新人教版一元一次方程实际应用
- 格式:ppt
- 大小:674.00 KB
- 文档页数:12
【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)1. 某两市之间,可乘坐普通列车或高铁(路线不同),已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程.2.一名极限运动员在静水中划船的速度为每小时12千米,今往返于某河,逆流时用了10小时,顺流时用了6小时,求水流速度.3. 某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问在一年内累计消费多少元时,买卡与不买卡花费一样多的钱?什么情况下买卡合算?4.某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.如果捐款总数为2750元,那么捐30元的团员有多少人?5. 为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?6.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成剩下的部分?7. 学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,少14棵.问:两类树各种了多少棵?杉树的棵数比总数的138.现有190张铁皮做盒子,每张铁皮可以做8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.如果用完全部的铁皮,那么用多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?9.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,若每3人共乘一车,则最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘.问有多少个人,多少辆车?10.某市多所学校入围“全国青少年校园足球特色学校”,为了积极开展足球活动,某校计划为校足球队购买一批A、B两种品牌的足球.已知购买4个A品牌足球和2个B品牌足球共需360元;A品牌足球的单价比B品牌足球的单价少60元.(1)求A,B两种品牌足球的单价;(2)求该校购买20个A品牌足球和2个B品牌足球的总费用.参考答案1.解:设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米.依题意得x+1.3x=920,解得x=400.所以1.3x=520(千米).答:普通列车的行驶路程是520千米.2. 解:设水流的速度为每小时x千米,依题意有6(x+12)=10(12﹣x),解得x=3.答:水流速度是每小时3千米.3. 解:设购物x元时,买卡与不买卡花费一样,由题意得200+0.8x=x,解得x=1000.当x>1000时,买卡购物合算.答:购物1000元时,买卡与不买卡花费一样;当购物金额超过1000元时,买卡购物合算.4. 解:设捐30元的团员有x人,则捐10元的有(115-x)人.根据题意得30x+10(115-x)=2750.解得x=80.答:捐30元的团员有80人.5. 解:设该班胜了x场,那么负了(8﹣x)场,根据题意得2x+1•(8﹣x)=13,解得x=5.8﹣5=3.答:该班胜、负场数分别是5和3.6.解:设还需x天完成剩下的部分,根据题意得+=1,解得x=10.答:还需10天完成剩下的部分.7.解:设一共植了x棵树,则杨树为(x+56)棵,杉树为(x﹣14)棵.则有x+56+x﹣14=x,解得x=252.故杨树有×252+56=182(棵),杉树有×252﹣14=70(棵).答:种了182棵杨树,70棵杉树.8.解:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据题意得2×8x=22×(190﹣x),解得x=110.190﹣110=80(张).答:用110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.9. 解:设有x辆车,则有(2x+9)人,依题意得3(x-2)=2x+9.解得x=15.∴2x+9=2×15+9=39.答:有39个人,15辆车.10.解:(1)设A品牌足球的单价为x元,则B品牌足球的单价为(x+60)元.根据题意得4x+2(x+60)=360,解得x=40.∴x+60=100.答:A品牌足球的单价为40元,B品牌足球的单价为100元.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.。
人教版初一数学一元一次方程与实际问题本文涉及到的格式错误已经被删除。
一元一次方程解应用题(1)——路程问题教学目标:1.掌握行程问题,能够熟练地利用路程、速度、时间的关系列方程。
2.提高学生分析实际问题中数量关系的能力。
研究过程:基本等量关系:1.路程 = 速度 ×时间,时间 = 路程 ÷速度,速度 = 路程 ÷时间。
2.相向而行相遇时的等量关系:快者的路程 - 慢者的路程= 两人初相距的路程;同向而行追击时的等量关系:快者的路程 + 慢者的路程 = 两人初相距的路程。
新课探究:例1:甲、乙两站间的路程为360 km,一列慢车从甲站开出,每小时行驶48 km;一列快车从乙站开出,每小时行驶72 km。
⑴两列火车同时开出,相向而行,经过多少小时相遇?⑵快车先开25分钟,两车相向而行,慢车行驶了多少小时相遇?练一:1.甲、乙两人骑自行车同时从相距65 km的两地相向而行,2小时相遇,甲比乙每小时多骑2.5 km,求乙的速度?2.甲、乙两人在运动场上进行慢跑晨练,甲跑一圈3分钟,乙跑一圈2分钟,两人同时同地反向慢跑,求两人几分钟后第一次相遇?例2:一队学生去校外进行野外长跑训练。
他们以5 km/h 的速度行进,跑了18分钟的时候,学校要将一个紧急通知传给队长。
一名老师从学校出发,骑自行车以14 km/h的速度按原路追上去。
这名老师用多少时间可以追上学生队伍?练二:1.甲的步行速度是每小时5 km,乙的步行速度是每小时7.5 km,乙在甲的后面同时同向出发,120分钟后追上甲,那么开始时甲、乙两人相距多少千米?2.某班学生以每小时4 km的速度从学校步行到校办农场参加活动,走了1.5小时后,XXX奉命回学校取一件物品,他以每小时6 km的速度回校取了物品后,立即又以同样的速度追赶队伍,结果在距农场2 km处追上了队伍,求学校到农场的距离。
巩固练:1.在800米圆形跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米。
一元一次方程实际问题 ——分段计费1、为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道的天然气价格进行调整,实行阶梯式收费,调整后的收费价格如下表示所示:(1)若甲用户3月份的用气量为125m 3,应缴费32.5元,求a 的值;(2)在(1)的条件下,若乙用户2、3月份共用气175m 3(3月份用气量低于2月份用气量),共缴费455元,则乙用户2、3月份的用气量各是多少?2、为了加强公民的节水意识,合理利用水资源。
某市采用价格调控手段达到节水的目的。
该市自来水的收费标准价格见下表。
某用户居民某月份用水8吨,则应收水费:()2068462=-⨯+⨯元。
注:水费按月结算。
(1)若该户居民2月份用水12.5吨,则应收水费 元;(2)若该户居民3、4月份共用水15吨(3月份的用水量少于5吨),共交水费44元,则该户居民3、4月份各用水多少吨?3、在外地打工的赵先生下了火车,为尽快赶回位于市郊的赵庄与家人团聚,他打算乘坐市内出租车,市客运公司规定:起步价为5元(不超过3km 收5元),超过3km ,每千米要加收一定的费用。
赵先生上车时看了一下计费表,车到家门口时又看了一下计费表,已知火车站到赵庄的路程为18km 。
上车时里程表 下车时里程表求行程超过3km 时,每千米收多少元?4、某市公布的居民用电阶梯电价听证方案如下: 例:若某户月用电量为400度,则需交的电费为()()()()23030.052.035040005.052.021035052.0210=+⨯-++⨯-+⨯元。
(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a 元,则小华家该月用电量属于第几档?5、某银行的个人所得税规定个人所得税如下所示:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税多的额;二、个人所得纳税率如下表:(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月工资收入额应为多少元?6、某城市自来水收费实行阶梯水价,收费标准如下表所示:某用户5月份交水费45元,则该用户5月份所用水量为多少立方米?7、根据国家发改委实施“阶梯电价”的相关文件要求,某市结合地方实际,决定实施收费标准如下表所示:例如:小明家用电100千瓦时,交电费60元。
新人教版七年级数学上册 3.4 《一元一次方程的应用》教学设计3一. 教材分析新人教版七年级数学上册3.4《一元一次方程的应用》是学生在掌握了方程的解法和基本性质的基础上进行学习的内容。
这一节内容主要让学生学会如何运用一元一次方程解决实际问题,培养学生的数学应用能力。
教材通过实例引入方程,使学生了解方程在实际生活中的重要性,进而引导学生掌握一元一次方程的解法和应用。
二. 学情分析学生在学习本节内容前,已经掌握了方程的基本概念和性质,对解一元一次方程也有一定的了解。
但部分学生可能对实际问题转化为方程的能力较弱,对生活中的实际问题缺乏敏感度。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 教学目标1.让学生掌握一元一次方程的应用,能够将实际问题转化为方程,并求解。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:让学生学会将实际问题转化为方程,并求解。
2.难点:如何引导学生将实际问题转化为方程,培养学生解决实际问题的能力。
五. 教学方法1.采用问题驱动法,让学生在解决实际问题的过程中,自然而然地引入方程。
2.使用实例讲解,让学生直观地了解方程在实际生活中的应用。
3.采用分组讨论法,让学生在小组内共同探讨实际问题的解决方法,培养学生的团队协作能力。
4.运用引导发现法,引导学生发现实际问题与方程之间的联系,培养学生自主学习的能力。
六. 教学准备1.准备相关的实际问题,用于引导学生学习一元一次方程的应用。
2.准备多媒体教学设备,用于展示实例和讲解。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如购物问题、速度问题等,引导学生发现这些问题都可以用方程来表示。
让学生认识到方程在实际生活中的重要性。
2.呈现(10分钟)教师通过讲解实例,向学生展示如何将实际问题转化为方程,并求解。
人教版初一数学一元一次方程应用题及答案精心整理一元一次方程经典应用题知能点1:市场经济、打折销售问题在市场经济中,商品的利润率和销售额是重要的指标。
根据商品利润和利润率的计算公式,可以得到以下应用题:1.某商店开张,所有商品按八折出售。
一种皮鞋进价60元一双,八折出售后商家获利润率为40%,求该种皮鞋的标价和优惠价。
2.一家商店将某种服装按进价提高40%后标价,又以八折优惠卖出,结果每件仍获利15元,求该种服装每件的进价。
3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,求该种自行车每辆的进价。
可以列出方程进行求解。
4.某商品的进价为800元,出售时标价为1200元,商店准备打折出售,但要保持利润率不低于5%,求至多打几折。
5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中打八折优惠,结果被投诉并罚款,求该种彩电的原售价。
知能点2:方案选择问题在方案选择问题中,需要考虑各种方案的获利情况和可行性。
以下是一个例子:6.某蔬菜公司有一种绿色蔬菜,经过不同程度的加工后,每吨的利润不同。
当地一家公司收购140吨蔬菜,但加工能力有限,公司需要在15天内完成销售或加工任务。
为此,公司研制了三种可行方案,需要选择获利最多的方案。
方案一:将蔬菜全部进行粗加工。
方案二:尽可能多地进行粗加工,剩余蔬菜直接销售。
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并在15天内完成任务。
需要综合考虑加工能力、获利情况和时间限制,选择最优方案。
7.XXX提供两种通讯业务。
使用“全球通”的用户需先缴纳50元的月基础费,之后每通话1分钟需要支付0.2元的电话费。
而使用“神州行”的用户则不需要缴纳月基础费,但每通话1分钟需要支付0.4元的电话费(这里均指市内电话)。
如果一个月内通话x分钟,那么两种通话方式的费用分别为y1元和y2元。
我们可以得到以下函数关系式:y1 = 50 + 0.2xy2 = 0.4x如果要求两种通话方式的费用相同,我们可以得到以下等式:50 + 0.2x = 0.4x解方程可得:x = 125因此,当一个月内通话125分钟时,两种通话方式的费用相同。
七年级上册5.3.1产品配套问题和工程问题 教案【学习目标】1.理解配套问题、工程问题的背景;2.会运用一元一次方程解决物品配套问题和工程问题;3.掌握用一元一次方程解决实际问题的基本过程.【学习重难点】重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.【学习内容】温故知新填一填:1.配套问题某车间工人生产螺柱和螺母,一个螺柱要配两个螺母,要使生产的产品刚好配套,则应生产的螺母数量恰好是螺柱数量的____倍.2.工程问题工作时间、工作效率、工作量之间的关系:①工作量=_______________________.②工作时间=_______________________.③工作效率=_______________________.探究点1:产品配套问题典例精析例1.某车间有22名工人,每人每天可以生产1 200个螺栓或2 000个螺母.1个螺螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,应安排生产螺栓吧和螺母的工人各多少名?想一想:本题需要我们解决的问题是什么?题目中哪些信息能解决人员安排的问题?螺母和螺栓的数量关系如何?如果设x名工人生产螺栓,怎样列方程?分析:每天生产的螺母数量是螺栓数量的2倍时,它们刚好配套.等量关系:螺母总量=螺栓总量×2解:设应安排x名工人生产螺栓,(22-x)名工人生产螺母依题意,得2000(22-x) =2×1200x解方程,得x=10.所以22-x=12.答:应安排10名工人生产螺柱,12名工人生产螺母.如果设x名工人生产螺母,怎样列方程?解:设应安排x名工人生产螺母,(22-x)名工人生产螺栓.根据螺母数量是螺栓数量的2倍,列方程得2×1200(22-x) =1200x .解方程,得x=12.所以22-x=10.答:应安排10名工人生产螺栓,12名工人生产螺母.还有其它方法吗?分析:从螺栓的角度来看,螺栓数等于套数;从螺母的角度来看,螺母数等于套数的2倍.可以根据生产的套数是一样的建立方程解决.解:设应安排x 名工人生产螺栓,(22-x)名工人生产螺母.依题意,得2000(22-x)2= 1200x.解方程,得x =10. 所以22-x =12.答:应安排10名工人生产螺栓,12名工人生产螺母. 归纳总结解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据. 配套问题中的基本关系: 若m 个A 和n 个B 配成一套,则A 的数量B 的数量=m n,可得相等关系:m × B 的数量=n × A 的数量.巩固练习1.如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?由图可得,一块白皮(六边形)中,有三边与黑皮(五边形)相连,因此白皮边数是黑皮边数的2倍.等量关系:白皮边数=黑皮边数×2解:设足球上黑皮有x块,则白皮为(32-x)块,五边形的边数共有5x条,六边形边数有6(32-x)条.依题意,得2×5x=6(32-x),解得x=12,则32-x=20.答:白皮20块,黑皮12块.2.某防护服厂有54人,每人每天可加工防护服8件或防护面罩10个,已知一件防护服配一个防护面罩,为了使每天生产的防护服与防护面罩正好配套,需要安排多少人生产防护服?解:设需要安排x人生产防护服,则安排(54-x)人生产防护面罩.由题意,得8x=10(54-x),解得x=30.答:需要安排30人生产防护服.探究点2:工程问题典例精析例2.整理一批图书,由一个人整理需要40 h 完成. 现计划由一部分人先整理 4 h,然后增加2人与他们一起整理8 h,完成这项工作. 假设这些人的工作效率相同,应先安排多少人进行整理?在工程问题中:工作量=人均效率×人数×时间;工作总量=各部分工作量之和.点拨:“工程问题”中,通常把总工作量表示为1,这可使相关量的数学关系式简单化.并利用“工作量=人均效率×人数×时间”的关系考虑问题。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练1.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)2.新华书店准备订购一批图书,现有甲、乙两个供应商,均标价每本40元.为了促销,甲说:“凡来我处购书一律九折.”乙说:“如果购书超出100本,则超出的部分打八折.”(1)若新华书店准备订购150本图书,请分别求出去甲、乙两处需支付的钱数;(2)若新华书店去甲乙两处订购了相同数量的图书并且付了相同数量的钱,请问新华书店去甲乙各定了多少本书?3.某种笔记本的售价为5元/本,如果买100本以上,超过100本部分的,每本售价打八折.(1)甲校和乙校分别买了80本和120本,乙校比甲校多花了多少钱?(2)如果丙校买这种笔记本花了740元,丙校买了多少本?(列方程求解)(3)如果丁校买这种笔记本花了a 元,丁校买了多少本?(a 是20的整数倍)4.某商铺准备在端午节前购进一批肉粽和蜜枣粽,已知肉粽的单价比蜜枣粽的单价多元,且花元购买的肉粽数刚好是花元购买的蜜枣粽数的倍.5202.53001002(2)若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得多少元的利润?(3)在实际销售过程中,超市按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,求乙型号节能灯按预售价售出了多少只?8.晨光文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(利润销售额成本)(1)求两次分别购进礼品盲盒多少盒?(2)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少元利润?(3)在实际销售中,该文具店老板在以(2)中的标价20元售出一些第一批盲盒后,决定搞一场促销活动,尽快把第一批剩余的盲盒和第二批盲盒售完.老板现将标价提高到40元/盒,再推出活动:购买两盒,第一盒七五折,第二盒半价,不单盒销售.售完所有盲盒后该老板共获利润710元,按(2)中标价售出的礼品盲盒有多少盒?9.为了拉动内需,哈尔滨市自10月份开始启动“家电下乡”活动,某家电公司销售给农户的A 型电视机和型电视机在9月份(活动未开启)共售出960台,10月份销售给农户的A 型和型电视机的销量分别比9月份增长,,这两种型号的电视机共售出1228台.(1)9月份销售给农户的A 型和型电视机分别是多少台?(2)如果A 型电视机每台价格是1000元,型电视机每台价格是2000元,根据“家电下乡”的有关政府将按每台电视机价格的给购买电视机的农户补贴,10月份销售给农户的这两种型号共1228台电视机,政府共补贴了多少钱?10.某公司生产某种产品,每件成本价是元,销售价为元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低.销售量将提高.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低=-B B 30%25%B B 3%4006205%10%多少元11.静静超市购进一批魔方,按进价提高40%后标价,为了促销,超市决定打八折出售,这时每个魔方的售价为28元.(1)求每个魔方的进价是多少元?(2)魔方卖出一半后,超市决定将剩下的魔方以3个为一组捆绑销售,分组后恰好没有剩余,每组售价80元,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?12.工业园区某服装厂加工A,B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)服装厂将这批学生服送到市场部销售,A种学生服的售价为200元,B种学生服的售价为220元,在销售过程中发现A种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的八折出售,两种学生服全部卖出后,共获利10520元,则A种学生服卖出多少件后打折销售?13.某超市购进一批运动服,按进价提高40%后标价.(1)为了让利于民,增加销量,超市决定打八折(即按标价的80%)出售,超市是亏损了还是盈利了?请说明理由.(2)若每套运动服的售价为140元,在(1)的条件下,超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利7000元,求该超市所购进运动服的进价及数量?14.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.(1)请分别计算生产并销售A型车床5台与11台时,工厂的总获利分别是多少?(2)若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销参考答案:1.(1)元(2)选择乙商场购买更合算.【分析】本题考查一元一次方程的应用,有理数混合运算的实际应用,有理数的大小比较,(1)设一个水瓶元,则一个水杯为元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场的费用,比较即可得到结果;正确理解题意,找出题目中的等量关系并列出方程是解题的关键.【详解】(1)解:设一个水瓶元,则一个水杯为元,根据题意得:,解得:,∴(元),∴一个水瓶元,一个水杯是元;(2)选择乙商场购买更合算.理由:在甲商场购买所需费用为:(元),在乙商场购买所需费用为:(元),∵,∴选择乙商场购买更合算.2.(1)去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元(2)当订购200本图书时,去两个供应商处的进货价钱一样【分析】(1)根据题意列式计算即可;(2)列出方程,进行计算即可.【详解】(1)解:由题意得:甲:(元);乙:(元),答:去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元;40x ()48x -x ()48x -()3448152x x +-=40x =4848408x -=-=408()40582080%288⨯+⨯⨯=()40520528280⨯+-⨯⨯=288280>150400.95400⨯⨯=()40100150100400.85600⨯+-⨯⨯=∴,解得:,答:第二次甲种商品按原价打8折销售.【点睛】此题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.7.(1)购进甲型号的节能灯300只,购进乙型号的节能灯400只(2)3500元(3)300只【分析】(1)设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,根据购进700只节能灯的进货款恰好为20000元,列出方程,解方程即可;(2)根据题意列出算式进行计算即可;(3)设乙型号节能灯按预售价售出了y 只,根据购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,列出方程,解方程即可.【详解】(1)解:设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,由题意,得,解得,所以(只).答:该超市购进甲型号的节能灯300只,购进乙型号的节能灯400只.(2)解:(元).答:若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得3500元的利润.(3)解:设乙型号节能灯按预售价售出了y 只,由题意,得,解得.答:乙型号节能灯按预售价售出了300只.【点睛】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系列出方程.8.(1)第一次购买了40盒,第二次购买了30盒(2)按此计划该老板总共可以获得320元的利润120050004600y﹣=8y =()700x -()700x -()203570020000x x +-=300x =700700300400x -=-=()()30025204004035150020003500⨯-+⨯-=+=()()()()300252040354004090%353100y y ⨯-+-+-⨯⨯-=300y =程求解;(2)根据总价乘以,列算式计算求解.【详解】(1)解:设9月份销售给农户的型台,则型电视机是台,则:,解得:,,答:9月份销售给农户的型560台,型电视机是400台;(2)(元,答:政府共补贴了51840元.【点睛】本题考查了一元一次方程的应用,根据题意列方程是解题的关键.10.(1)销售价为元,销售量为件(2)元【分析】(1)根据“商品每件售价会降低,销售量将提高”进行计算;(2)由题意可得等量关系:销售利润(销售利润=销售价-成本价)保持不变,列方程即可解得.【详解】(1)解:下一季度每件产品销售价为:(元).销售量为(件);(2)解:设该产品每件的成本价应降低x 元,则根据题意得:解这个方程得:.答:该产品每件的成本价应降低元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.11.(1)魔方的进价是25元(2)该超市共购进四阶魔方1200个【分析】(1)设魔方的进价是元,进价八折售价,列方程并解出即可;(2)设该超市共购进四阶魔方个,根据“商店决定将剩下的魔方以每3个80元的价格出0.03A x B (960)x -()0.30.259601228960x x +-=-560x =960400x ∴-=A B ()1000560 1.32000400 1.250.0351840´´+´´´=)58955000115%10%()62015%589⨯-=()50000110%55000⨯+=[589(400)]55000(620400)50000x --=-⨯⨯11x =11x (140%)⨯+⨯=y当生产并销售A 型车床11台时,总获利是:万元.答:工厂的总获利分别是158万元,161万元.(2)设生产并销售B 型车床x 台,则生产并销售A 型车床台,当时,,不成立;当时,每台B 型车床可以获利万元;由题意得:解得:,(舍去)答:生产并销售B 型车床10台.【点睛】本题考查有理数的四则混合计算的实际应用,一元一次方程的运用,审题,明确数量间的关系是解题的关键.15.(1)每件服装的标价为200元,进价为120元(2)最低能打5折【分析】(1)设标价是x 元,根据题意,列出一元一次方程进行求解即可;(2)设小张最低能打a 折,根据题意,列出一元一次方程进行求解即可.【详解】(1)解:设标价是x 元,由题意,得,解得.即每件服装的标价是200元.进价为(元).答:每件服装的标价为200元,进价为120元.(2)解:设小张最低能打a 折,由题意,得:.解得.答:小张最低能打5折.【点睛】本题考查一元一次方程的应用.读懂题意,找准等量关系,正确的列出方程,是解题的关键.16.(1)购进青菜120斤,则购进瓜类80斤1110(1411)17161⨯+-⨯=()14x -4x ≤()171014271400x x x --=-<4x >()()17421x x ⎡⎤⎣=⎦---()()21101470x x x ---=110x =221x =50%2080%40x x +=-200x =50%2050%20020120x +=⨯+=()()()3002001205003002000.112020000a ⨯-+-⨯⨯-=5a =乙种商品每件的进价是元;∴甲、乙两种商品每件的进价分别是330元、590元.【点睛】此题考查了一元一次方程的应用,正确理解题意列得方程是解题的关键.19.(1)元(2)当每条裤子降价元时达到盈利的预期目标【分析】(1)根据利润(售价进价)数量直接计算即可得到答案;(2)设降价x 元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,(元),∴前条裤子的利润是元;(2)解:设降价x 元,由题意可得,,解得:,答:当每条裤子降价元时达到盈利的预期目标;【点睛】本题考查列代数式与一元一次方程解决销售利润问题,解题的关键是找到等量关系式.20.(1)第一次购进甲种商品50件,则购进乙种商品115件(2)9折【分析】(1)设第一次购进甲种商品x 件,则购进乙种商品件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m 折销售,根据“第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.【详解】(1)解:设第一次购进甲种商品x 件,则购进乙种商品件,由题意得:,解得,,因此第一次购进甲种商品50件,则购进乙种商品115件.(2)解:设第二次甲商品是按原价打m 折销售,8000.850590⨯-=160002045%=-⨯400(12080)16000⨯-=4001600016000100(12080)8050045%x +⨯--=⨯⨯20x =2045%(215)x +(215)x +2030(215)4450x x ++=50x =21525015115x +=⨯+=。
实际问题与一元一次方程(第5课时)教学目标1.体验建立方程模型解决问题的一般过程.2.体会分类思想和方程思想,增强应用意识和应用能力.教学重点通过分类讨论,将数学问题转化为方程问题.教学难点由实际问题抽象出数学模型的探究过程.教学过程新课导入今天,我们来探究如何用一元一次方程解决与实际生活联系更为紧密的问题——分段计费问题.解决这类问题的关键仍然是在实际问题中分析数量关系,先找出相等关系,再设未知数列方程求解.新知探究一、探究学习【问题】下表中有两种移动电话计费方式.你了解上面表格中这些数字的含义吗?怎样理解“月使用费”和“主叫超时费”?【师生活动】教师提问,学生思考、回答.教师对回答的方向适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过简单计算回答相应的费用.【设计意图】通过提问和学生的回答,了解学生对表格信息的理解能力,引导学生对表格信息做初步梳理和简单加工;通过对几个容易计算的主叫时间的话费计算,检验学生是否理解表格信息的含义,并渗透“话费多少与主叫时间相关”.【问题】根据对表格的理解,你觉得应该怎么求话费?【师生活动】教师引导学生分类写出话费求法.【答案】主叫时间在主叫限定时间之内,话费=月使用费;主叫时间超过主叫限定时间,话费=月使用费+主叫超时总费用.【设计意图】引导学生写出两种计费方式下的话费求法,为后面进行比较做好铺垫.【问题】你觉得选择哪种计费方式更省钱呢?【师生活动】教师提出问题,学生思考回答.根据学生的回答情况,教师适当加以引导.若学生回答方式一或者方式二省钱,可以和班级其他学生一起举例加以质疑;若学生的回答中出现分类讨论的趋势,则教师加以肯定并引导学生作进一步地探究.【设计意图】学生对电话计费问题是有生活基础的,所以具备了一定的认识,在给出探究问题后让学生充分发言,表达自己对问题的直观认识,同时学生之间进行交流,为问题的进一步探究做准备.【问题】通过大家的讨论,你对电话计费问题有什么新的认识?【师生活动】教师提出问题,学生思考回答.根据学生回答,教师适当加以归纳引导:若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果”,从而引导学生进行分类;若学生已经对问题进行了分类,则追问“为什么这样分类?”以及“在每一个时间区间内你是怎么分析的”,从而引导学生更合理地解决问题.【设计意图】学生参考了其他同学的观点后再次对问题进行认识,其认识过程与结论已经逐步接近正确而合理的方向,教师在此基础上加以引导和启发,帮助学生确定分类讨论的研究方式.【问题】设一个月内用移动电话主叫为t min(t是正整数).列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费.【师生活动】教师提出问题,学生思考并制作表格,教师巡视.找一名学生填写下面的表格,其他同学适当补充.【答案】填写表格如下:【设计意图】引导学生列表,让学生体验使用表格整理信息的益处,并通过列表使学生进一步明确两种计费方式的变化规律,同时考察学生列代数式表示未知量的能力.【问题】观察表格,你能从中发现如何根据主叫时间选择省钱的计费方式吗?【师生活动】教师提出问题,学生思考并小组讨论,教师选小组汇报讨论结果.学生能对“t小于150”“t=150”“t=350”三种情况作出准确判断,对于“t大于150且小于350”的情况,教师辅助学生加以分析.【问题】当t大于150且小于350时,计费情况怎样?【师生活动】学生组内交流,派出学生代表回答.【答案】当t从150增加到350时,按方式一的计费由58元增加到108元,而方式二的计费一直是88元,所以方式一在变化过程中,经历某一主叫时间,和方式二的计费相等,都为88元.列方程58+0.25(t-150)=88,可得t=270.所以当t=270时,两种计费方式的费用相等.【问题】当t>350时,计费情况又是怎样的呢?【师生活动】教师指导学生进行探究并表述结果.【答案】当t>350时,方式一的计费为58+0.25(t-150),可变形为108+0.25(t-350);方式二的计费为88+0.19(t-350),故按方式二的计费少.【设计意图】学生通过分类讨论得到方程模型,并利用方程求出关键数据,这可使学生认识到方程的重要性和应用价值,增强学生对模型的应用意识和应用能力.【问题】综合以上的分析,可以发现:___________________,选择方式一省钱;___________________,选择方式二省钱.【师生活动】教师提出问题,学生思考并回答.【答案】当t<270时当t>270时【设计意图】在得出方程模型的结论之后,引导学生利用结论解释实际问题,从而完成解题过程.【归纳】分段计费问题的求解方法.分段计费在日常生活中有着广泛的应用,如话费、水费、电费等,解决分段计费问题时,我们可分段计算每个范围内应付的费用,然后求和.二、典例精讲【例题】用A4纸在某打印社复印文件,复印页数不超过20页时每页收费0.12元;复印页数超过20页时,超过部分每页收费0.09元.在某图书馆复印同样的文件,不论复印多少页,每页收费0.1元.如何根据复印的页数选择复印的地点,使总价格比较便宜?(复印的页数不为0)【问题】你能通过分析题目,合理地列出表格吗?【师生活动】教师引导学生列表,将题目中的信息以表格的形式整理出来.【答案】设复印x页,整理数据如下:【设计意图】通过列表,进一步巩固学生列表整理信息的能力.【问题】如何根据复印的页数选择复印的地点使总价格比较便宜?【师生活动】根据表格,学生仿照前面问题的探究过程,对此问题进行分析,教师巡视进行指导.【答案】解:设复印页数为x页(x是正整数).(1)当x<20时,0.12x>0.1x恒成立,图书馆价格便宜;(2)当x=20时,2.4>2,图书馆价格便宜;(3)当x>20时,依题意,得2.4+0.09(x-20)=0.1x.解得x=60.代入数值进行验证,可知当x>60时,打印社价格便宜,当x<60时,图书馆价格便宜.综上分析,当x<60时,图书馆价格便宜;当x=60时,打印社和图书馆的价格相同;当x>60时,打印社价格便宜.【设计意图】通过解答此题,使学生对表格的分析能力得到巩固和深化,进一步熟悉解决问题的方法与过程,从而提高分析与解决问题的能力.课堂小结板书设计一、分段计费问题的分类讨论二、列代数式表示分段计费三、列方程寻找不同计费方案中的转折点课后任务完成教材第112页复习题3第10题.。
最新人教版七年级上册数学一元一次方程应用题及答案一元一次方程应用题例1:某车间有22名工人生产螺钉和螺母,每人每天平均生产1200个螺钉或2000个螺母。
一个螺钉需要两个螺母进行配对。
为了使每天的产品刚好配对,需要分配多少名工人生产螺钉和螺母?2.一张方桌由一个桌面和四条桌腿组成。
如果现有的木料可以做方桌的桌面和桌腿,那么需要多少立方米的木料制作桌面,多少立方米的木料制作桌腿才能使桌面和桌腿正好配对?3.某车间有22名工人生产螺钉和螺母,每人每天平均生产1600个螺钉或2000个螺母。
两个螺钉需要三个螺母进行配对。
为了使每天的产品刚好配对,工人能生产多少套这组零件?4.一套仪器由一个A部件和三个B部件构成。
用1钢材可做40个A部件或240个B部件。
现要用6钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好制作出多少套这种仪器?5.某水利工地派48人去挖土和运土。
如果每人每天平均挖土5方或运土3方,那么应该如何安排人员,才能使挖土的土及时运走?6.机械厂加工车间有85名工人,平均每人每天加工16个大齿轮或10个小齿轮。
已知两个大齿轮与三个小齿轮配成一套,问工人需加工多少套这组零件,才能使每天加工的大小齿轮刚好配对?7.某厂生产一批西装,每3米布料可以裁剪2件上衣或3条裤子。
一件上衣和一条裤子为一套。
现用600米长的这种布料生产,为了使上衣和裤子配对,裁剪上衣和裤子各需要多少米?8.某车间有22名工人生产螺钉和螺母,每人每天平均生产1200个螺钉或2000个螺母。
一个螺钉需要四个螺母进行配对。
为了使每天的产品刚好配对,需要分配多少名工人生产螺钉和螺母?知能点2:工程问题工作量 = 工作效率 ×工作时间工作效率 = 工作量 ÷工作时间工作时间 = 工作量 ÷工作效率完成某项任务的各工作量的和 = 总工作量 = 116.甲独自完成一件工作需要10天,乙独自完成同样的工作需要8天。
一元一次方程实际应用的六种考法1. 数字问题例.(1)把100拆分成2个数的和 使得第一个数加3 第二个数减3 得到的结果相等.则拆分成的这两个数分别是 和 ;(2)把100拆分成2个数的和 使得第一个数乘2.第二个数除以2 得到的结果相等.则拆分成的这两个数分别是 和 ;(3)把100拆分成4个数的和 使得第一个数加5 第二个数减5 第三个数乘5第4个数除以5 得到的的结果都相等 问拆分成的这四个数分别是多少.【答案】(1)47 53;(2)20 80;(3)809 1709 259 6259.【详解】解:(1)设第一个数为x 则第二个数是(100﹣x )由题意得:x +3=100﹣x ﹣3 解得x =47.所以100﹣x =100﹣47=53.答:拆分成的这两个数分别是47和53.故答案为:47 53;(2)设第一个数为y 则第二个数是(100﹣y )由题意得:2y =(100﹣y )÷2解得y =20.所以100﹣y =100﹣20=80.答:拆分成的这两个数分别是20和80;故答案为:20 80;(3)设相等的数为z 则其余数分别为z ﹣5 z +5 5z5z由题意得:z ﹣5+z +55z++5z =100解得:z 1259=则z ﹣5809= z +51709= 2559z = 5z 6259=. 故拆分成的这四个数分别是809 1709 259 6259.【变式训练1】将连续的奇数1 3 5 7 9 ……排成如图所示的数表.(1)写出数表所表示的规律;(至少写出4个)(2)若将方框上下左右移动 可框住另外的9个数.若9个数之和等于297 求方框里中间数是多少?【答案】(1)见解析(2)方框里中间数是33【解析】(1)解:规律有:①第一列个位数都是1 ②每行只有5个奇数 ③每行相邻两个数的和是2的倍数 ④每列相邻的两个数相差10.(2)解:设方框里中间数为x 则另外8个数为2x - 2x + 10x - 10x + 12x - 12x + 8x - 8x +由题意得 221010121288297x x x x x x x x x -+-+-+++-+++-+++=9297x =33x =则方框里中间数是33.【变式训练2】如图所示的10×5(行×列)的数阵 是由一些连续奇数组成的.(1)形如图框中的四个数 设第一行的第一个数为x 用含x 的式子表示另外三个数;(2)若这样框中的四个数的和是200 求出这四个数;(3)是否存在这样的四个数 它们的和为296?为什么?【答案】(1)x +2 x +8 x +10;(2)45 47 53 55(3)不存在 理由见解析【解析】(1)解:设第一行第一个数为x 则其余3个数依次为x +2 x +8 x +10;(2)解:根据题意得:x +x +2+x +8+x +10=200 解得:x =45.则这四个数依次为45 47 53 55.答:这四个数依次为45 47 53 55;(3)解:不存在.理由如下:由题意得x+x+2+x+8+x+10=296∴4x+20=296 解得:x=69.∴当x=69时这个数在第六行最后一个数的位置不符合题意故不存在这样的四个数它们的和为296.【变式训练3】将连续的偶数0 2 4 6 8 …排成如图所示的数表.(1)十字形框内的五个数之和是中间数的______;若设十字形框内的五个数中最中间一个数是x用代数式表示十字形框内五个数之和为______;(2)若将十字形框上下左右移动可框住另外五个数这五个数还有上述规律吗?直接写出答案不需要证明;(3)十字形框能否框到五个数使这五个数之和等于2400呢?若能请写出这五个数若不能请说明理由.【答案】(1)5倍5x;(2)有;(3)不存在5个数之和为2400【解析】(1)(4+14+24+12+ 16)÷14=5 x+(x- 10)+(x+ 10)+(x-2)+(x+2)= 5x(2)符合规律设中间数字为x则上面数字的为x- 10 下面数字为x + 10 左边数字为x- 2 右边数字为x + 2即[x+(x- 10)+(x+ 10)+(x-2)+(x+2)]÷x=5x+(x- 10)+(x+ 10)+(x-2)+(x+2)= 5x∴仍符合规律;x=(3)若五个数之和等于2400 则52400x=解得:480∴十字据中中间的数为480由数表可知数字480位于数表的最边上一列不可能处于十字框中间所以不存在5个数之和为2400.2.配套问题例.列方程解应用题某啤酒公司的啤酒车间先将散装啤酒灌装成瓶装啤酒再将瓶装啤酒装箱出车间.该车间有灌装、装箱生产线共21条每条灌装生产线每小时装350瓶每条装箱生产线每小时装450瓶.某日生产前车间内已有未装箱的瓶装啤酒5200瓶8:00开始车间内的生产线全部投入生产.(1)若当日到10:00时 该车间内未装箱的瓶装啤酒达到5500瓶.设灌装生产线有x 条 当日到10:00时 灌装生产线共装多少瓶啤酒(用含x 的代数式表示)?该车间内灌装生产线有多少条?(2)若该日车间工作8小时 灌装生产线设计多少条时?该日车间内的瓶装啤酒恰好全部装箱?【答案】(1)灌装生产线共装(350×2x )瓶啤酒 灌装生产线有12条;(2)灌装生产线设计13条时 该日车间内的瓶装啤酒恰好全部装箱.【解析】(1)解:当日到10:00时 灌装生产线共装(350×2x )瓶啤酒根据题意 得5200+350×2x =450×2(21-x )+5500解这个方程 得:x =12答:灌装生产线共装(350×2x )瓶啤酒 灌装生产线有12条;(2)解:设灌装生产线设计y 条时 该日车间内的瓶装啤酒恰好全部装箱根据题意 得5200+350×8y =450×8(21-y )解这个方程 得:y =11.答:灌装生产线设计11条时 该日车间内的瓶装啤酒恰好全部装箱.【变式训练1】小林到某纸箱厂参加社会实践 该厂计划用50张白板纸制作某种型号的长方体纸箱.如图 每张白板纸可以用A B 两种方法剪裁 其中A 种裁法:一张白板纸裁成4个侧面;B 种裁法:一张白板纸裁成2个侧面与4个底面.且四个侧面和两个底面恰好能做成一个纸箱.设按A 种方法剪裁的有x 张白板纸.(1)按B 种方法剪裁的有______张白板纸;(用含x 的代数式表示)(2)将50张白板纸裁剪完后 可以制作该种型号的长方体纸箱多少个?【答案】(1)()50x -;(2)40个【解析】(1)解:按A 种方法剪裁的有x 张白板纸则按B 种方法剪裁的有()50x -张白板纸故答案为:()50x -;(2)解:由四个侧面和两个底面恰好能做成一个纸箱.∴ ()()24250=4450x x x ⨯+-⨯-⎡⎤⎡⎤⎣⎦⎣⎦整理得: 20600x = 解得:x =30(30×4+20×2)÷4=40∴最多可以制作40个纸箱.【变式训练2】某服装厂要生产同一种型号的服装 已知3m 长的布料可做上衣2件或裤子3条 一件上衣和一条裤子为一套.(1)现库存有布料300m 应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料227m 最多可以生产多少套衣服?本着不浪费的原则 如果有剩余 余料可以做几件上衣或裤子?(本问直接写出结果)【答案】(1)做上衣用布料180m 则做裤子用布料120m 可以生成120套衣服(2)最多可以生产90套衣服 余料可以做2条裤子【解析】(1)设做上衣用布料m x 则做裤子用布料()300m x -由题意得()3300233x x -= 解得:180x = 则300120x -= 可以生产21801203⨯=套衣服; 答:用180m 布做上衣 120m 布做裤子才能恰好配套 可以生产120套衣服;(2)∴做一件上衣用32m 布 做一条裤子用1m 布 ∴一套服装用2.5m 布∴227÷2.5=90 (2)∴227m 布可以做90套衣服余2m∴本着不浪费的原则 ∴余下的2m 布可以做2条裤子答:布料227m 最多可以生产90套衣服 余料可以做2条裤子.【变式训练3】某工厂接受了15天内生产1200台GH 型电子产品的总任务. 已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成. 工厂现有80名工人 每个工人每天能加工8个G 型装置或4个H 型装置.工厂将所有工人分成两组同时开始加工 每组分别加工一种装置 并要求每天加工的G 、H 型装置数量正好全部配套组成GH 型产品.(1)按照这样的生产方式 工厂每天能配套组成多少套GH 型电子产品?(2)为了在规定期限内完成总任务 工厂决定补充一些新工人 这些新工人只能独立进行G 型装置的加工 且每人每天只能加工4个G 型装置. 请问至少需要补充多少名新工人?【答案】(1)工厂每天能配套组成64套GH 型电子产品;(2)至少应招聘40名新工人.【解析】(1)解:设安排x 名工人生产G 型装置 则安排(80﹣x )名工人生产H 型装置根据题意得:84(80)43x x-=解得:x=32 ∴88326444x⨯==.答:按照这样的生产方式工厂每天能配套组成64套GH型电子产品.(2)解:设招聘a名新工人加工G型装置仍设x名工人加工G型装置(80-x)名工人加工H型装置根据题意()8448043x a x+-=整理可得320310ax-=另外注意到()4801200≥315x-即x≤20 于是3203≤2010a-解得:a≥40答:至少应招聘40名新工人.3. 销售利润问题例.甲、乙两件服装的成本共500元商店老板为获取利润决定将甲服装按50%的利润定价乙服装按40%的利润率定价.在实际出售时应顾客要求两件服装均按9折出售这样商店老板共获利157元.甲、乙两件服装的成本各为多少元?【解答】解:设甲服装的成本是x元则乙服装的成本是(500﹣x)元依题意有0.9×(1+50%)x+0.9×(1+40%)(500﹣x)﹣500=157 解得x=300500﹣x=200.答:甲服装的成本为300元乙服装的成本为200元.【变式训练1】“虎年大吉岁岁平安” 为了喜迎新春某水果店在春节期间推出水果篮和坚果礼盒每个水果篮的成本为200元每盒坚果礼盒的成本为150元每个水果篮的售价比每盒坚果礼盒的售价多100元售卖1个水果篮获得的利润和售卖2盒坚果礼盒获得的利润相同.(1)求每个水果篮和每盒坚果礼盒的售价;(2)在年末时该水果店购进水果篮1250个和坚果礼盒1200盒进行“新春特惠”促销活动.水果店规定每人每次最多购买水果篮1个或坚果礼盒1盒每个水果篮在售价的基础上打九折后再参与店内“每满100元减m元”的活动每盒坚果礼盒直接参与店内“每满100元减m元”的活动.售卖结束时坚果礼盒全部售卖完售卖过程中由于部分水果变质导致水果篮有50个没办法售出.若该水果店获得的利润率为20% 求m的值.【答案】(1)每个水果篮的售价为300元每盒坚果礼盒的售价为200元.(2)m的值为10.【解析】(1)设每盒坚果礼盒的售价为x元则每个水果篮的售价为(x+100)元依题意得:2(x-150)=x+100-200解得:x=200∴x+100=300.答:每个水果篮的售价为300元每盒坚果礼盒的售价为200元.(2)∴300×0.9=270(元)∴每个水果篮的活动价为(270-2m )元.∴每盒坚果礼盒的售价为200元∴每盒坚果礼盒的活动价为(200-2m )元.依题意得:(1250-50)(270-2m )+1200(200-2m )-1250×200-1200×150=(1250×200+1200×150)×20%解得:m =10.答:m 的值为10.【变式训练2】某工厂有甲、乙两个车间 甲车间生产A 产品 乙车间生产B 产品 去年两个车间生产产品的数量相同且全部售出.已知A 产品的销售单价比B 产品的销售单价高100元 1件A 产品与1件B 产品售价和为300元.(1)A 、B 两种产品的销售单价分别是多少元?(2)今年 该工厂计划依托工业互联网将乙车间改造为专供用户定制B 产品的生产车间.预计A 产品在售价不变的情况下产量将在去年的基础上增加a %;B 产品产量将在去年的基础上减少a % 但B 产品的销售单价将提高2a %.则今年A 、B 两种产品全部售出后总销售额将在去年的基础上增加2%3a .求a 的值. 【答案】(1)A 产品的销售单价为200元 B 产品的销售单价为100元;(2)50【解析】(1)解:设B 产品的销售单价为x 元 则A 产品的销售单价为(100)x +元 . 依题意得:100300x x ++= 解得:x =100 ∴x +100=200. .答:A 产品的销售单价为200元 B 产品的销售单价为100元(2)解:设去年每个车间生产产品的数量为t 件依题意得:200(1+a %)t +100(1+2a %)(1-a %)t =300(1+2%3a )t 设%a m = 则原方程可化简为2m 2-m =0 解得:112m = 20m =(不合题意 舍去) ∴a =50. 答:a 的值为50.【变式训练3】某超市计划购进甲、乙两种型号的节能灯共1000只 这两种节能灯的进价、售价如下表:进价(元/只) 售价(元/只) 甲型25 30 乙型 45 60(1)如果进货款恰好为37000元 那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动 决定对乙型节能灯进行打折销售 要求全部售完后 乙型节能灯的利润率为20% 请问乙型节能灯需打几折?【解答】解:(1)设商场购进甲型节能灯x 只 则购进乙型节能灯(1000﹣x )只 由题意 得25x +45(1000﹣x )=37000 解得:x =400购进乙型节能灯1000﹣x =1000﹣400=600(只)答:购进甲型节能灯400只 购进乙型节能灯600只进货款恰好为37000元.(2)设乙型节能灯需打a 折0.1×60a ﹣45=45×20% 解得a =9 答:乙型节能灯需打9折.【变式训练4】武汉大洋百货经销甲、乙两种服装 甲种服装每件进价500元 售价800元;乙种服装商品每件售价1200元 可盈利50%.(1)每件甲种服装利润率为 乙种服装每件进价为 元;(2)若该商场同时购进甲、乙两种服装共40件 恰好总进价用去27500元 求商场销售完这批服装 共盈利多少?(3)在元旦当天 武汉大洋百货实行“满1000元减500元的优惠”(比如:某顾客购物1200元 他只需付款700元).到了晚上八点后 又推出“先打折” 再参与“满1000元减500元”的活动.张先生买了一件标价为3200元的羽绒服 张先生发现竟然比没打折前多付了20元钱问大洋百货商场晚上八点后推出的活动是先打多少折之后再参加活动?【解答】解:(1)∵甲种服装每件进价500元 售价800元∴每件甲种服装利润率为800−500500×100%=60%.∵乙种服装商品每件售价1200元 可盈利50%.∴乙种服装每件进价为12001+50%=800(元) 故答案为:60% 800;(2)设甲种服装进了x 件 则乙种服装进了(40﹣x )件由题意得 500x +800(40﹣x )=27500 解得:x =15.商场销售完这批服装 共盈利15×(800﹣500)+25×(1200﹣800)=14500(元). 答:商场销售完这批服装 共盈利14500元.(3)设打了y 折之后再参加活动.①3200×y 10−2×500=3200﹣3×500+20.解得:y =8.5.②3200×y 10−500=3200−3×500+20 解得y =8(不合题意 舍去).③3200×y 10=3200−3×500+20 解得y =5.9(不合题意 舍去).答:先打八五折再参加活动.4. 工程问题例.某工程队承包德阿公路绵竹市境内一段长为1755米的道路改造工程 由甲、乙两个施工小队分别从南、北两端同时施工.已知甲队比乙队平均每天多施工3米 经过5天施工后 两个小队共完成施工路段135米.(1)求甲、乙两个小队平均每天各施工多少米?(2)为加快进度 通过改进施工技术 在剩余的工程中 甲队平均每天能比原来多施工1米 乙队平均每天能比原来多施工2米 甲、乙同时按此施工 能够比原来提前多少天完成道路改造任务?【答案】(1)甲施工小队平均每天施工15米 乙施工小队平均每天施工12米.(2)能够比原来提前6天完成道路改造任务.【解析】(1)解:设乙施工小队平均每天施工x 米 则甲施工小队平均每天施工()3x +米. 根据题意得:55(3)135x x ++=.解得:12x =.所以315x +=.答:甲施工小队平均每天施工15米 乙施工小队平均每天施工12米.(2)解:改进施工技术后 甲施工小队平均每天施工15116+=米;乙施工小队平均每天施工12214+=米.则改进施工技术后 剩余的工程还需:(1755135)(1614)54-÷+=天;按原施工进度 剩余的工程还需:(1755135)(1512)60-÷+=天.所以少用的天数为:60546-=天.答:能够比原来提前6天完成道路改造任务.【变式训练1】某校职工周转房已经落成 有一些结构相同的房间需要粉刷墙面.已知3名一级技工去粉刷8个房间 结果有30m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间 另外又多粉刷20m 2墙面.每名一级技工比二级技工一天多粉刷12m 2墙面.(1)求每个房间需要粉刷的墙面面积;(列方程解决问题)(2)若粉刷1m 2墙面给付一级技工6元费用 给付二级技工5.5元费用 问一级技工和二级技工每人每天各挣多少工钱?【答案】(1)每个房间需要粉刷的墙面面积为392m(2)一级技工每人每天挣564元 二级技工每人每天挣451元.【解析】(1)设每个房间需要粉刷的墙面面积为x 2m 由题意得:83010201235x x -+-= 解得:39x = ∴每个房间需要粉刷的墙面面积为392m ;(2)∴每个房间需要粉刷的墙面面积为392m∴一名一级技工一天粉刷的面积为830839309433x -⨯-==2m一名二级技工一天粉刷的面积为10201039208255x +⨯+==2m ∴946564⨯=(元) 82 5.5451⨯=(元)∴一级技工每人每天挣564(元) 二级技工每人每天挣451(元).【变式训练2】湖北荆宜高速公路是“国家高速公路网规划”中的建设工程 该工程预算国拨总投资为24亿元 分土建、路面、设施三个建设项目 路面投资占土建投资的45设施投资比土建投资少40%、由于物价的上涨 工程建设实际总投资随之增长 路面投资的增长率是土建投资增长率的2.5倍 设施投资的增长率达到路面投资增长率的2倍(1)三个项目的预算投资分别是多少亿元?(2)由于合理施工 使公路提前半年通车 每月可通行车辆100万辆 每辆车的平均收益为40元.这样 可将提前半年通车收益的70%用于该工程建设的实际投资 减少了国拨投资 使预算国拨总投资减少的百分率与土建投资的增长率相同 该工程的实际总投资是多少亿元?【答案】(1)土建、路面、设施三个项目的预算投资分别是10亿元 8亿元 6亿元(2)该工程的实际总投资是25.2亿元【解析】(1)解:设土建为x 亿元 则路面为45x 亿元 设施为(1﹣40%)x 亿元 ∴x +45x +(1﹣40%)x =24 ∴x =10 ∴485x = (1﹣40%)x =6. 答:土建、路面、设施三个项目的预算投资分别是10亿元 8亿元 6亿元(2)解:设土建投资增长率为x 则路面投资的增长率是2.5x 设施投资的增长率是2×2.5x =5x预算国拨总投资减少的百分率为x .国拨总投资:24×(1﹣x )该工程的实际各项投资之和是10×(1+x )+8×(1+2.5x )+6×(1+5x )∴70%×40×100×6=16800(万元)=1.68亿元∴24×(1﹣x )+1.68=10×(1+x )+8×(1+2.5x )+6×(1+5x )解得:x =0.02=2%24×(1﹣x )+1.68=25.2(亿元)答:该工程的实际总投资是25.2亿元.5. 行程问题例.甲骑摩托车从A 地去B 地 乙开汽车从B 地去A 地 同时出发 匀速行驶 各自到达终点后停止 甲、乙两人间的距离为(km)s )与甲行驶的时间为(h)t 之间的关系如图所示.(1)以下是点M、点N、点P所代表的实际意义请将M、N、P填入对应的横线上.①甲到达终点_________.②甲乙两人相遇_________.③乙到达终点_________.(2)AB两地之间的路程为_________千米;(3)求甲、乙各自的速度;(4)如果乙到达A地后立刻原路原速返回到B地在甲到达B地的过程中甲出发_________小时甲乙相距100千米.【答案】(1)①P;②M;③N;(2)240;(3)甲的速度40千米/小时乙的速度80千米/小时(4)76或3.5或176【解析】(1)解:由图象可得出发2小时甲乙在途中相遇;出发3小时乙到达A地;6小时甲到达B地;故答案为:①P;②M;③N;(2)解:由图象可得AB两地之间路程为240千米;故答案为:240;(3)解:甲的速度为:240÷6=40千米/小时乙的速度为:240÷2-40=80千米/小时答:甲的速度40千米/小时乙的速度80千米/小时;(4)解:令甲出发t小时甲乙相距100千米由题意得相遇前:80t+40t+100=240 解得t=76相遇后:40t-100=80t-240或80(t-2)+40(t-2)=100解得t=3.5或t=176故答案为:76或3.5或176.【变式训练1】为抗击疫情支援B市A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市乙车行驶途中发生故障原地维修此时甲车刚好到达B 市.甲车卸载蔬菜后立即原路原速返回接应乙车把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x (h)之间的函数图象如图所示.(1)甲车速度是_______km/h 乙车出发时速度是_______km/h ;(2)求乙车返回过程中 乙车离A 市的距离y (km )与乙车所用时间x (h )的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时 两车之间的距离是120km ?请直接写出答案. 【答案】(1)100 60;(2)1001200y x =-+;(3)3 6.3 9.1 【解析】(1)解:根据图象可得 甲车5h 的路程为500km∴甲的速度为:500÷5=100km/h ;乙车5h 的路程为300km ∴乙的速度为:300÷5=60km/h ; 故答案为:100;60;(2)设()0y kx b k =+≠ 由图象可得经过点(9 300) (12 0)点代入得9300120k b k b +=⎧⎨+=⎩ 解得1001200k b =-⎧⎨=⎩ ∴y 与x 的函数解析式为1001200y x =-+; (3)解:设乙出发的时间为t 时 相距120km根据图象可得 当0<t <5时 100t -60t =120 解得:t =3; 当5<t <5.5时 根据图象可得不满足条件;当5.5<t <8时 500-100(t -5.5)-300=120 解得:t =6.3; 当8<t <9时 100(t -8)=120 解得:t =9.2 不符合题意 舍去; 当9<t <12时 100×(9-8)+100(t -9)+100(t -9)=120 解得:t =9.1; 综上可得:乙车出发3h 、6.3h 与9.1h 时 两车之间的距离为120km .【变式训练2】随着互联网的普及和城市交通的多样化 人们出行的时间与方式有了更多的选择 某市有出租车、滴滴快车等网约车 收费标准见下图.费用为多少元?(2)若从甲地到乙地 乘坐滴滴快车比出租车多用15元 求甲、乙两地间的里程数. 【答案】(1)出租车的费用为28.8元. (2)甲地到乙地的路程为14公里. 【解析】(1)解:14+2.49328.8(元) 答:出租车的费用为28.8元.(2)解:设甲地到乙地的路程为x 公里 当3x ≤时12+2.5600.41415,40x x解得:1703,31x 所以不符合题意舍去 当3x >时 则14+2.431512 2.5600.4,40xx x解得:14,x =答:甲地到乙地的路程为14公里.【变式训练3】A 、B 两地相距480km C 地在A 、B 两地之间.一辆轿车以100km /h 的速度从A 地出发匀速行驶 前往B 地.同时 一辆货车以80km /h 的速度从B 地岀发 匀速行驶 前往A 地. (1)当两车相遇时 求轿车行驶的时间; (2)当两车相距120km 时 求轿车行驶的时间;(3)若轿车到达B 地后 立刻以120km /h 的速度原路返回 再次经过C 地 两次经过C 地的时间间隔为2.2h 求C 地距离A 地路程.【解答】解:(1)设两车相遇时 轿车行驶的时间为t 小时 由题意可得 100t +80t =480。