多个样本均数比较的方差分析-55页文档资料
- 格式:ppt
- 大小:398.50 KB
- 文档页数:55
多个样本均数比较的方差分析方差分析的基本思想:目的:推断多个总体均数是否有差别,也可用于两个。
方法:方差分析,即多个样本均数比较的F 检验。
基本思想:根据资料设计的类型及研究目的,可将总变异分解为两个或多个部分,每个部分的变异可由某因素的作用来解释。
通过比较可能由某因素所致的变异与随机误差,即可了解该因素对测定结果有无影响。
应用条件:总体——正态且方差相等,样本——独立、随机完全随机设计资料的方差分析表变异来源 自由度 SS MS F 总变异 N -1 211i n g ij i j X C ==-∑∑组 间 g -1 211()i n ij g j i i X C n ==-∑∑ SS ν组间组间 MS MS 组间组内 组 内 N -g SS SS -总组间 SS ν组内组内Xij :第i 个处理组第j 个观察结果SS 总,总变异:离均差平方和(sum of squares of deviations from mean ,SS )表示,即各测量值Xij 与总均数差值的平方和。
SS 组间,组间变异:各组均数与总均数的离均差平方和。
SS 组内,组内变异:组内各测量值Xij 与其所在组的均数的差值的平方和表示,表示随机误差的影响。
MS 均方差,均方(mean square ,MS )检验统计量F如果各样本μ全相等,F 值应接近于1;如果不全相等,F 值将明显大于1;用F 界值(单侧界值)确定P 值。
一、完全随机设计统计分析方法选择1. 对于正态分布且方差齐同的资料,常采用完全随机设计的单因素方差分析(one-way ANOV A)或成组资料的 t 检验(g =2);2. 对于非正态分布或方差不齐的资料,可进行数据变换或采用Wilcoxon 秩和检验。
H 0: H 1:4个试验组总体均数不全相等方差分析的结果:拒绝H 0,接受H 1,不能说明各组总体均数间两两都有差别。
如果要分析哪些两组间有差别,可进行多个均数间的多重比较。
第四章多个样本均数比较的方差分析方差分析的基本思想是通过比较各组或处理的均值差异与各组内的个体间差异来判断是否存在显著差异。
在进行方差分析之前,需要满足一些前提条件,如对总体的抽样是简单随机抽样、各样本之间是独立的等。
这些前提条件的满足保证了方差分析的可靠性。
多个样本的方差分析是通过计算组间离差平方和(SSTr)、组内离差平方和(SSE)和总离差平方和(SST)来比较各组或处理之间的差异。
计算公式为:SSTr = Σni(x̄i - x̄)²SSE = ΣΣ(xij - x̄i)²SST=SSTr+SSE其中,n是每组或处理的样本个数,ni是第i组或处理的样本个数,x̄i是第i组或处理的样本均值,x̄是全部样本的均值,xij是第i组或处理的第j个样本值。
通过计算SSTr和SSE,可以得到均方值(MS):MStr = SSTr / (r - 1)MSE=SSE/(N-r)其中,r是组或处理的个数,N是总样本个数。
接下来,需要计算F值,用于判断各组或处理均值是否有显著差异:F = MStr / MSE根据F值和自由度,可以查找F表来确定是否存在显著差异。
如果F 计算值大于F临界值,则拒绝原假设,表示均值之间存在显著差异。
方差分析还可以进行多重比较,用于确定具体哪些组或处理之间存在显著差异。
常用的多重比较方法有Tukey的HSD(最大均值差异)和Bonferroni方法。
方差分析的优点是可以同时比较多个样本的均值差异,具有较好的统计效应。
然而,方差分析也存在一些限制,如对正态性和方差齐性的要求较高。
总之,多个样本均数比较的方差分析是一种常用的统计方法,在科学研究和实验设计中得到广泛应用。
它可以帮助研究人员确定不同处理或组之间的差异,为决策提供支持。
多个样本均数比较的方差分析多个样本均数比较的方差分析指的是一种统计方法,用于对多个样本的均数进行比较。
它可以帮助我们确定是否有显著的差异存在于不同样本的均数之间。
在进行方差分析时,我们通常将样本分为不同的组,然后通过比较组均数的差异来确定它们之间是否存在显著差异。
方差分析是基于方差的假设检验方法。
通过方差分析,我们可以计算组内和组间的方差,然后通过比较这些方差之间的差异来判断它们之间是否有显著差异。
如果方差之间的差异足够大,则可以得出结论:不同样本的均数之间存在显著差异。
在进行方差分析时,需要满足以下假设:1.观察数据是独立且来自正态分布的。
2.不同样本的方差相等。
方差分析可以通过计算F统计量来进行。
F统计量是组间均方与组内均方的比值。
组间均方是由组间方差得出的,而组内均方是由组内方差得出的。
F统计量越大,表示组间差异越大,也就意味着不同样本的均数之间存在显著差异的可能性越大。
进行方差分析之前,我们首先需要进行方差齐性检验。
这可以通过Levene检验或Bartlett检验来完成。
方差齐性检验的目的是验证不同样本的方差是否相等。
如果方差齐性假设未被满足,则意味着方差之间的差异不可忽略,我们需要使用更为复杂的方法来处理比较。
一旦我们确认了方差齐性假设,我们就可以进行方差分析了。
在方差分析中,可以使用ANOVA(Analysis of Variance)表,它可以帮助我们计算组间平方和、组内平方和、总平方和和相应的均方值。
随后,我们可以使用F分布表或统计软件来确定F统计量所对应的显著性水平。
如果F统计量非常小,那么我们可以得出结论:不同样本的均数之间不存在显著差异。
而如果F统计量超过了给定的临界值,那么我们可以得出结论:不同样本的均数之间存在显著差异。
需要注意的是,方差分析只能告诉我们是否存在显著差异,却不能告诉我们哪些均数之间具体存在差异。
如果方差分析的结果是显著的,我们需要进一步使用事后多重比较方法(如Tukey's HSD test)来确定具体存在差异的样本均数对。
多个样本均数比较的方差分析多个样本均数比较的方差分析第一节方差分析的基本思想及应用条件一、方差分析的基本思想1. 总变异:所有测量值之间总的变异程度2. 组间变异:各组均数与总均数的离均差平方和,反映间的变异程度存在组间变异的原因:随机误差(个体变异和测量误差)不同处理(处理的不同水平)效果的差异3. 组内变异:同一组内各测量值Xij与其所在组均数的差值的平方和,反映组内个体的变异程度。
存在组间变异的原因:随机误差(个体变异和测量误差)不同处理的不同效果存在组内变异的原因:随机误差方差分析的检验统计量:F值◆组间变异:随机误差和处理的效应◆组内变异:随机误差◆F值越接近于l,越没有理由拒绝H0;反之,F值越大,拒绝H0的理由越充分。
◆当H0成立时,F统计量服从F分布。
◆根据分子自由度ν1和分母自由度ν2,查出特定显著性水准下F分布的界值,作为判断统计量F值大小的标准。
◆根据计算的统计量F值与F界值的相对大小,决定H0成立的可能性。
方差分析的基本思想将总变异分解为两个(如组间变异和组内变异)或多个部分,除随机误差外,各个部分的变异可由某个因素的作用加以解释。
通过比较不同来源的变异(均方),借助F 分布做出统计推断。
若F值大于某个临界值,表示处理组间的效应不同;若F值接近甚至小于某个临界值,表示处理组间效应相同(差异仅仅反映随机误差)。
不同设计类型方差分析的基本思想相同:将处理间平均变异与误差平均变异比较。
不同设计类型方差分析的变异分解项目不同,应结合实际选择具体的方差分析方法二、方差分析的应用条件各样本是相互独立的随机样本,均服从正态分布;相互比较的各样本的总体方差相等,即具有方差齐性(homogeneity of variance)。
第二节完全随机设计资料的方差分析一、完全随机设计采用完全随机化分组方法,将全部试验对象分配到g个处理组(水平组),各组分别接受不同的处理,试验结束后比较各组均数之间的差别有无统计学意义,推论处理因素的效应是否相同。