=(末项-首项)÷公差+1
等差数列的每一项除以它的公差,余数相同。
练习:
1、一串数:5,8,11,14,17……,197。
(1)它的第21项是多少?(2)这串数共有多少个?
2、有一串数组成等差数列,第一项是4,第51项是154。
(1)它的公差是多少?(2)它的第90项是多少?
3、一列数:7,12,17,22……,(1)它的第60项是多少?(2)92是这个数中的第几项?(3)这个数列各项被几除有相同的余数?
三、等差数列的和
例2 6+10+14+18+22+26+30+34+38
分析一:首项= 末项= 公差=
原数列的和:
倒过来的和:
两数列之和=
解法一:原数列之和
其他项有什么关系。
6 10 14
6 10 1418 22
6 10 14 1822 26 30
6 10 14 18 22 26 30 34 38
正中项=各项的平均数
解法二:原数列之和=
等差数列的和=正中项×项数(奇数)
例3 已知三个连续奇数的和是243,求这三个数。
例4 右边的图形中最小的三角形有多少个?
例5 计算1+6+11+16+21+26+……+176
例6 在1到200的整数中,被7除余2的数有多少个?它们的和是多少?
等差数列知识小结:
▶怎样判断一个数列是等差数列
▶怎样求出等差数列的任意一项或项数
▶怎样求出等差数列前几项的和
▶必须牢记等差数列的基本公式和重要结论练习:
4、用不同的方法计算
(1)7+10+13+16+19+22+25+28+31+34+37 (2)7+11+15+19+……+403
(3)9+19+29+39+……+99
(4)1+3+5+7+……+99
5、求所有两位数之和(用不同的方法解)
6、从1到400中,6的倍数由多少个?它们的和是多少?。