长江口深水航道大风骤淤量的统计与分析
- 格式:pdf
- 大小:250.58 KB
- 文档页数:4
长江口12.5m深水航道运行状况及特点许桂兰【摘要】基于海事部门船舶运输管理系统(VTS)资料及交通运输部长江干线货运量统计资料,对长江口12.5 m深水航道运行状况及特点进行分析,并探讨当前深水航道通航压力的缓解对策及建议.研究表明:长江口航道货物通过量快速增长,重进轻出态势进一步发展;通航船舶运营组织方式发生一定变化,船舶朝大型化方向发展,尤其船宽超过45 m以上大型船舶数量增加明显,长江口12.5 m主航道的双向通航能力尚显不足.为缓解当前乃至未来一段时间内长江口深水航道通航压力,宜加快长江口航道体系建设的实施步伐,并适时加强长江口主航道拓宽可能性的研究.【期刊名称】《水运工程》【年(卷),期】2015(000)009【总页数】5页(P1-5)【关键词】长江口12.5 m水航道;运行状况;通航特点【作者】许桂兰【作者单位】交通运输部长江口航道管理局,上海200003【正文语种】中文【中图分类】U61徐六泾以下的长江口呈现“三级分汊、四口入海”的河势格局,包括北槽、南槽、北港和北支4条入海通道。
随着2010年3月长江口深水航道治理三期工程交工验收,12.5 m深水航道建成,长江口打开了长江黄金水道的“龙头”,极大地缓解了长江口航道水深不足与航运需求间的矛盾,有力地促进了沿江产业布局和长江经济带的发展。
12.5 m深水航道建成后,第三、四代集装箱船可全天候进出长江口,第五、六代集装箱船和10万吨级满载散货船及20万吨级减载散货船可乘潮进出长江口。
本文基于海事部门船舶运输管理系统(VTS)资料及交通运输部长江干线货运量统计资料[1]、内河主要航道水上船舶流量统计资料等,对长江口12.5 m 深水航道建成后船舶运行状况及特点进行分析。
并在此基础上,初步探讨当前长江口深水航道通航压力的缓解对策和建议。
研究结果有望为长江口航道开发治理和上海国际航运中心建设等提供参考。
长江口12.5 m深水航道上起长江浏河口,下至长江口灯船,全长125.2 km。
影响长江口深水航道骤淤的非常态天气过程Ⅰ:台风的路径特征及数值验证黄华聪;贾晓;路川藤【摘要】为归纳长江口深水航道台风期骤淤的发生规律及特征,分析了发生骤淤时刻的气象条件与对应的波浪条件.研究发现,牛皮礁站的波能与骤淤具有较好的相关性;从台风路径上分析,长江口东侧过境台风对航道的骤淤影响显著.结合历史台风路径,选取3个典型路径的台风,选择藤田-高桥圆形经验风场和CFSR(climate forecast system reanalysis)风场的混合风场复演了台风场,然后采用SWAN模型模拟了不同路径台风期间的波况,最后以牛皮礁站的浅水波能流为判别参数,分析不同路径台风对长江口深水航道骤淤的影响.研究表明长江口东侧过境的台风是较易产生较大波能并进一步诱发骤淤的典型台风路径,这一分析结果与2010年以来的骤淤实测台风路径结果吻合.%To summarize the occurrence regularity and characteristics of sudden siltation during typhoon period in the deepwater navigation channel of Yangtze Estuary, the meteorological conditions and corresponding wave conditions during sudden siltation are analyzed. The results show that the wave energy correlates well with the siltation in NPJ station. The analysis of typhoon paths suggests that the sudden siltation in the navigation channel is significantly influenced by the taphoon passing through the east part of Yangtze Estuary. In this study, three typical typhoon paths are selected with reference to the historic typhoon paths in Yangtze Estuary, and the typhoon field was replicated by combing the empirical circular ( Fujita and Takahashi ) wind field and CFSR ( climate forecast system reanalysis) wind field. SWAN model is then used tosimulate the wave conditions under different typhoons paths. Finally, the effects of different typhoon paths on the sudden siltation are analyzed by taking the shallow water wave energy in NPJ station as the discriminant parameter. The study indicates that the typhoon passing through the east area of the Yangtze Estuary is found to be a typical typhoon path, which can readily induce relatively large wave energy and subsequent sudden siltation. And such analysis result agrees well with that of measured typhoon path causing sudden siltation since 2010 .【期刊名称】《河海大学学报(自然科学版)》【年(卷),期】2017(045)005【总页数】7页(P432-438)【关键词】长江口深水航道;骤淤;台风路径;藤田-高桥经验风场;CFSR风场;SWAN 模型;波能【作者】黄华聪;贾晓;路川藤【作者单位】上海河口海岸科学研究中心,上海 201201;上海河口海岸科学研究中心,上海 201201;上海交通大学水动力学教育部重点实验室,上海 200240;南京水利科学研究院河流海岸研究所,江苏南京 210029【正文语种】中文【中图分类】TV148;P732骤淤是港口航道工程十分关心的水沙事件,其因淤积量大且淤积时间短,给疏浚造成很大的压力,甚至会影响到船舶的安全通航。
长江三角洲地区河口淤积对航运影响的定量分析◎ 常胜 吴世新 江苏省水利建设工程有限公司摘 要:为了深入探讨长江三角洲地区河口淤积现象及其对航运的影响,本文采用了综合性的研究方法。
通过采用先进的水文动力学模拟和地理信息系统(GIS)技术,对长江三角洲地区的河口淤积进行了详细的定量评估,并分析了这些策略对航道深度、宽度和航行安全的具体影响。
研究结果表明,采取适当的河道调整和疏浚措施,如优化航道设计和增加定期疏浚,可以有效改善河口区的航运条件,降低淤积带来的风险,从而提高航道的适航性和航运的安全性。
关键词:长江三角洲;河口淤积;航道深度;航行安全;疏浚策略长江三角洲地区不仅是中国的重要航运枢纽,也是国际贸易的关键节点。
近年来,该地区河口淤积问题日益突显,对航运安全和效率构成了严峻挑战。
本研究通过定量方法综合分析了淤积现象对航道的具体影响,利用先进的水文地理数据和动力学模型来评估淤积对航运的影响。
本文的目标是提供科学依据和实际指导,制定有效的应对措施,确保长江三角洲地区的航运安全和效率,支持该区域乃至全球的航运网络发展。
1.长江三角洲地区的地理环境及航运枢纽基本情况1.1地理特征与航运重要性长江三角洲地区,位于长江下游,包括上海市及江苏和浙江省的部分地区[1]。
这个区域以其丰富的水资源和错综复杂的河网系统而闻名,构成了中国东部的核心水路交通网络。
该区域主要由冲积平原组成,河流纵横交错,河道频繁变化。
特别是在河口地区,河床的持续淤积和侵蚀作用导致地形不断变化,给航运带来了挑战。
长江三角洲作为中国内河航运的重要枢纽,承担着大量的货物和旅客运输任务,对地方经济和国际贸易至关重要。
1.2地面沉降监测与数据分析长江三角洲地区自2005年以来建立了全面的地面沉降监测网络,包括GPS监测网络和地下水动态监测网络,涵盖整个区域。
上海市的GPS一级网点共有36点,苏锡常、扬泰通、杭嘉湖地区分别设有33点、34点、21点,总计达到127点。
长江口北槽航道回淤原因分析谈泽炜,范期锦,郑文燕,朱剑飞【摘要】摘要:针对2005年以来北槽深水航道回淤量增大且主要集中于中段的特征,系统分析泥沙条件和水动力条件等各类因素变化的影响,指出导致中段回淤量增大的主要原因,提出制定减淤措施方案的思路。
【期刊名称】水运工程【年(卷),期】2009(000)006【总页数】12【关键词】长江口;北槽;回淤;原因·航道及船闸·1 北槽航道回淤的特征长江口深水航道疏浚单元划分见图1。
近年来北槽航道的年回淤量及各疏浚单元年回淤量的分布见表1和图2。
北槽航道回淤的主要特征:1 )二期工程后淤积量明显增大,已大大超过二期初设阶段预测的年维护量2 500万m3;2 )分布集中,H—N单元16 km长航道(占二期航道总长73.45 km的22%)内的回淤量占总回淤量的60%~70%;3 )2005年后,回淤量逐年增大;4 )洪枯季的淤积规律不变(表2)。
规律不变有二层含义:一是从一期工程后至今,洪季(5—10月)淤积量占全年80%左右的比重一直未变;二是北槽中段(H—N单元)与全槽其它各段并无不同:洪、枯季淤积量之比均约为8:2。
2 北槽航道回淤原因分析泥沙在航槽中淤积,主要有两种形态:一是河床表层的泥沙(底沙)在水流的搬运下自上游向下游的运移,表现为一种缓慢的床面高程的过程性抬升,在长江口运移速度一般数公里/年;二是河床面以上的水体中的悬沙因水流的输沙动力不足落淤至床面,导致航槽淤浅。
长江口水体含沙量洪季平均约1.0 kg/m3,枯季约0.5 kg/m3,悬沙淤积量的大小取决于水体含沙量(含沙量高则淤强大)、滩槽高差(淤强大致与槽滩水深比的二次方成正比)、流速(流速越大,挟沙力越大,淤强小)和细颗粒泥沙的絮凝条件(絮凝泥沙团的沉降速度可达0.5~0.8 mm/s,比离散泥沙沉速大十几倍)等。
因此,对于北槽航道严重回淤的原因,应当从上述泥沙条件(包含底沙和悬沙)和动力条件(对淤强有明显影响的地形条件——滩槽差、流场条件——流速及其纵横向分布、絮凝条件等)两方面入手,针对前述回淤特征,从空间上重点关注中段,时间上重点关注2005年前后这些淤积条件的变化[1]。
长江口深水航道的回淤问题31,谈泽炜1 , 李文正1 , 虞志英2金(11 长江口航道建设有限公司, 上海200003; 21 华东师范大学河口海岸国家重点实验室, 上海200062)中图分类号: U 617 文献标识码: A 文章编号: 100323688 (2003) 0520001207在取得上述结果的同时, 也出现不利的方面, 主要是北槽分流比减少和丁坝上游段受丁坝壅水影响及横沙通道冲刷泥沙下泄等出现成片淤积(图22) , 和上一期工程的经验及二期数、物模研究工作的成果表明, 在修筑导堤形成北槽边界、堵截串沟、形成微弯河型之后, 进一步调整流场和地形以减少航道回淤要依靠丁坝群的综合作用。
全方面的问题; 二是通过丁坝群增加航道附近单宽流量, 在目前工程的场合, 上段与下段可能会带来相反的效果, 这也是不能不引起注意的。
图23 5~11 号区段平均落急流速增幅与全槽放宽率关系图22 南港南北槽冲淤变化图(1998209~2002202)丁坝群调整流场主要通过形成治导线来起作用。
治导线的形态特征以平均放宽率Α来表示。
据上海航道设计研究院数学模型成果整理得到不同丁坝布置方案下北槽上、下段治导线的平均放宽率和落急流速增量的关系(图23、图24) , 表明随着整个整治段放宽率的减小, 下段流速渐增而上段流速渐减, 从而对上段河槽地形的调整和航道回淤可能产生不利的影响。
因此, 在评估和比较丁坝布局方案时,必须上、下段综合考虑, 而且要进一步注意通过流场调整达到的地形调整的程度和状态对实现三期工程航道水深目标的影响和效果。
关于整治建筑物的减淤作用问题, 通常关注如何提高航道附近流带的单宽流量, 以减少航道内的泥沙落淤, 这无疑是对的。
但应注意二点: 一是整治汊水流阻力增加引起的潮流量减少, 当潮流量减少到一定程度之后, 单宽流量将不再提高, 这与龙口水流流速随龙口断面变化的情况相仿, 从长期效应看, 整治汊潮量即分流比的减少也会带来河势安图24 1~5 号区段平均落急流速增幅与全槽放宽率关系212 航道轴线定线和疏浚工艺与标准的改进( 1) 由动床冲刷物模试验得到总体工程布置下的冲刷地形和深泓位置, 结合流场和整治建筑物设计条件等, 在工程立项阶段慎重确定了航道轴线位置。
长江口深水航道治理工程091091叶爱民港口航道与海岸工程工程简介:1998年开始的长江口深水航道治理工程历时13年,耗资157.6亿元人民币,打造出了一条长达92.2公里,底宽350米到400米的双向水上高速通道,它不仅是迄今为止中国最大的水运工程,也是世界上最大的河口治理工程,这项工程的实施,打通了长江口通航的瓶颈,让长江航运网络与国际海运网路对接,真正实现了江海直达。
一、长江口治理的背景航运的兴衰对一个地区的发展有着很大的影响,比如开封在北宋时期,由于航运交通的发达和便利,曾一度成为中国的政治经济和文化中心,北宋著名画家张择端在他的传世之作《清明上河图》中为我们生动地描绘了汴河航运所造就的这座繁华都市,当时的汴京开封,人口已达到100多万,是当时世界上最繁华的城市之一,应该说,开封的历史与河流航道息息相关,开封的兴盛是得益于汴河水运的通畅,而开封的衰败则要归罪于汴河水运航道的淤塞,由于汴河航道被堵塞,开封逐渐衰落了,昔日的繁华一去不复返,尽管今天的开封市人口已达到500万之多,但地位早已远逊当年。
航道兴,则经济兴,经济兴,国家才能崛起,在经济全球化的今天,世界经济的70%都集中在沿海200公里的范围之内,人类的所有经济活动,无论是物质交流,人员交流还是信息的占有,大部分仍然是依靠航运来完成的,航运被认为是经济发展的关进因素。
我国的上海曾被誉为是世界上的第一大港,它和鹿特丹有着相似的经历,经历海陆变迁,地处长江入海口的上海,在南宋末年逐步发展成为新兴的贸易港口,19世纪后期,上海的航线也辐射到东南沿海和东南亚各国,而到了20世纪30年代,上海港货物吞吐量达到1400万吨,成为世界第七大港,并且跃居成为当时东亚最大的航运、经济、贸易和金融中心。
然而时至20世纪80年代,上海在作为中国经济的中心,其航运发展已明显滞后,“上海上海,有江无海”,这句在当时已流传多年的俗语,生动反映了当时上海航运发展的桎梏。
长江口深水航道船舶速度骤降和倒航的原因与预防摘要:本文简要地介绍了长江口深水航道船舶近期在落潮流时段进口航行中出现速度骤降甚至船舶倒退航行的现象,专门对这些现象造成的原因及其对船舶航行造成的危险进行了分析,试图在寻找这些现象内在原因的基础上,提出相应的的预防措施或手段,以避免类似情况的发生和保证船舶的安全。
关键词:长江口深水航道速度骤降倒航中图分类号: U698.6 文献标识码:A 文章编号:1006-7973(2014)05-0066-04长江口深水航道治理工程是一项规模宏大、国民经济效益显著的跨世纪工程。
第一、二和三期工程使长江口深水航道的通航水深分别达到了8.5m、10.0m和12.5m。
该项工程的顺利实施大大提高了航道的通过能力,进一步改善了船舶安全航行的条件。
如何保障长江口深水航道安全畅通和船舶的航行安全,也对航道通航管理部门和过往船舶提出了更高的要求。
船舶“速度骤降和倒航”现象1、现象描述长江口深水航道运营以来,发生过多起船舶在航槽中正常航行时突遇速度骤降甚至船舶倒退的现象。
这些速度骤降和倒航现象一般发生在大潮汛特别是洪水季节船舶落潮流进口时段,具体位置在长江口深水航道北槽航道牛皮礁灯桩至D25灯浮弯头水域航段,船型主要集中于吃水在10m左右重载散杂货船(这类船舶在落潮流时段只能在航槽内航行)。
2、具体事例笔者曾在引航的实际过程中遇到了船舶速度骤降和倒航现象的情况,现将具体情况介绍如下:2.1船舶资料船名:朝阳门;船长:151.22m;船宽:21.2m;吃水:9.5/9.69m;船速:据船方介绍港速85rpm/8~9节,海速100rpm/10~11节;装载状态:满载木材,大量甲板货。
2.2水文气象气象条件:东北风4~5级。
当日潮汐资料:中浚――高潮1124(462)低潮1902(083)下一个高潮2327(417);牛皮礁――高潮1108(465)低潮1727(083)下一个高潮2314(415);北槽中――高潮1131(436)低潮1829(065)下一个高潮2339(387);长兴――高潮1251(424)高潮0104(370)。