同步练习册数学九年级下册一课一练-44
- 格式:pdf
- 大小:294.88 KB
- 文档页数:1
北师大版初中数学九年级下册全册同步练习1.1锐角三角函数一、选择题1.在△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是( ) A. sin A= B.cos A=C.sin A= D.tan A=2.如图l-2l所示的是一水库大坝横截面的一部分,坝高h=6 m,迎水坡AB=10 m,斜坡的坡角为a,则tan a的值为 ( )A. B. C. D.3.如图1-22所示,在矩形ABCD中,DE⊥AC于E,设∠ADE=a,且cos a=,AB=4,则AD的长为 ( )A.3 B.C. D.二、填空题4.如图1-23所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC=,则梯子AB的长度为米.5.若a是锐角,且sin2 a+cos2 48°=1,则a= .6.如图l-24所示,在Rt△ACB中,∠C=90°,AB=3,BC=1,求∠A的三角函数值.三、计算与解答题7.如图1-25所示,在Rt△ACB中,∠ACB=90°,CD为AB边上的高,BD=3,AD =,求sin A,cos A,tan A的值.8.如图1-26所示,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求cos∠BAO的值.9.请你画出一个以BC为底边的等腰三角形ABC,使底边上的高AD=BC(1)求tan∠ABC和sin∠ABC的值;(2)在你所画的等腰三角形ABC中,假设底边BC=5米,求腰上的高BE.参考答案1.C[提示:sinA=.]2.D[提示:过A点作垂线交底部于C点,则△ACB为直角三角形,∴BC==8(m),∴tan a==.故选D.]3.B[提示:∠ADE和∠EDC互余,∴cos a=sin∠EDC=,sin∠EDC=∴EC=.由勾股定理,得DE=.在Rt△AED中,cos a=,∴AD=.故选B.]4.4[提示:在Rt△BCA中,AC=3米,cos∠BAC=,所以AB=4米,即梯子的长度为4米.]5.48°[提示:∵sin2a+cos2 a=l,∴a=48°.]6.提示:sin A=,cos A=,tan A=.7.解:∵∠ACB=90°,CD⊥AB,∴△ACD∽△CBD,∴CD2=AD·DB=16,∴CD=4,∴AC=.∴sin A==,cos A=,tan A=. 8.解:(1)如图l-27所示,作BH⊥OA,垂足为H.在Rt△OHB中,∵BO=5,sin∠BOA=,∴BH=3,∴OH=4,∴点B的坐标为(4,3). (2)∵OA=10,OH=4,∴AH=6.在Rt△AHB中,∵BH=3,∴AB=,∴cos∠BAO== .9.解:(1)根据题意画出图形,如图1-28所示,∵AB=AC,AD⊥BC,AD=BC,∴BD=B C= AD,即AD=2BD,∴AB=BD,∴tan∠ABC==2,sin∠ABC== (2)作BE⊥AC于E,在Rt△BEC中,sinC=sin∠ABC=.又∵sin C=∴故BE=(米).1.2 30°,45°,60°角的三角函数值一.选择题:1.在△ABC中,∠A,∠B都是锐角,且 sin A=,cos B=,则△ABC三个角的大小关系是()A.∠C>∠A>∠B B.∠B>∠C>∠AC.∠A>∠B>∠C D.∠C>∠B>∠A2.若0°<<90°,且|sin-|+,则tan的值等于()A. B. C. D.3.如图1—37所示,在△ABC中,∠A=30°,tan B=,AC=,则AB的长是 ( ) A.3+ B.2+C. 5 D.4.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是( ) A.a B.a C.a D.a或a二、选择题5.在Rt△ACB中,∠C=90°,AC=,AB=2,则tan= .6.若a为锐角,且sin a=,则cos a= .7.在Rt△ACB中,若∠C=90°,sin A=,b+c=6,则b= .8.(1)在△ABC中,∠C=90°,sin A=,则 cos B=________;(2)已知为锐角,且cos(90°-)=,则=________;(3)若,则锐角=________.三、计算与解答9.计算(1)sin 60°·cos 30°-.(2) 2 cos230°-2 sin 60°·cos 45°;(3) 2 sin30°-3 tan 45°+4 cos 60°;10.如图1—38所示,在Rt△ACB中,∠BCA=90°,CD是斜边上的高,∠ACD=30°,AD =1,求AC,CD,BC,BD,AB的长.11.如图1—39所示,在相距100米的A,B两处观测工厂C,测得∠BAC=60°,∠ABC=45°,则A,B两处到工厂C的距离分别是多少?12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.参考答案1. D; 2 。
华东师大版九年级数学下册全册课时练习26.1 二次函数1.下列函数,属于二次函数的是( )A.y=2x+1 B.y=(x-1)2-x2 C.y=2x2-7 D.y=-1x22.函数y=(m-5)x2+x是二次函数的条件为( )A.m为常数,且m≠0 B.m为常数,且m≠5C.m为常数,且m=0 D.m可以为任何数3.已知圆柱的高为14 cm,则圆柱的体积V(cm3)与底面半径r(cm)之间的函数表达式为( )A.V=14r2 B.r=14πV C.V=14πr2 D.r=V14π4.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数表达式为( ) A.y=1+x2 B.y=a (1+x) C.y=a (1+x2) D.y=a (1+x)25.用一根长为10 m的木条,做一个长方形的窗框,若长为x m,则该窗户的面积y(m2)与x (m)之间的函数表达式为.6.某商店从厂家以每件21元的价格购进一批商品,经过调查发现,若每件商品的售价为x 元,可卖出(350-10x)件商品,则所获得的利润y(元)与售价x(元)之间的函数表达式为.7.如图,在△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与点B,C重合),在AC上取一点E,使∠ADE=45°.设BD=x,AE=y,则y关于x的函数表达式为.(不要求写出自变量x的取值范围)8.已知二次函数y=x2-bx-2,当x=2时,y=-2,求当函数值y=1时,x的值.9.如图,某矩形相框长26 cm,宽20 cm,其四周相框边(图中阴影部分)的宽度相同,都是x cm,相框内部的面积(指图中较小矩形的面积)为y cm2.(1)写出y与x的函数表达式;(2)若相框内部的面积为280 cm2,求相框边的宽度.10.某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件.现在他采用提高售价,减少进货量的办法增加利润,已知这种商品每提高1元,其销售量就要减少10件.若他将售价定为x元,每天所赚利润为y元.(1)请你写出y与x之间的函数表达式;(2)当利润等于360元时,求每件商品的售价.参考答案1-4 CBCD5. y=-x2+5x6. y=-10x2+560x-73507. y=x2-2x+1 8.3或-19.(1)y=4x2-92x+520(0<x<10) (2)3 cm10.(1)y=-10x2+280x-1600(10≤x≤20)(2)14元26.2.1 二次函数y=2ax的图象与性质一.选择题1.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C. D.2.函数y=ax2+1与y=a(a≠0)在同一平面直角坐标系中的图象可能是()xA. B.C. D.3.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C. D.4.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图,则一次函数y=mx+n与反比例的图象可能是()函数y=m nxA. B.C. D.二.填空题5.下列函数,当x>0时,y随x的增大而减小的是.(填序号)(1)y=﹣x+1,(2)y=2x,(3)2yx=-,(4)y=﹣x2.6.如图,抛物线与两坐标轴的交点坐标分别为(﹣1,0),(2,0),(0,2),则抛物线的对称轴是;若y>2,则自变量x的取值范围是.7.如图,边长为2的正方形ABCD的中心在直角坐标系的原点O,AD∥x轴,以O为顶点且过A、D两点的抛物线与以O为顶点且过B、C两点的抛物线将正方形分割成几部分,则图中阴影部分的面积是.三.解答题8.抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).(1)求出m的值并画出这条抛物线.(2)求它与x轴的交点和抛物线顶点的坐标.(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?9.分别在同一直角坐标系内,描点画出y=x2+3与y=x2的二次函数的图象,并写出它们的对称轴与顶点坐标.参考答案一. 1.C 2.B 3.D 4.C二.5.(1)(4) 6.x=120<x<1 7.2三. 8.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3),得m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:图象如右图.(2)由﹣x2+2x+3=0,得x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线的顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.9.解:抛物线y=x2+3的开口方向向上,顶点坐标是(0,3),对称轴是y轴,且经过点(3,6)和(﹣3,6).抛物线y=x2的开口方向向上,顶点坐标是(0,0),对称轴是y轴,且经过点(3,3)和(﹣3,3),则它们的图象如图.26.2.2 二次函数y=ax2+k的图象与性质1.如图,将抛物线y=13x2向________平移________个单位得到抛物线y=13x2+2;将抛物线y=13x2向________平移________个单位得到抛物线y=13x2-2.2.将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的关系式为( )A.y=x2-1 B.y=x2+1C .y =(x -1)2D .y =(x +1)2 3.不画出图象,回答下列问题:(1)函数y =4x 2+2的图象可以看成是由函数y =4x 2的图象通过怎样的平移得到的?(2)说出函数y =4x 2+2的图象的开口方向、对称轴和顶点坐标;(3)如果要将函数y =4x 2的图象经过适当的平移,得到函数y =4x 2-5的图象,应怎样平移?4.抛物线y =-12x 2-6的开口向________,顶点坐标是________,对称轴是________;当x ________时,y 有最________值,其值为________;当x ________0时,y 随x 的增大而增大,当x ________0时,y 随x 的增大而减小.5.下列函数中,当x >0时,y 随x 的增大而减小的有________.(填序号) ①y =-x +1,②y =2x ,③y =-2x,④y =-x 2.6.已知点(-1,y 1),⎝ ⎛⎭⎪⎫-12,y 2都在函数y =12x 2-2的图象上,则y 1______y 2.(填“>”“<”或“=”)7.二次函数y =2x 2+1,y =-2x 2-1,y =12x 2-2的图象的共同特征是( )A .对称轴都为y 轴B .顶点坐标相同C .开口方向相同D .都有最高点8.二次函数y =-x 2+1的图象大致是( )9.二次函数y =2x 2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线x =1D .抛物线的顶点坐标是(0,-3)10.已知二次函数y =ax 2+c 有最大值,其中a 和c 分别是方程x 2-2x -24=0的两个根,试求该二次函数的关系式.11.在同一坐标系中,一次函数y =-mx +n 2与二次函数y =x 2+m 的图象可能是( )12.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( ) A .-1≤y ≤5 B .-5≤y ≤5 C .-3≤y ≤5 D .-2≤y ≤113.已知函数y =⎩⎨⎧x 2+1(x ≥-1),2x (x <-1),则下列函数图象正确的是( )14.已知二次函数y =ax 2+k 的图象上有A (-3,y 1),B (1,y 2)两点,且y 2<y 1,则a 的取值范围是( )A .a >0B .a <0C .a ≥0D .a ≤015.小华同学想用“描点法”画二次函数y =ax 2+c 的图象,取自变量x 的5个值,分别计算出对应的y 值,如下表:由于粗心,小华算错了其中的一个y 值,请你指出这个算错的y 值所对应的x =________.16.如图,在平面直角坐标系中,抛物线y =ax 2+4与y 轴交于点A ,过点A 且与x 轴平行的直线交抛物线y =14x 2于点B ,C ,则BC 的长为________.17.能否适当地上下平移函数y =12x 2的图象,使得到的新图象过点(4,-2)?若能,说出平移的方向和距离;若不能,请说明理由.18.已知抛物线y=12x2,把它向下平移,得到的抛物线与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则原抛物线应向下平移几个单位?19.已知直线y=kx+b与抛物线y=ax2-4的一个交点坐标为(3,5).(1)求抛物线所对应的函数关系式;(2)求抛物线与x轴的交点坐标;(3)如果直线y=kx+b经过抛物线y=ax2-4与x轴的交点,试求该直线所对应的函数关系式.参考答案1.上 2 下 22.A3.解:(1)函数y=4x2+2的图象可以看成是由函数y=4x2的图象向上平移2个单位得到的.(2)函数y=4x2+2的图象开口向上,对称轴为y轴,顶点坐标为(0,2).(3)将函数y=4x2的图象向下平移5个单位得到函数y=4x2-5的图象.4.下(0,-6) y轴(或直线x=0) =0 大-6 < >5.①④6.>7.A 8.B 9.D10.解:解方程x2-2x-24=0,得x1=-4,x2=6.因为函数y=ax2+c有最大值,所以a<0.而a和c分别是方程x2-2x-24=0的两个根,所以a=-4,c=6,所以该二次函数的关系式是y=-4x2+6.11.D .12. C13.C14.A15.2 16.817.解:能.设将函数y=12x2的图象向上平移c个单位后,所得新图象过点(4,-2),所得新图象为抛物线y=12x2+c.将(4,-2)代入y=12x2+c,得-2=12×16+c,c=-10,∴将函数y=12x2的图象向下平移10个单位后,所得新图象过点(4,-2).18.解:设将抛物线y=12x2向下平移b(b>0)个单位,得到的抛物线的关系式为y=12x2-b.不妨设点A在点B的左侧,由题意可得A(-2b,0),B(2b,0),C(0,-b).∵△ABC是直角三角形,∴OB=OC=OA,即2b=b,解得b=0(舍去)或b=2,∴若△ABC是直角三角形,则原抛物线应向下平移2个单位.19.解:(1)将交点坐标(3,5)代入y=ax2-4,得9a-4=5,解得a=1.故抛物线所对应的函数关系式为y =x 2-4.(2)在y =x 2-4中,令y =0可得x 2-4=0,解得x 1=-2,x 2=2. 故抛物线与x 轴的交点坐标为(-2,0)和(2,0). (3)需分两种情况进行讨论:①当直线y =kx +b 经过点(-2,0)时,由题意可知 ⎩⎨⎧-2k +b =0,3k +b =5,解得⎩⎨⎧k =1,b =2,故该直线所对应的函数关系式为y =x +2;②当直线y =kx +b 经过点(2,0)时,由题意可知⎩⎨⎧2k +b =0,3k +b =5,解得⎩⎨⎧k =5,b =-10,故该直线所对应的函数关系式为y =5x -10.综上所述,该直线所对应的函数关系式为y =x +2或y =5x -10.26.2.3二次函数y =a(x -h)2的图象与性质1.将抛物线y =x 2向________平移________个单位得到抛物线y =(x +5)2;将抛物线y =x 2向________平移________个单位得到抛物线y =(x -5)2.2.下列方法可以得到抛物线y =25(x -2)2的是( )A .把抛物线y =25x 2向右平移2个单位B .把抛物线y =25x 2向左平移2个单位C.把抛物线y=25x2向上平移2个单位D.把抛物线y=25x2向下平移2个单位3.顶点是(-2,0),开口方向、形状与抛物线y=12x2相同的抛物线是( )A.y=12(x-2)2 B.y=12(x+2)2C.y=-12(x-2)2 D.y=-12(x+2)24.抛物线y=12(x+3)2的开口向______;对称轴是直线________;当x=______时,y有最______值,这个值为________;当x________时,y随x的增大而减小.5.对于任意实数h,抛物线y=(x-h)2与抛物线y=x2( )A.开口方向相同 B.对称轴相同C.顶点相同 D.都有最高点6.关于二次函数y=-2(x+3)2,下列说法中正确的是( )A.其图象开口向上B.其图象的对称轴是直线x=3C.其图象的顶点坐标是(0,3)D.当x>-3时,y随x的增大而减小7.在平面直角坐标系中,函数y=-x+1与y=-32(x-1)2的图象大致是( )8.已知函数y=-(x-1)2的图象上的两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1______y2.(填“<”“>”或“=”)9.在平面直角坐标系中画出函数y=-12(x-3)2的图象.(1)指出该函数图象的开口方向、对称轴和顶点坐标;(2)说明该函数图象与二次函数y=-12x2的图象的关系;(3)根据图象说明,何时y随x的增大而减小.10.如图是二次函数y=a(x-h)2的图象,则直线y=ax+h不经过的象限是( )A.第一象限 B.第二象限C.第三象限 D.第四象限11.已知二次函数y=-(x-h)2,当x<-3时,y随x的增大而增大;当x >-3时,y随x的增大而减小.当x=0时,y的值为( )A.-1 B.-9 C.1 D.912.将抛物线y=ax2-1平移后与抛物线y=a(x-1)2重合,抛物线y=ax2-1上的点A(2,3)同时平移到点A′的位置,那么点A′的坐标为( )A .(3,4)B .(1,2)C .(3,2)D .(1,4)13.已知抛物线y =a (x -h )2的形状及开口方向与抛物线y =-2x 2相同,且顶点坐标为(-2,0),则a +h =________.14.二次函数y =a (x -h )2的图象如图所示,若点A (-2,y 1),B (-4,y 2)是该图象上的两点,则y 1________y 2.(填“>”“<”或“=”)15.若点A ⎝ ⎛⎭⎪⎫-134,y 1,B ⎝ ⎛⎭⎪⎫-54,y 2,C ⎝ ⎛⎭⎪⎫14,y 3为二次函数y =(x -2)2图象上的三点,则y 1,y 2,y 3的大小关系为____________.16.已知直线y =kx +b 经过抛物线y =-12x 2+3的顶点A 和抛物线y =3(x-2)2的顶点B ,求该直线的函数关系式.17.已知二次函数y =(x -3)2.(1)写出该二次函数图象的开口方向、对称轴、顶点坐标和该函数的最值. (2)若点A (x 1,y 1),B (x 2,y 2)位于对称轴右侧的抛物线上,且x 1<x 2,试比较y 1与y 2的大小关系.(3)抛物线y =(x +7)2可以由抛物线y =(x -3)2平移得到吗?如果可以,请写出平移的方法;如果不可以,请说明理由.18.一条抛物线的形状与抛物线y=2x2的形状相同,对称轴与抛物线y=1 2 (x+2)2的对称轴相同,且顶点在x轴上,求这条抛物线所对应的函数关系式.19.已知抛物线y=13x2如图所示.(1)抛物线向右平移m(m>0)个单位后,经过点A(0,3),试求m的值;(2)画出(1)中平移后的图象;(3)设两条抛物线相交于点B,点A关于新抛物线对称轴的对称点为C,试在新抛物线的对称轴上找出一点P,使BP+CP的值最小,并求出点P的坐标.参考答案1.左 5 右 5 2.A 3.B4.上x=-3 -3 小0 <-35.A 6.D 7.D 8.>9.解:图略.(1)该函数图象的开口向下,对称轴为直线x=3,顶点坐标为(3,0).(2)二次函数y=-12(x-3)2的图象是由二次函数y=-12x2的图象向右平移3个单位得到的.(3)当x >3时,y 随x 的增大而减小. 10.B 11.B 12.A 13.-4 14.= 15.y 1>y 2>y 316.解:抛物线y =-12x 2+3的顶点A 的坐标为(0,3),抛物线y =3(x -2)2的顶点B 的坐标为(2,0).∵直线y =kx +b 经过点A ,B , ∴⎩⎨⎧b =3,2k +b =0,解得⎩⎨⎧k =-32,b =3,∴该直线的函数关系式为y =-32x +3.17.解:(1)因为a =1>0,所以该二次函数的图象开口向上,对称轴为直线x =3,顶点坐标为(3,0);当x =3时,y 最小值=0,没有最大值.(2)因为当x >3时,y 随x 的增大而增大.又因为3<x 1<x 2,所以y 1<y 2. (3)可以.将抛物线y =(x -3)2向左平移10个单位可以得到抛物线y =(x +7)2.18.解:根据题意设这条抛物线所对应的函数关系式为y =a (x -k )2. ∵这条抛物线的形状与抛物线y =2x 2的形状相同,∴|a |=2,即a =±2. 又∵这条抛物线的对称轴与抛物线y =12(x +2)2的对称轴相同,∴k =-2,∴这条抛物线所对应的函数关系式为y =2(x +2)2或y =-2(x +2)2.19.解:(1)平移后得到的抛物线对应的函数关系式为y =13(x -m )2,把(0,3)代入,得3=13(0-m )2,解得m 1=3,m 2=-3.因为m >0,所以m =3.(2)如图所示.(3)如图,由题意可知平移后抛物线的函数关系式为y =13(x -3)2,点B 的坐标为⎝⎛⎭⎪⎫32,34,点C 的坐标为(6,3),点P 为直线BC 与抛物线y =13(x -3)2的对称轴(直线x =3)的交点.设直线BC 所对应的函数关系式为y =kx +b ,则⎩⎨⎧32k +b =34,6k +b =3,解得⎩⎨⎧k =12,b =0,即直线BC 所对应的函数关系式为y =12x ,当x =3时,y =32,因此点P 的坐标为⎝⎛⎭⎪⎫3,32.26.2.4二次函数y =a (x -h )2+k 的图象与性质1.二次函数y =-3()x -42+2的图象是由抛物线y =-3x 2先向________(填“左”或“右”)平移________个单位,再向________(填“上”或“下”)平移________个单位得到的.2.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A.y=2(x-3)2-5 B.y=2(x+3)2+5C.y=2(x-3)2+5 D.y=2(x+3)2-53.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向上平移3个单位D.先向右平移2个单位,再向下平移3个单位4.在同一平面直角坐标系内,将抛物线y=(x-2)2+5先向左平移2个单位,再向下平移1个单位后,所得抛物线的顶点坐标为( )A.(4,4) B.(4,6)C.(0,6) D.(0,4)5.抛物线y=3(x-2)2+3的开口________,顶点坐标为________,对称轴是________;当x>2时,y随x的增大而________,当x<2时,y随x的增大而________;当x=________时,y有最________值是________.6.如图所示为二次函数y=a(x-h)2+k的图象,则a________0,h________0,k________0.(填“>”“<”或“=”)7.二次函数y=(x-2)2-1的图象不经过的象限为( )A.第一象限 B.第二象限C.第三象限 D.第四象限8.设二次函数y=(x-3)2-4的图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是( )A.(1,0) B.(3,0)C.(-3,0) D.(0,-4)9.已知二次函数y=-(x+1)2+2,则下列说法正确的是( )A.其图象开口向上B.其图象与y轴的交点坐标为(-1,2)C.当x<1时,y随x的增大而减小D.其图象的顶点坐标是(-1,2)10.二次函数y=-(x-b)2+k的图象如图所示.(1)求b,k的值;(2)二次函数y=-(x-b)2+k的图象经过怎样的平移可以得到二次函数y=-x2的图象?11.已知二次函数y=34(x-1)2-3.(1)画出该函数的图象,并写出图象的开口方向、对称轴、顶点坐标及y随x 的变化情况;(2)函数y有最大值还是最小值?并写出这个最大(小)值;(3)设函数图象与y轴的交点为P,求点P的坐标.12.若抛物线y =(x -1)2+2不动,将平面直角坐标系xOy 先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线的关系式变为( )A .y =(x -2)2+3B .y =(x -2)2+5C .y =x 2-1D .y =x 2+413.如图,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A ′,B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12(x -2)2-2B .y =12(x -2)2+7C .y =12(x -2)2-5D .y =12(x -2)2+414.已知二次函数y =a (x -1)2-c 的图象如图所示,则一次函数y =ax +c的大致图象可能是图26-2-21中的( )15.已知二次函数y =-(x -h )2(h 为常数),当自变量x 的值满足2≤x ≤5时,与其对应的函数y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或616.已知二次函数y =-(x +k )2+h ,当x >-2时,y 随x 的增大而减小,则k 的取值范围是________.17.已知抛物线y =()x +m -12+m +2的顶点在第二象限,试求m 的取值范围.18.如图,抛物线y =-(x -1)2+4与y 轴交于点C ,顶点为D . (1)求顶点D 的坐标; (2)求△OCD 的面积.19.已知抛物线y =3()x +12-12如图所示. (1)求出该抛物线与y 轴的交点C 的坐标; (2)求出该抛物线与x 轴的交点A ,B 的坐标; (3)如果抛物线的顶点为D ,试求四边形ABCD 的面积.参考答案1.右 4 上22.A 3.B 4.D5.向上(2,3) 直线x=2 增大减小 2 小 36.< > >7.C 8.B 9.D10.解:(1)由图象可得二次函数y=-(x-b)2+k的图象的顶点坐标为(1,3).因为二次函数y=-(x-b)2+k的图象的顶点坐标为(b,k),所以b=1,k =3.(2)把二次函数y=-(x-b)2+k的图象向左平移1个单位,再向下平移3个单位可得到二次函数y=-x2的图象(其他平移方法合理也可).11.解:(1)画函数图象略.∵a=34>0,∴图象的开口向上,对称轴为直线x=1,顶点坐标为(1,-3).当x<1时,y随x的增大而减小,当x>1时,y随x的增大而增大.(2)∵a=34>0,∴函数y有最小值,最小值为-3.(3)令x=0,则y=34×(0-1)2-3=-94,所以点P的坐标为⎝⎛⎭⎪⎫0,-94.12.C 13.D 14.A 15.B16.k≥2 [解析] 抛物线的对称轴为直线x=-k,因为a=-1<0,所以抛物线开口向下,所以当x>-k时,y随x的增大而减小.又因为当x>-2时,y随x的增大而减小,所以-k≤-2,所以k≥2.17.解:因为y =()x +m -12+m +2=[x -(-m +1)]2+(m +2),所以抛物线的顶点坐标为(-m +1,m +2).因为抛物线的顶点在第二象限,所以⎩⎨⎧-m +1<0,m +2>0,即⎩⎨⎧m >1,m >-2,所以m >1. 18.解:(1)顶点D 的坐标为(1,4). (2)把x =0代入y =-(x -1)2+4,得y =3, 即OC =3,所以△OCD 的面积为12×3×1=32.19.解:(1)当x =0时,y =-9,所以点C 的坐标为(0,-9).(2)当y =0时,3()x +12-12=0,解得x 1=-3,x 2=1,所以点A 的坐标为(-3,0),点B 的坐标为(1,0).(3)由抛物线所对应的函数关系式可知点D 的坐标为(-1,-12),设对称轴与x 轴交于点E ,则点E 的坐标为(-1,0),所以S 四边形ABCD =S △ADE +S 梯形OCDE +S △BOC =12×2×12+12×1×(9+12)+12×1×9=27.26.2.5二次函数y =a 2x +bx +c 的图象与性质一.选择题1.已知二次函数y =ax 2﹣2x +2(a >0),那么它的图象一定不经过( ) A .第一象限B .第二象限C .第三象限 D.第四象限2.抛物线y =2x 2,y =﹣2x 2,y =12x 2共有的性质是( ) A .开口向下B .对称轴是y 轴 C.都有最低点 D.y 的值随x 的增大而减小3.抛物线y =2x 2+1的顶点坐标是( ) A.(2,1)B .(0,1)C .(1,0)D .(1,2)4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1 C.顶点坐标是(1,2) D.与x轴有两个交点5.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值 B.对称轴是直线x=12C.当x<12,y随x的增大而减小 D.当﹣1<x<2时,y>0二.填空题6.抛物线y=2x2﹣1在y轴右侧的部分是(填“上升”或“下降”).7.二次函数y=x2﹣4x﹣5图象的对称轴是直线.8.如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是.三.解答题9.在同一平面内画出函数y=2x2与y=2x2+1的图象.10.如图,已知二次函数y=a(x﹣h)2O(0,0),A(2,0).(1)写出该函数图象的对称轴.(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?11.已知抛物线y=x2﹣x﹣1.(1)求抛物线y=x2﹣x﹣1的顶点坐标、对称轴;(2)抛物线y =x 2﹣x ﹣1与x 轴的交点为(m ,0),求代数式m 2+21m的值.参考答案1.C2. B3. B4. C5. D6.上升7.x =28. a <﹣3 9. 解:列表,得10.解:(1)∵二次函数y =a (x ﹣h )2O (0,0),A (2,0).解得h =1,a =, ∴抛物线的对称轴为直线x =1.(2)点A ′是该函数图象的顶点.理由如下: 如图,过点A ′作A ′B ⊥x 轴于点B , ∵线段OA 绕点O 逆时针旋转60°到OA ′, ∴OA ′=OA =2,∠A ′OA =60°. 在Rt△A ′OB 中,∠OA ′B =30°, ∴OB =12OA ′=1,∴A ′B∴点A ′的坐标为(1),∴点A ′为抛物线y =x ﹣1)2的顶点.11.解:(1) y =x 2﹣x ﹣1=x 2﹣x +14﹣1﹣14=(x ﹣12)2﹣54, 所以顶点坐标是(12,﹣54),对称轴是直线x =12. (2)当y =0时,x 2﹣x ﹣1=0,解得x 或x当m时,m 2+21m =)2+2=;当mm 2+21m =22+=64-(),故m 2+21m=3.26.2.6 二次函数最值的应用1.二次函数y =x 2-2x +6有最________值(填“大”或“小”),把函数关系式配方得____________,其图象的顶点坐标为________,故其最值为________.2.某二次函数的图象如图所示,根据图象可知,当x=________时,该函数有最______值,这个值是________.3.若抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),则二次函数y=ax2+bx+c有( )A.最小值-3 B.最大值-3C.最小值2 D.最大值24.已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是( )A.函数有最小值-5,最大值0 B.函数有最小值-3,最大值6 C.函数有最小值0,最大值6 D.函数有最小值2,最大值6 5.若二次函数y=ax2+bx+1同时满足下列条件:①图象的对称轴是直线x =1;②最值是15.则a的值为( )A.14 B.-14 C.28 D.-286.一小球被抛出后,它距离地面的高度h(米)和飞行时间t(秒)满足函数关系式h=-5(t-1)2+6,则小球距离地面的最大高度是( )A.1米 B.5米 C.6米 D.7米7.某公园一喷水管喷水时水流的路线呈抛物线形(如图26-2-32).若喷水时水流的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+1.25,则在喷水过程中水流的最大高度为( )图26-2-32A.1.25 m B.2.25 mC.2.5 m D.3 m8.如图26-2-33,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD 的最大面积是( )A.60 m2 B.63 m2C.64 m2 D.66 m29.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数关系式是s=60t-32t2,则飞机着陆后滑行的最长时间为________秒.10.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(cm2)随其中一条对角线的长x(cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x的值是多少时,菱形风筝的面积S最大?最大面积是多少?11.用长8 m的铝合金条制成矩形窗框(如图所示),使窗户的透光面积最大(铝合金条的宽度忽略不计),那么这个窗户的最大透光面积是( )A.6425m2 B.43m2 C.83m2 D.4 m212.如图,在矩形ABCD中,AB=4,BC=6,当三角尺MPN的直角顶点P在BC边上移动时,直角边MP始终经过点A,设三角尺的另一直角边PN与边CD相交于点Q,则CQ的最大值为( )A.4 B.94C.92D.17413.已知M,N两点关于y轴对称,且点M在双曲线y=12x上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x( )A.有最大值,最大值为-92B.有最大值,最大值为92C.有最小值,最小值为92D.有最小值,最小值为-9214.如图26-2-36,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1 cm/s的速度向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为________s 时,四边形EFGH的面积最小,其最小面积是________cm2.15.如图,矩形ABCD 的周长为20,求: (1)矩形ABCD 的面积的最大值; (2)矩形ABCD 的对角线的最小值.16.如图,在平面直角坐标系中,已知抛物线y =12x 2+x -4与x 轴交于点A ,B ,与y 轴交于点C .(1)求点A ,B ,C 的坐标;(2)若M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMC 的面积为S ,求S 关于m 的函数关系式,并求出S 的最大值.17.某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,则平均每件产品的利润y 1(元)与国内的销售数量x (千件)之间的关系为y 1=⎩⎨⎧15x +90(0<x ≤2),-5x +130(2<x <6).若在国外市场销售,则平均每件产品的利润y 2(元)与国外的销售数量t (千件)之间的关系为y 2=⎩⎨⎧100(0<t ≤2),-5t +110(2<t <6).(1)用含x 的代数式表示t 为t =________;当0<x ≤4时,y 2与x 的函数关系式为y 2=________;当4≤x <________时,y 2=100;(2)求该公司每年销售这种健身产品的总利润w (千元)与国内的销售数量x (千件)的函数关系式,并指出x 的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大利润为多少?参考答案1.小 y =(x -1)2+5 (1,5) 5 2.2 小 -13.B 4.B 5.B 6.C 7.B 8.C 9.2010.解:(1)S =12x (60-x )=-12x 2+30x .(2)在S =-12x 2+30x 中,a =-12<0,∴S 有最大值.当x =-b2a=-302×⎝ ⎛⎭⎪⎫-12=30时, S 取得最大值,最大值为4ac -b 24a =4×⎝ ⎛⎭⎪⎫-12×0-3024×⎝ ⎛⎭⎪⎫-12=450. ∴当x 的值为30时,菱形风筝的面积S 最大,最大面积是450 cm 2. 11.C .12.B 13.B14.3 18 [解析] 设运动时间为t s(0≤t ≤6),则AE =t cm ,AH =(6-t )cm.根据题意,得S 四边形EFGH =S 正方形ABCD -4S △AEH =6×6-4×12t (6-t )=2t 2-12t+36=2(t -3)2+18,∴当t =3时,四边形EFGH 的面积取最小值,最小值为18.故答案为:3,18.15.解:(1)∵设矩形的一边长为x ,则其邻边长为10-x , ∴矩形ABCD 的面积S =x (10-x )=-x 2+10x =-(x -5)2+25, ∴当x =5时,S 最大=25.即矩形ABCD 的面积的最大值为25.(2)设矩形的一边长为x ,则其邻边长为10-x ,对角线长为y , ∴y 2=x 2+(10-x )2=2x 2-20x +100=2(x -5)2+50, ∴当x =5时,y 最小2=50,∴矩形ABCD 的对角线的最小值为5 2.16.解:(1)当x =0时,y =-4,∴点C 的坐标为(0,-4).当y =0时,12x 2+x -4=0,解得x 1=-4,x 2=2,∴点A 的坐标为(-4,0),点B 的坐标为(2,0).(2)过点M 作MD ⊥x 轴于点D ,设点M 的坐标为(m ,n ),则AD =m +4,MD =-n ,n =12m 2+m -4,∴S =S △AMD +S 梯形DMCO -S △ACO=12(m +4)(-n )+12(-n +4)(-m )-12×4×4=-2n -2m -8 =-2⎝ ⎛⎭⎪⎫12m 2+m -4-2m -8=-m 2-4m (-4<m <0). ∵S =-m 2-4m =-(m +2)2+4, ∴当m =-2时,S 最大值=4. 17.解:(1)6-x 5x +80 6(2)当0<x ≤2时,w =(15x +90)x +(5x +80)(6-x )=10x 2+40x +480; 当2<x ≤4时,w =(-5x +130)x +(5x +80)(6-x )=-10x 2+80x +480; 当4<x <6时,w =(-5x +130)x +100(6-x )=-5x 2+30x +600.所以w =⎩⎨⎧10x 2+40x +480(0<x ≤2),-10x 2+80x +480(2<x ≤4),-5x 2+30x +600(4<x <6).(3)当0<x ≤2时,w =10x 2+40x +480=10(x +2)2+440,此时,当x =2时,w 最大值=600;当2<x ≤4时,w =-10x 2+80x +480=-10(x -4)2+640,此时当x =4时,w 最大值=640;当4<x <6时,w =-5x 2+30x +600=-5(x -3)2+645,此时当4<x <6时,w <640.所以当x =4时,w 最大值=640.所以该公司每年国内销售4千件、国外销售2千件时,可使公司每年的总利润最大,最大利润为64万元(或640千元).26.2.7 求二次函数的表达式一.选择题1.如果二次函数y =ax 2+bx +c (a ≠0)的图象如图,那么( )A.a<0,b>0,c>0 B.a>0,b<0,c>0C.a>0,b<0,c<0 D.a>0,b>0,c<02.二次函数y=(a﹣1)x2(a为常数)的图象如图,则a的取值范围为()A.a>1 B.a<1 C.a>0 D.a<03.已知抛物线y=(m﹣1)x2﹣mx﹣m2+1过原点,则m的值为()A.±1B.0 C.1 D.﹣14.将二次函数y=x2的图象向下平移1个单位,再向右平移1个单位后所得图象的函数表达式为()A.y=(x+1)2+1 B.y=(x+1)2﹣1 C.y=(x﹣1)2+1 D. y=(x﹣1)2﹣1 二.填空题5.已知抛物线经过点(5,﹣3),其对称轴为直线x=4,则抛物线一定经过另一点的坐标是.6.若点(﹣2,a),(﹣3,b)都在二次函数y=x2+2x+m的图象上,比较a、b的大小:a b.(填“>”“<”或“=”).7.如果将抛物线y=3x2平移,使平移后的抛物线的顶点坐标为(2,2),那么平移后的抛物线的表达式为.三.解答题8.在平面直角坐标系内,抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点.(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.9.如图,已知二次函数的图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式,并化成一般形式.10.已知在平面直角坐标系内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)求△ABC的面积.参考答案1.C2.B3.D4. D5. (3,﹣3)6. <7. y=3(x﹣2)2+2.8.解:(1)∵抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点,∴0, 422,5, ca ba b=⎧⎪-=-⎨⎪+=-⎩解得2,3,0, abc=-⎧⎪=-⎨⎪=⎩∴抛物线的表达式为y=﹣2x2﹣3x.(2)∵y=﹣2x2﹣3x=﹣2(x+34)2+98,∴抛物线的顶点坐标为(﹣34,98).9.解:(1)∵点A的坐标为(﹣1,0),点B的坐标为(4,0),∴OC=AB=5,∴点C的坐标为(0,5).(2)设二次函数的解析式为y=ax2+bx+5,把点A(﹣1,0)、B(4,0)的坐标分别代入原函数解析式,得a=﹣54,b=154.∴二次函数的解析式为y=﹣54x2+154x+5.10.解:(1)把点B的坐标(3,0)代入抛物线y=x2+bx+6得0=9+3b+6,解得b=﹣5,∴抛物线的表达式为y=x2﹣5x+6.(2)∵抛物线的表达式y=x2﹣5x+6,∴A(2,0),B(3,0),C(0,6),∴S△ABC=12×(3﹣2)×6=3.26.3 实践与探索一.选择题1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a ﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③2已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.3.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象如图,则该图象的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣D.直线x=4.抛物线y=ax2+bx+c如图,考查下述结论:①b<0;②a﹣b+c>0;③b2>4ac;④2a+b<0.正确的有()A.①②B.①②③C.②③④D.①②③④5.将抛物线y=x2﹣2平移到抛物线y=x2+2x﹣2的位置,以下描述正确的是()A.向左平移1单位,向上平移1个单位B.向右平移1单位,向上平移1个单位C.向左平移1单位,向下平移1个单位D.向右平移1单位,向下平移1个单位6.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△O AB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)7.关于x的二次函数y=x2+(1﹣m)x﹣m,其图象的对称轴在y轴的右侧,则实数m的取值范围是()A.m<﹣1 B.﹣1<m<0 C.0<m<1 D.m>18.已知二次函数y=ax2﹣1的图象开口向下,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限二.填空题9.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为_________ .10如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是_________ .11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________ 米.12.已知二次函数y=ax2+bx+c的图象如图所示,则下列7个代数式ab,ac,bc,b2﹣4ac,a+b+c,a﹣b+c,2a+b中,其值为正的式子的个数为_________ 个.13.已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:x …0 1 2 3 …y … 5 2 1 2 …点A(x1,y1)、B(x2,y2)在函数的图象上,则当0<x1<1,2<x2<3时,y1与y2的大小关系是_________ .14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________ 件(用含x的代数式表示).。