一元一次方程的实际应用工程问题复习课程
- 格式:ppt
- 大小:238.00 KB
- 文档页数:12
一元一次方程(单元复习课)【复习目标】1.系统了解一元一次方程的知识框架;2.知道解一元一次方程的步骤,熟练掌握一元一次方程的解法;3.知道列一元一次方程解应用题的步骤,会列方程解应用题;4.在小组合作交流的过程中培养学生学习数学的习惯和复习的方法.【复习重点】形成一元一次方程章节知识框架图.【活动设计】活动一、一元一次方程知识复习1.(1)已知关于x 的方程150k x -+=是一元一次方程,则k = .(2)已知关于x 的方程()250k x -+=是一元一次方程,则k .(3)已知关于x 的方程()1250k k x --+=是一元一次方程,则k = .说明:本题引导学生回忆一元一次方程的概念.2.已知3x =是关于x 的方程8203x a -=的解,则a = . 说明:本题引导学生回忆方程的解的概念.3.下列运用等式的性质进行的变形,不正确...的是( ) A.如果a b =,那么55a b +=+ B.如果a b =,那么ma mb =C.如果a b =,那么a b c c = D.如果a b c c=,那么a b = 说明:本题引导学生回忆等式的性质. 4.若2260x y --=,则2635y x --的值为 .说明:本题引导学生回忆方程的解的概念.5.解方程:211135x x ++-=. 说明:本题引导学生回忆解一元一次方程的步骤,及每一步骤的注意点. 6.如果方程()()322212x x ---=-也是关于x 的方程203m x --=的解,求m 的值. 说明:本题引导学生回忆方程的解的概念.【课堂小结】(1)一元一次方程、方程的解的概念?等式的基本性质?(2)解一元一次方程的步骤有哪些?每一步骤变形的依据是什么?活动二、利用一元一次方程知识解决实际问题思考:我们在这一章中重点学习了哪几种类型的应用题?(1)引导学生回忆类型:调配问题、行程问题、工程问题、数字问题、方案问题、盈亏问题; (2)引导学生回忆典型问题中的数量关系:如行程问题中:速度、时间、路程的关系;工程问题中:工作效率、工作时间、工作总量的关系;工作效率、工作时间、工作人数、工作总量之间的关系.盈亏问题中:利润=售价—进价=进价×利润率折数售价=标价×10……解决下列问题:1.某种长方体包装盒的表面展开图如图所示,如果该长方体包装盒的长比宽多4cm,求这种长方体包装盒的体积.2.小王逛超市看到如下两个超市的促销信息:(1)当一次性购物标价总额是300元时,甲乙超市实际付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?【课堂小结】列方程解应用题的步骤?教师总结:审.题,设.未知数,列.方程,解.方程,检验.,写出答.案.“审”是关键,“验”是保证,“设、列、解、答”是过程.附:板书设计:。
一元一次方程小结与复习教案一、教学目标1. 回顾一元一次方程的定义、解法及应用,加深对概念的理解。
2. 培养学生运用一元一次方程解决实际问题的能力。
二、教学内容1. 一元一次方程的定义及组成。
2. 一元一次方程的解法。
3. 一元一次方程在实际问题中的应用。
4. 一元一次方程的拓展与提高。
三、教学重点与难点1. 重点:一元一次方程的定义、解法及应用。
2. 难点:一元一次方程的解法及在实际问题中的应用。
四、教学方法1. 采用案例分析法,让学生通过具体例子理解一元一次方程的解法及应用。
3. 运用练习法,巩固学生对一元一次方程的掌握程度。
五、教学过程1. 导入新课:回顾一元一次方程的定义,引导学生思考一元一次方程的组成。
2. 讲解与示范:讲解一元一次方程的解法,并结合实际例子进行分析。
3. 课堂练习:布置练习题,让学生独立解决一元一次方程问题。
5. 复习与拓展:复习一元一次方程的相关知识点,引导学生思考一元一次方程的拓展与提高。
7. 布置作业:布置课后作业,巩固所学知识。
六、教学评价1. 课后作业:检查学生对一元一次方程的掌握程度。
2. 课堂练习:评估学生在课堂练习中的表现,了解学生的学习进度。
3. 学生讨论:观察学生在讨论中的参与程度,评价学生的理解能力。
4. 教学反馈:根据学生的反馈,调整教学方法及进度。
七、教学资源1. 教案、PPT及相关教学资料。
2. 练习题及答案。
3. 教学视频或课件。
八、教学时间1课时(40分钟)九、教学环境1. 教室环境:宽敞、明亮,有利于学生集中精力学习。
2. 教学设备:电脑、投影仪、黑板等。
3. 学习氛围:营造积极、和谐的学习氛围,鼓励学生提问和参与讨论。
十、教学后记六、教学活动设计1. 复习导入:通过提问方式复习一元一次方程的定义和组成。
2. 案例分析:选取几个实际问题,让学生运用一元一次方程进行解答。
4. 练习巩固:布置练习题,让学生独立解决一元一次方程问题。
七、教学反思2. 关注学生在课堂上的参与程度,调整教学方法,提高教学效果。
一元一次方程复习课教案一、教学目标1. 知识与技能:(1)理解一元一次方程的概念及其基本性质。
(2)掌握一元一次方程的解法,包括代入法、加减法、乘除法等。
(3)能够应用一元一次方程解决实际问题。
2. 过程与方法:(1)通过复习,加深对一元一次方程的理解,提高解题能力。
(2)培养学生运用一元一次方程解决实际问题的能力。
3. 情感态度与价值观:(2)培养学生勇于探索、积极思考的精神。
二、教学内容1. 一元一次方程的概念及基本性质。
2. 一元一次方程的解法:代入法、加减法、乘除法。
3. 应用一元一次方程解决实际问题。
三、教学重点与难点1. 教学重点:(1)一元一次方程的概念及其基本性质。
(2)一元一次方程的解法。
(3)应用一元一次方程解决实际问题。
2. 教学难点:(1)一元一次方程的解法。
(2)运用一元一次方程解决实际问题。
四、教学过程1. 复习导入:(1)回顾一元一次方程的概念及其基本性质。
(2)引导学生回忆一元一次方程的解法。
2. 课堂讲解:(1)讲解一元一次方程的解法,包括代入法、加减法、乘除法。
(2)举例演示解题过程,引导学生跟随步骤进行解题。
3. 课堂练习:(1)布置练习题,让学生独立完成。
(2)选取部分学生的作业进行点评,纠正错误,解答疑问。
4. 应用拓展:(1)给出实际问题,引导学生运用一元一次方程进行解决。
(2)分小组讨论,分享解题思路和方法。
五、课后作业1. 复习一元一次方程的概念及其基本性质。
2. 巩固一元一次方程的解法,包括代入法、加减法、乘除法。
3. 运用一元一次方程解决实际问题。
4. 总结本节课的学习内容,思考还有什么问题需要进一步解决。
六、教学评估1. 课堂讲解评估:观察学生对一元一次方程解法的理解和掌握程度,以及能否熟练运用解法解决实际问题。
2. 课堂练习评估:检查学生的作业完成情况,评估其对一元一次方程解法的应用能力。
3. 应用拓展评估:通过小组讨论和分享,评估学生运用一元一次方程解决实际问题的能力和团队合作精神。
复习课:一元一次方程的应用一、教学目标1、 知识与能力目标:经历列方程解决实际问题的过程,了解从未知到已知的转化思想;会选择恰当的方法设未知数并利用等量关系列出方程,培养学生的方程思想。
2、 过程和方法目标:通过独立思考、共同探究,提高学生发现问题解决问题的能力,并将实际问题“数学化”。
3、情感与态度目标:通过对实际问题的解决过程,增强学生的应用意识,培养学生热爱生活,热爱数学,陶冶学生积极向上的生活态度和良好的道德情操,激发学生的学习热情。
二、教学重点与难点重点:抓住关键语句,找等量关系,设未知数列方程解答难点:对关键语句所叙述的数量关系的理解三、教学内容(一)复习列方程解应用题的步骤1、 仔细审题,透彻理解题意。
即弄清已知量、未知量及其相互关系,并用字母(如x )表示题中的一个合理的未知数;2、 根据题意找出能够表示应用题全部含义的一个相等关系。
(这是关键一步);3、 根据相等关系,正确列出方程。
即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;4、 求出所列方程的解;5、 检验后明确地、完整地写出答案。
这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。
(二)直接设未知数法例1:近日,某校中预年级去上海市“东方绿舟”公园春游。
在公园辅导员的带领下,同学们首先游览了公园的景色。
在一片茂密的森林旁,辅导员向同学们介绍:“这片森林是上海市最大的人工森林,现有水杉2800棵,比建园初期水杉的棵数增加了40%,提高了公园的绿化率。
”那么,请你试一试,用列方程的方法,求建园初期这片森林中水杉的棵数?(渗透生命教育)分析:建园初期水杉的棵数 + 增加的水杉的棵数 = 现在水杉的棵数x 棵 x ⋅%40棵 2800(棵)解: 设建园初期这片森林中水杉的棵数为x 棵,根据题意,得2800%40=⋅+x x28004.1=x2000=x答: 建园初期这片森林中水杉的棵数为2000棵。
列一元一次方程解应用题复习课(二)-北京版七年级数学上册教案一、课前导入1.学生独立或小组讨论,列出可能用到一元一次方程的实际问题。
2.选择一些学生分享自己想到的问题并让其他同学尝试列出相应方程。
二、知识回顾1.复习一元一次方程的定义和基本形式。
2.复习解方程的方法:如加法逆元相消法,等比例变换法,代入法等。
3.运用以上知识,对之前的习题进行温故知新。
三、案例分析1.根据班级中获得学科竞赛名次的情况,让学生列出得分情况,求出中位数并解释其意义,最后列出一元一次方程求出未知数的分数。
2.以制作班级文化衫为例,让学生列出每件衫的制作费用,根据题目所给条件(预算)列出一元一次方程。
四、课堂练习1.根据题目所给,列出一元一次方程并解出未知数的值。
Lily的体重为w千克,小明比Lily重s千克。
求小明的体重。
2.根据题目所给,列出一元一次方程并解出未知数的值。
有一条矩形跑道,长100米。
其中一条直道长x米,两个转角处每个角的圆心角分别是30度和90度,求x。
3.根据题目所给,列出一元一次方程并解出未知数的值。
若小明去北京旅游,每天花费p元,已知他的旅游费用为1000元,求他去北京旅游的天数。
五、课后作业1.完成课后习题集中与一元一次方程相关的题目。
2.向同学介绍一种新的列方程的方法,并尝试练习使用该方法解题。
六、课堂小结通过本堂课的学习,同学们回顾了一元一次方程的基本知识,并通过案例分析深化了对知识的理解和应用能力。
同时,在课堂练习和课后作业中,同学们得到了进一步练习和巩固,加深了对应用题和一元一次方程的掌握。
一元一次方程复习课教案第一章:一元一次方程的定义及解法一、教学目标1. 理解一元一次方程的定义及其基本形式;2. 掌握一元一次方程的解法及其应用。
二、教学内容1. 一元一次方程的定义:讨论方程中未知数的个数、次数和系数等概念;2. 一元一次方程的基本形式:ax + b = 0;3. 一元一次方程的解法:移项、合并同类项、系数化为1。
三、教学方法1. 采用讲解法,讲解一元一次方程的定义及解法;2. 利用例题,演示一元一次方程的解题步骤;四、教学步骤1. 引入新课,回顾一元一次方程的定义及解法;2. 讲解例题,让学生跟随老师一起解题,理解解题步骤;3. 布置练习题,让学生独立完成,巩固所学知识;五、课后作业1. 复习一元一次方程的定义及解法;2. 完成课后练习题,加深对一元一次方程解法的理解。
第二章:一元一次方程的解法与应用一、教学目标1. 掌握一元一次方程的解法,并能灵活运用;2. 了解一元一次方程在实际问题中的应用。
二、教学内容1. 一元一次方程的解法:加减法、乘除法、代入法等;2. 一元一次方程的实际应用:长度、面积、体积等问题。
三、教学方法1. 采用案例教学法,让学生通过实际问题学习一元一次方程的解法;2. 利用多媒体演示,直观展示一元一次方程在实际问题中的应用;3. 引导学生通过小组合作,探讨一元一次方程的解题策略。
四、教学步骤1. 讲解一元一次方程的解法,如加减法、乘除法、代入法等;2. 利用多媒体展示实际问题,引导学生运用一元一次方程解决问题;3. 布置练习题,让学生独立完成,巩固所学知识;4. 组织小组合作,让学生共同探讨一元一次方程的解题策略;五、课后作业1. 复习一元一次方程的解法;2. 完成课后练习题,加深对一元一次方程解法的理解;3. 思考实际生活中的一元一次方程问题,提高运用能力。
第三章:一元一次方程的检验与解的存在性一、教学目标1. 学会检验一元一次方程的解是否正确;2. 理解一元一次方程解的存在性。
完整版)《一元一次方程》复习课教案七年级上数学第二章《一元一次方程》专项复(一)教案授课人:XXX七年级数学备课组教学目标:1.理解方程、方程的解、解方程和一元一次方程等概念;2.掌握一元一次方程的解法;3.提高学生综合分析问题的能力;4.理解在解方程时所体现出的化归思想方法;5.总体认识本章所学知识。
教学重点和难点:1.复解一元一次方程的基本思想和解法步骤;2.利用一元一次方程解决实际问题。
教学手段:引导、活动、讨论。
教学方法:启发式教学。
教学过程:一、复有关概念1.判断是否为一元一次方程。
2.理解方程、一元一次方程、方程的解的概念。
二、纠正错误解法对于方程3x-14x-1/36=1-1/4x,学生应该通过去分母、去括号、移项、合并同类项、系数化为一的步骤来解方程,而不是直接去分母2.让学生发现其中的错误并进行改正,进一步熟悉解方程的步骤。
三、解方程1.解方程的步骤:去分母、去括号、移项、合并同类项、系数化为一。
2.练解方程,加强解题准确率。
3.归纳解一元一次方程的注意事项,如分母是小数时要转化为整数、去分母时要乘最小公倍数等。
1.当x=32时,代数式3x-2与2x+3的差是11.化简代数式得:3x-2-(2x+3)=11,即x=16.2.若代数式3x-1与2x+2互为相反数,则3x-1=-(2x+2),化简得x=-1.3.当x=3时,代数式(x+1)/(3x-2)的值与3互为倒数。
代入x=3得:(3+1)/(3*3-2)=4/7.五、实际应用1.我能行在日历中,一个竖列上的三个连续数字之和能不能是42?可以是52吗?可以是42,例如9+10+11=30,而42-30=12,可以由1+2+9得到。
但不可以是52,因为三个连续数字的和最大只能是45(13+14+15)。
2.列方程解应用题的一般步骤1)审题,理解问题所求。
2)设未知数,建立代数模型。
3)找相等关系,根据问题中的条件列出方程。
4)列方程,将相等关系转化为代数式。