2011全国各省市中考数学试题分类汇编-—二次函数
- 格式:doc
- 大小:213.50 KB
- 文档页数:3
阅读使人充实,会谈使人敏捷,写作使人精确。
——培根2011全国各省市中考数学试题分类汇编-—函数与一次函数(解答题及答案)三.解答题1.(2011安徽中考)18、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A 1(____,____),A 3(____,____),A 12(___,___);(2)写出点A n 的坐标(n 是正整数);(3)指出蚂蚁从点A 100到A 101的移动方向.2.(2011安徽中考)21. 如图函数11y k x b =+的图象与函数2k y x=(x >0)的图象交于A 、B 两点,与y 轴交于C 点.已知A 点的坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点坐标;【解】(2)观察图象,比较当x >0时,1y 和2y 的大小.3.(2011广州中考)14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π)4.(2011甘肃兰州)24.(本小题满分7分)如图,一次函数3y kx =+的图像与反比例第18题图 第21题函数m y x=(x >0)的图像交与点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B.一次函数的图像分别交x 轴、y 轴于点C 、点D ,且DBP S ∆=27,OC CA =12. (1)求点D 的坐标;(2(3)根据图像写出当x5.(2011广东茂名)某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.(1)分别写出甲、乙两厂的收费甲y (元) 、乙y (元)与印制数量x (本)之间的关系式;(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由. (4分)解:6.(2011广州中考)21.(12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,直线AB 和抛物线的交点是A (0,﹣3),B (5,9),已知抛物线的顶点D 的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x 轴上是否存在一点C ,与A ,B 组成等腰三角形?若存在,求出点C 的坐标,若不在,请说明理由;(3)在直线AB 的下方抛物线上找一点P ,连接PA ,PB 使得△PAB 的面积最大,并求出这个最大值.【答案】(1)21248355y x x =--,顶点D (2,635-);(2)C (10±0)或(5222±0)或(9710,0);(3)752【解析】 【分析】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解; (2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;(3)由S △PAB 12=•PH •x B ,即可求解. 【详解】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=x 2485-x ﹣3.当x=2时,y635=-,即顶点D的坐标为(2,635-);(2)A(0,﹣3),B(5,9),则AB=13,设点C坐标(m,0),分三种情况讨论:①当AB=AC时,则:(m)2+(﹣3)2=132,解得:m=±410,即点C坐标为:(410,0)或(﹣410,0);②当AB=BC时,则:(5﹣m)2+92=132,解得:m=5222±,即:点C坐标为(5222+,0)或(5﹣222,0);③当AC=BC时,则:5﹣m)2+92=(m)2+(﹣3)2,解得:m=9710,则点C坐标为(9710,0).综上所述:存在,点C的坐标为:(±410,0)或(5222±,0)或(9710,0);(3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k125=,故函数的表达式为:y125=x﹣3,设点P坐标为(m,12 5m2485-m﹣3),则点H坐标为(m,125m﹣3),S△PAB12=•PH•x B52=(125-m2+12m)=-6m2+30m=25756()22m--+,当m=52时,S△PAB取得最大值为:752.答:△PAB的面积最大值为752.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.2.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒12个单位的速度沿线段AD向点D运动,运动时间为t秒.过点P作PE⊥x轴交抛物线于点M,交AC 于点N.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)当t为何值时,△ACM的面积最大?最大值为多少?(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?【答案】(1)A(1,4);y=-x2+2x+3;(2)当t=2时,△AMC面积的最大值为1;(3)2085或20 13.【解析】(1)由矩形的性质得到点A的坐标,由抛物线的顶点为A,设抛物线的解析式为y=a(x -1)2+4,把点C的坐标代入即可求得a的值;(2)由点P的坐标以及抛物线解析式得到点M的坐标,由A、C的坐标得到直线AC的解析式,进而得到点N的坐标,即可用关于t的式子表示MN,然后根据△ACM的面积是△AMN和△CMN的面积和列出用t表示的△ACM的面积,利用二次函数的性质即可得到当t=2时,△AMC面积的最大值为1;(3)①当点H在N点上方时,由PN=CQ,PN∥CQ,得到四边形PNCQ为平行四边形,所以当PQ=CQ时,四边形FECQ为菱形,据此得到,解得t值;②当点H在N点下方时,NH=CQ=,NQ=CQ时,四边形NHCQ为菱形,NQ2=CQ2,得:,解得t值.解:(1)由矩形的性质可得点A(1,4),∵抛物线的顶点为A,设抛物线的解析式为y=a(x-1)2+4,代入点C (3, 0),可得a =-1. ∴y =-(x -1)2+4=-x 2+2x +3. (2)∵P (112t +,4), 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -, ∴M (112t +,2144t -), 设直线AC 的解析式为,将A (1,4),C (3,0)代入,得:,将112x t =+代入得,∴N (112t +,),∴MN ,∴,∴当t =2时,△A MC 面积的最大值为1. (3)①如图1,当点H在N点上方时, ∵N(112t +,),P (112t +,4), ∴P N=4—()==CQ ,又∵PN ∥CQ ,∴四边形PNCQ 为平行四边形, ∴当PQ =CQ 时,四边形FECQ 为菱形, PQ 2=PD 2+DQ 2 =,∴,整理,得240800t t -+=.解得12085t =-,22085t =+(舍去);②如图2当点H在N点下方时,NH=CQ=,NQ =CQ 时,四边形NHCQ 为菱形, NQ 2=CQ 2,得:.整理,得213728000t t -+=.()()1320400t t --=.所以12013t =,(舍去).“点睛”此题主要考查二次函数的综合问题,会用顶点式求抛物线,会用两点法求直线解析式,会设点并表示三角形的面积,熟悉矩形和菱形的性质是解题的关键.3.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
二次函数的图象和性质一、选择题1. (2011广西桂林,11,3分)在平面直角坐标系中,将抛物线y =x 2+2x +3绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .y =-(x +1)2+2 B .y =-(x -1)2+4C .y =-(x -1)2+2D .y =-(x +1)2+4 【答案】B2. (2011黑龙江省哈尔滨市,4,3分)在抛物线1-x y 2+=上的一个点是( )A .(1,0)B .(0,0)C .(0,-1)D .(1,1) 【答案】A3. (2011湖北随州,15,3分)已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( )A .0B .1C .2D .3【答案】D4. (2011江苏常州,8,2分)已知二次函数215y x x =-+-,当自变量x 取m 时,对应的函数值大于0,当自变量x 分别取m-1,m+1时对应的函数值1y 、2y ,则必值1y ,2y 满足 ( ) A. 1y >0,2y >0 B. 1y <0,2y <0 C.1y <0,2y >0 D.1y >0,2y <0【答案】B5. (2011广东深圳,10,3分)对抛物线y = -x 2 +2x -3而言, 下列结论正确的是( ) A. 与x 轴有两个交点 B. 开口向上C. 与y 轴的交点坐标是(0, 3)D. 顶点坐标是(1, -2) 【答案】D6. (2011山西,12,2分)已知二次函数2y ax bx c =++的图象如图所示,对称轴为直线1x =,则下列结论正确的是( )A .0ac > B.方程20ax bx c ++=的两根是121,3x x =-=C. 20a b -=D. 当x > 0时,y 随x 的增大而减小7. (2011陕西,10,3分)若二次函数c x x y +-=62的图像过),23(),,2(),,1(321y C y B y A +-三点,则321y y y 、、大小关系正确的是( )A .321y y y >>B .231y y y >>C .312y y y >>D .213y y y >> 【答案】B8. (2011湖北襄阳,12,3分)已知函数12)3(2++-=x x k y的图象与x 轴有交点,则k 的取值范围是 A .4<kB .4≤kC .4<k且3≠kD .4≤k且3≠k【答案】B9. (2011广东佛山,8,3)下列函数的图象在每一个象限内,y 值随x 值的增大而增大的是A y = -x + 1 B. y = x 2-1 C.y=1x D.y=-1x【答案】D10.(2010湖南长沙,7,3分)如图,关于抛物线y =(x -1)2-2,下列说法错误的是( ) A .顶点坐标是(1,-2) B .对称轴是直线x =1C .开口方向向上D .当x >1时,y 随x 的增大而减小(第7题)-1-2-1O 123xy11. (2011山东莱芜,12,3分)已知二次函数)0(2≠++=a c bx ax y 的图象在同一坐标系中大致可能是( )DC B A OyxxyOxyOOyxyx-11O【答案】A12. (2011北京市,7,4分)抛物线265y x x =-+的顶点坐标为( ) A . (3,4-) B . (3,4) C . (3-,4-) D . (3-,4)【答案】A13. (2011内蒙古呼和浩特市,8,3分)已知一元二次方程032=-+bx x的一根为3-,在二次函数32-+=bx x y 的图象上有三点⎪⎭⎫⎝⎛-1,54y 、⎪⎭⎫ ⎝⎛-2,45y 、⎪⎭⎫ ⎝⎛3,61y ,y 1、y 2、y 3的大小关系是( ) A.321y y y <<B.312y y y <<C.213y y y <<D.231y y y <<【答案】A14. (2011福建莆田,5,4分)抛物母y=-6x 2可以看作是由抛物线y=-6x 2+5按下列何种变换得到( )A .向上平移5个单位 B.向下平移5个单位 C .向左平移5个单位 D.向右平移5个单位 【答案】B15. (2011广东肇庆,10,3分)二次函数522-+=x x y 有A . 最大值-5B . 最小值-5C . 最大值-6D . 最小值-6【答案】D16. (2011广西桂林,11,3分)在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ). A .2(1)2y x =-++ B .2(1)4y x =--+ C .2(1)2y x =--+ D .2(1)4y x =-++17. (2011黑龙江省哈尔滨市,4,3分)在抛物线1-x y 2+=上的一个点是( )A .(1,0)B .(0,0)C .(0,-1)D .(1,1) 【答案】A18. (2011黑龙江绥化,19,3分)已知二次函数()02≠++=a c bx ax y 的图象如图所示,现有下列结论:①042>-ac b ②0>a ③0>b ④0>c ⑤039<++c b a ,则其中结论正确的个数是( )个.A 、2B 、3C 、4D 、5【答案】B19. (2011湖北省随州市,10,4分)已知函数y =.)3(1)5()3(1)1(22⎪⎩⎪⎨⎧>--≤--x x x x ,则使y =k 成立的x 值恰好有三个,则k 的值为( )A .0B .1C .2D .3 【答案】D 20.(2011江西b 卷,6,3分)已知二次函数y=x 2+bx -2的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是( ).A .(1,0) B.(2,0) C.(-2,0) D.(-1,0) 【答案】C21. (2011福建龙岩,9,4分)下列图象中,能反映函数y 随x 增大而减小的是( )xyODx yOCxyOBxyOA【答案】D22. (2011四川广元,10,3分)在平面直角坐标系中,如果抛物线y =3x 2不动,而把x 轴、y 轴分别向上、向右平移3个单位,那么在新坐标系下此抛物线的解析式是( D )A . y =3(x -3)2+3 B . y =3(x -3)2-3C . y =3(x +3)2+3D . y =3(x +3)2-3 【答案】D23. (2011湖北鄂州,15,3分)已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( )A .0B .1C .2D .3【答案】D24. (2011云南省昆明市,8,3分)抛物线y =ax 2+bx +c (a ≠0)的图象如图所示,则下列说法正确的是( )A .b 2-4ac <0B .abc <0C .-b2a<-1 D .a -b +c <0【答案】C25. (2011云南玉溪,6,3分)如图,函数2y x bx c =-++的部分图像与x 轴、x 轴的交点分别为A (1,0),B (0,3),对称轴是x =-1,在下列结论中,错误的是( )A . 顶点坐标为(-1,4)B . 函数的解析式为223y x x =--+C . 当x <0时,x 随x 的增大而增大D .抛物线与x 轴的另一个交点是(-3,0)【答案】C.26. (2011内蒙古包头,12,3分)已知二次函数y=ax 2+bx+c 同时满足下列条件:①对称轴是x=1;②最值是15;③二次函数的图象与x 轴有两个交点,其横坐标的平方和为15-a .则b 的值是( )A .4或-30B .-30C .4D .6或-20 【答案】C27. (2011•泸,12,2分)已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的图象如图所示,有下列结论:①abc >0,②b 2﹣4ac <0,③a ﹣b+c >0,④4a ﹣2b+c <0,其中正确结论的个数是( )第8题图xOy-1A 、1B 、2C 、3D 、4【答案】A .28. (2011四川自贡,10,3分)有下列函数:①3y x =-②1y x =- ③1(0)y x x=->④221y x x =++,其中函数值y 随自变量x 增大而增大的函数有 ( )A. ①②B. ②④C. ②③D. ①④ 【答案】C29. (2011四川雅安12,3分)已知二次函数c bx ax y ++=2的图像如图,其对称轴1-=x ,给出下列结果①ac b 42>②0>abc ③02=+b a ④0>++c b a ⑤0<+-c b a ,则正确的结论是( )A ①②③④B ②④⑤C ②③④D ①④⑤ 【答案】 D30. (2011年青海,18,3分)将y =2x 2的函数图象向左平移2个单位长度后,得到的函数解析式是( )A. y =2x 2+2B. y =2(x +2)2C. y =(x -2)2D. y =2x 2-2 【答案】B31. (2011广西崇左,18,3分)已知:二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论中:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1的实数);④(a +c )2<b 2;⑤a >1.其中正确的项是( ) A .①⑤ B .①②⑤ C .②⑤D .①③④【答案】A32. (2011广西玉林、防港,6,3分)已知二次函数y=ax 2的图象开口向上,则直线y=ax-1经过的象限是( )A .第一、二、三象限B .第二、三、四象限C .第一、二、四象限D .第一、三、四象限【答案】D33. (2011广西玉林、防港,9,3分)已知抛物线2123y x =-+,当15x ≤≤时,y 的最大值是( )A.2B.23C.53D.73【答案】C34. (2011广西百色,10,3分)二次函数的图像如图,则反比例函数y=-xa 与一次函数y=bx+c的图像在同一坐标系内的图像大致是【答案】:B.35. (2011贵州黔南,4,4分)下列函数:(1)y=-x,(2)y=2x,(3)y=-x1,(4)y=x 2(x <0),y 随x 增大而减小的函数有( )A.1个B.2个C.3个D.4个 【答案】B36. (2011贵州黔南,9,4分)二次函数y=-x 2+2x+k 的部分图像如图所示,则关于x 的一元二次方程-x 2+2x+k=0的一个解是x 1=3,另一个解x 2=( ) A.1 B.-1 C.-2 D.0【答案】B37. (2011黑龙江黑河,19,3分)已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,现有下列结论:① b 2-4ac >0 ② a >0 ③ b >0 ④ c >0 ⑤9a+3b+c <0,则其中结论正确的个数是 ( )A 2个B 3个C 4个D 5个【答案】B 38.二、填空题1. (2011福建泉州,15,4分)已知函数()4232+--=x y ,当x = 时,函数取最大值为 . 【答案】2,42. (2011河南,11,3分)点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点,则1y 与2y 的大小关系为1y 2y (填“>”、“<”、“=”). 【答案】 <3. (2011辽宁大连,16,3分)如图5,抛物线y =-x 2+2x +m (m <0)与x 轴相交于点A (x 1,0)、B (x 2,0),点A 在点B 的左侧.当x =x 2-2时,y ______0(填 “>”“=”或“<”号).【答案】<O13xy第9题图B AO yx图5第19题图4. (2011山东枣庄,18,4分)抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 … y…4664…从上表可知,下列说法中正确的是 .(填写序号)①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大.【答案】①③④5. (2011昭通,20,3)把抛物线42++=bx x y 的图像向右平移3个单位,再向下平移2个单位,所得图像的解析式为322+-=x x y ,则b 的值为________________。
2011全国各省市中考数学试题分类汇编-—函数与一次函数(选择题及答案)一.选择题1.(2011台湾中考)1.坐标平面上,若点(3, b )在方程式923-=x y 的图形上,则b 值为何?( )(A)-1 (B) 2 (C) 3 (D) 92.(2011台湾中考)15.图(三)的坐标平面上有一正五边形ABCDE ,其中C 、D 两点坐标分别为(1,0)、(2,0) 。
若在没有滑动的情况下,将此正五边形沿着 x 轴向右滚动,则滚动过程中,下列何者会 经过点(75 , 0)?( )(A) A (B) B (C) C (D) D3.(2011台湾中考)16.已知数在线A 、B 两点坐标分别为-3、-6,若在数在线找一点C ,使得A 与C 的距离为4;找一点D ,使得B 与D 的距离为1,则下列何者不可能为C 与D 的距离?( ) (A) 0 (B) 2 (C) 4 (D) 64.(2011台湾中考)29.已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?( )(A) 100 (B) 180 (C) 220 (D) 2605.(2011台北中考)9.图(三)的坐标平面上,有一条通过点(-3,-2)的直线L 。
若四点(-2 , a )、(0 , b )、(c , 0)、(d ,-1)在L 上,则下列数值的判断,何者正确?( )(A) a =3 (B) b >-2(C) c <-3 (D) d =26.(2011台北中考)17.如图(七),坐标平面上有两直线L 、M ,其方程式分别为y =9、y =-6。
若L 上有一点P ,M 上有一点Q ,PQ 与y 轴平行,且PQ 上有一点R ,PR :RQ =1:2,则R 点与x 轴的距离为何?( )(A) 1 (B) 4 (C) 5 (D) 107.(2011台北中考)21.坐标平面上有一个线对称图形,)25,3(-A 、)211,3(-B 两点在此图形上且互为对称点。
一、二次函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB 与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0), 将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m-x 0)2+(n-y 0)2=(n+1)2, ∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点,∴n=14m 2-m+1, ∴m 2-2x 0m+x 02-2y 0(14m 2-m+1)+y 02=2(14m 2-m+1)+1, 整理得:(1-12-12y 0)m 2+(2-2x 0+2y 0)m+x 02+y 02-2y 0-3=0. ∵m 为任意值,∴000220001110222220230y x y x y y ⎧--⎪⎪-+⎨⎪+--⎪⎩===, ∴0021x y ⎧⎨⎩==, ∴定点F 的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P 的位置;(3)根据点M 到直线l 的距离与点M 到点F 的距离总是相等结合二次函数图象上点的坐标特征,找出关于x 0、y 0的方程组.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元. 【解析】 【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论. (2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题. 【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100, 解得:x =40, 60﹣40=20元,答:这一星期中每件童装降价20元; (2)设利润为w ,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.【答案】(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q553)M (1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=5或5(舍弃),∴Q(5,45).(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.4.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【答案】(1)y=﹣x2+2x+3.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(3)y=﹣x+3;P点到直线BC 92,此时点P的坐标为(32,154).【解析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【详解】(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,得10930b cb c-++=⎧⎨-++=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的表达式为y=﹣x2+2x+3;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,得303m nn+=⎧⎨=⎩,解得:13mn=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+3,∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278;②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC=2232OB OC+=,∴P点到直线BC的距离的最大值为272928832⨯=,此时点P的坐标为(32,154).【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.5.已知,点M 为二次函数2()41y x b b =--++图象的顶点,直线5y mx =+分别交x 轴正半轴,y 轴于点,A B .(1)如图1,若二次函数图象也经过点,A B ,试求出该二次函数解析式,并求出m 的值. (2)如图2,点A 坐标为(5,0),点M 在AOB ∆内,若点11(,)4C y ,23(,)4D y 都在二次函数图象上,试比较1y 与2y 的大小.【答案】(1)2(2)9y x =--+,1m =-;(2)①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y < 【解析】 【分析】 (1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y xy x=+⎧⎨=-+⎩,得45215xy⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E,(0,1)F∵点M在AOB∆内,∴45b<<当点,C D关于抛物线对称轴(直线x b=)对称时,1344b b-=-,∴12b=且二次函数图象的开口向下,顶点M在直线41y x=+上综上:①当12b<<时,12y y>;②当12b=时,12y y=;③当1425b<<时,12y y<.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.6.如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y x y x t⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题; (3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ POAC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b , 把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩, ∴直线AB 的解析式为y =2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n ,把M (t ,0)代入得2t+n =0,解得n =﹣2t ,∴直线MN 的解析式为y =2x ﹣2t , 解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+ 21(t 3)33=--+, 当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO ,∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =12PO ,即2131m m m 422-=, 解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0);解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).【点睛】 本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.7.如图,抛物线22y ax bx =++交x 轴于A (1,0)-,(4,0)B 两点,交y 轴于点C ,与过点C 且平行于x 轴的直线交于另一点221(6)()82x x -+=,点P 是抛物线上一动点. (1)求抛物线解析式及点D 的坐标;(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标;(3)过点P 作直线CD 的垂线,垂足为Q ,若将CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出此时点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;点D 坐标为(32),; (2)P 1(0,2); P 2(412,-2);P 3(3412-,-2) ; (3)满足条件的点P 13 132),(13-132). 【解析】【分析】1)用待定系数法可得出抛物线的解析式,令y=2可得出点D 的坐标(2)分两种情况进行讨论,①当AE 为一边时,AE ∥PD,②当AE 为对角线时,根据平行四边形对顶点到另一条对角线距离相等,求解点P 坐标(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),分情况讨论,①当P 点在y 轴右侧时,②当P 点在y 轴左侧时,运用解直角三角形及相似三角形的性质进行求解即可【详解】解:(1)∵抛物线22y ax bx =++经过A (10)-,,B (40),两点, ∴2016420a b a b -+=⎧⎨++=⎩,解得:12a =-,32b =, ∴抛物线解析式为:213222y x x =-++; 当2y =时,2132222x x -++=,解得:13x =,20x =(舍),即:点D 坐标为(32),.(2)∵A ,E 两点都在x 轴上,∴AE 有两种可能:①当AE 为一边时,AE ∥PD ,此时点P 与点C 重合(如图1),∴1(0,2)P , ②当AE 为对角线时,P 点、D 点到直线AE (即x 轴)的距离相等,∴P 点的纵坐标为2-(如图2),把2y =-代入抛物线的解析式,得:2132222x x -++=-, 解得:13412x =,23412x =, ∴P 点的坐标为3+41(2)-,341(2)2-, 综上所述:1(0,2)P ; 2P 3+412)-;3P 341(2)2- . (3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F , 点P 的坐标为(a ,213222a a -++), ①当P 点在y 轴右侧时(如图3),p CQ x a ==,2132(2)22c p PQ y y a a =-=--++=21322a a -, 又∵CQ O FQ P ''∠+∠=18018090CQ P PQC '︒-∠=︒-∠=︒,90CQ O OCQ ''∠+∠=︒∴FQ P OCQ ''∠=∠,又90COQ Q FP ''∠=∠=︒,∴COQ Q FP '', ∴'''Q C Q P CO Q F=, ∵Q C CQ a '==,2CO =,Q P PQ '==21322a a -,∴213222'a a a Q F-=,∴'3Q F a =-,∴(3)OQ OF Q F a a ''=-=--3=,CQ =CQ '2222'2313CO OQ +=+= 即13a =,∴点p 139132-), ②当p 点在y 轴左侧时(如图4),此时0a <,2132022a a -++<,CQ =P x =a -, PQ =2-(213222a a -++)=21322a a -, 又∵90CQ O FQ P CQ P PQC '''∠+∠=∠=∠=︒,90CQ O OCQ ''∠+∠=︒, ∴FQ P OCQ ''∠=∠,又90COQ Q FP ''∠=∠=︒∴COQ Q FP '',∴'''Q C Q P CO Q F=, ∵Q C CQ a '==-,2CO =,Q P PQ '==21322a a -, ∴213222'a a a Q F--=,∴'3Q F a =-, ∴3()3OQ Q F OF a a ''=-=---=,CQ =CQ '2222'2313CO OQ +=+= 此时13a =P 的坐标为(13913--). 综上所述,满足条件的点P 139132-+),(13-913--). 【点睛】此题考查二次函数综合题,解题关键在于运用待定系数法的出解析式,难度较大8.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=1 6-x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x2+2x+4,拱顶D到地面OA的距离为10 m;(2)两排灯的水平距离最小是3.【解析】【详解】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C⎛⎫⎪⎝⎭在抛物线上所以41719326cb c=⎧⎪⎨=-⨯++⎪⎩,解得24bc=⎧⎨=⎩,所以21246y x x=-++所以,当62bxa=-=时,10ty=≦答:21246y x x=-++,拱顶D到地面OA的距离为10米(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0))当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得12623,623x x =+=-1243x x -=答:两排灯的水平距离最小是43考点:二次函数的实际应用.9.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6),∴1640 4206a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:3 4 3 26abc⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y=233642x x--+;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=122x--,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,233642m m--+),则点F(m,122m--),∴DF=233642m m--+﹣(122m--)=2384m m--+,∴S△ADE=S△ADF+S△EDF=12×DF×AG+12DF×EH=12×DF×AG+12×DF×EH=12×4×DF=2×(2384m m--+)=23250233m-++(),∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA =29n +,PE =212n ++(),AE =16425+=,分三种情况讨论: 当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.10.如图1,抛物线y=ax 2+2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线y=kx+23分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式; (2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为49、151296±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213. 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D的坐标,过点D分别作DE⊥x轴、DF⊥y轴,分P1D⊥P1C、P2D⊥DC、P3C⊥DC三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得168020a ca c-+=⎧⎨++=⎩,解得:2383ac⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为:y=228233x x+-,∵过点B的直线y=kx+23,∴代入(1,0),得:k=﹣23,∴BD解析式为y=﹣2233x+;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得t=151296±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,即52=52,解得:t=233;当P3C⊥DC时,△DFC∽△COP3,∴DFOC =3CFP O,即523=103t,解得:t=49,∴t的值为49、151296±、233.(3)由已知直线EF解析式为:y=﹣23x﹣103,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N作NH⊥DD′于点H,此时,DM+MN=D′N最小.则△EOF∽△NHD′设点N坐标为(a,﹣21033a-),∴OENH =OFHD',即52104()33a---=1032a-,解得:a=﹣2,则N点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1,当x=﹣32时,y=﹣54,∴M点坐标为(﹣32,﹣54),此时,DM+MN点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.。
2011年全国各地100份中考数学试卷分类汇编第13章 二次函数一、选择题1. (2011山东滨州,7,3分)抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位 【答案】B 【答案】D2. (2011广东广州市,5,3分)下列函数中,当x >0时y 值随x 值增大而减小的是( ).A .y = x 2B .y = x -1C . y = 34 xD .y = 1x【答案】D3. (2011湖北鄂州,15,3分)已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( )A .0B .1C .2D .34. (2011山东德州6,3分)已知函数))((b x a x y --=(其中a b >)的图象如下面右图所示,则函数b ax y +=的图象可能正确的是【答案】D5. (2011山东菏泽,8,3分)如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是A .a +b =-1B . a -b =-1C . b <2aD . ac <0y x1 1O(A ) y x1 -1 O (B )yx-1 -1 O (C )1-1 xy O (D )第6题图【答案】B6. (2011山东泰安,20 ,3分)若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表:X -7 -6 -5 -4 -3 -2 y-27-13-3353则当x =1时,y 的值为A.5B.-3C.-13D.-27 【答案】D7. (2011山东威海,7,3分)二次函数223y x x =--的图象如图所示.当y <0时,自变量x 的取值范围是( ). A .-1<x <3B .x <-1C . x >3D .x <-1或x >3【答案】A8. (2011山东烟台,10,4分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h【答案】A9. (2011浙江温州,9,4分)已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是( ) A .有最小值0,有最大值3 B .有最小值-1,有最大值0 C .有最小值-1,有最大值3 D .有最小值-1,无最大值【答案】D10.(2011四川重庆,7,4分)已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A . a >0B . b <0C . c <0D . a +b +c >0 【答案】D11. (2011台湾台北,6)若下列有一图形为二次函数y =2x 2-8x +6的图形,则此图为何?【答案】A12. (2011台湾台北,32)如图(十四),将二次函数228999931+-=x x y 的图形画在坐标平面上,判断方程式0899993122=+-x x 的两根,下列叙述何者正确?A .两根相异,且均为正根B .两根相异,且只有一个正根C .两根相同,且为正根D .两根相同,且为负根 【答案】A13. (2011台湾全区,28)图(十二)为坐标平面上二次函数c bx ax y ++=2的图形,且此图形通(-1 ,1)、(2 ,-1)两点.下列关于此二次函数的叙述,何者正确?A .y 的最大值小于0B .当x =0时,y 的值大于1C .当x =1时,y 的值大于1D .当x =3时,y 的值小于0 【答案】D14. (2011甘肃兰州,5,4分)抛物线221y x x =-+的顶点坐标是 A .(1,0) B .(-1,0)C .(-2,1)D .(2,-1)【答案】A15. (2011甘肃兰州,9,4分)如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
二次函数的图象和性质一、选择题A 组1、(中江县2011年初中毕业生诊断考试) 小李从如图所示的二次函数c bx ax y ++=2的图象中,观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)ab >0;(4)a -b +c <0. 你认为其中错误..的有( )A. 2个B. 3个C. 4个D. 1个答案:A2、(2011年江阴市周庄中学九年级期末考)在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是 ( )A .y =2(x + 2)2-2B .y =2(x -2)2 + 2C .y =2(x -2)2-2D .y =2(x + 2)2 + 2 答案:A3、(2011淮北市第二次月考五校联考)下列函数中,不是二次函数的是( )A 、y=221x -B 、y=2(x-1)2+4C 、y=)4)(1(21+-x xD 、y=(x-2)2-x 2答案 D4、(2011淮北市第二次月考五校联考)根据下列表格的对应值,判断方程ax 2+bx+c=0(a ≠0)一个解x 的取值范围( )3.26A 、3<x<3.23 B 、3.23<x<3.24 C 、3.24<x<3.25 D 、3.25<x<3.26答案 C5、(2011淮北市第二次月考五校联考)把抛物线y=x 2+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得函数的解析式是y=x 2-3x+5,则有( )A 、b=3,c=7B 、b=-9,c=-15C 、b=3,c=3D 、b=-9,c=21答案 A6、 (2011淮北市第二次月考五校联考)生产季节性产品的企业,当它的产品无利润时,就会停产,现有一生产季节性产品的企业,其中一年中获得的利润y 与月份n 之间的函数关系式为y=-n 2+14n-24,则该企业一年中停产的月份是( )A 、1月,2月,3月B 、2月,3月,4月C 、1月,2月,12月D 、1月,11月,12月答案 C7、(2011淮北市第二次月考五校联考)函数图象y=ax 2+(a -3)x+1与x 轴只有一个交点则a 的值为( )A 、0,1B 、0,9C 、1,9D 、0,1,9 答案 D8. (2011年浙江省杭州市高桥初中中考数学模拟试卷)对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220112011A B A B A B +++ 的值是( ) A .20112010B .20102011C .20122011D .20112012答案:D9.(2011年上海市卢湾区初中毕业数学模拟试题)抛物线221y x x =-+的顶点坐标是( )A .(1,0);B .(– 1,0) ;C .(–2 ,1) ;D .(2,–1). 答案:A10.(2010-2011学年度河北省三河市九年级数学第一次教学质量检测试题)如图,点A ,B 的坐标分别为(1,4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为( )A .-3B .1C .5D .811、(2011山西阳泉盂县月考)二次函数y=ax 2+bx+c(a≠0)的图像经过点(-1,2),且与x 轴的交点的横坐标分别为x 1,x 2,其中-2<x 1<-1,0<x 2<1有下列结论:①abc >0,②4a -2b+c <0,③2a -b <0,④b 2+8a >4ac 其中正确的结论有( )A 、1个B 、2个C 、3个D 、4个 答案:D12. (2011年江苏盐都中考模拟)如图,已知抛物线y=ax 2+bx+c(a >0)的对称轴是过点且平行于y 轴的直线,并且经过点P (3,0),则a-b+c 的值为 (A.3 B.-3 C.-1 D.0答案D13、(2011年北京四中中考模拟20)把抛物线2x y =向右平移2( )A 、2x y 2+=B 、2x y 2-=C 、2)2x (y +=D 、2)2x (y -= 答案D14、(北京四中模拟)已知抛物线21432y x x =-++,则该抛物线的顶点坐标为( )A 、(1,1)B 、(4,11)C 、(4,-5)D 、(-4,11)答案:B15、(北京四中模拟)二次函数22(3)y ax ax a =+--的图象如图所示,则( )A 、0a <B 、3a <C 、0a >D 、03a <<答案:A16、(2011杭州模拟)已知二次函数)0(2>++=a c bx ax y 经过点M (-1,2)和点N (1,-2),交x 轴于A ,B 两点,交y 轴于C 则……( ▲ )①2-=b ; ②该二次函数图像与y 轴交与负半轴③ 存在这样一个a ,使得M 、A 、C 三点在同一条直线上 ④若2,1OC OB OA a =⋅=则以上说法正确的有:A .①②③④B .②③④C .①②④D .①②③ 答案:C17(2011杭州模拟26)已知二次函数y = 2y ax bx c =++的图像如图所示,令M=︱4a-2b+c ︱+︱a+b+c ︱-︱2a+b ︱+︱2a-b ︱,则以下结论正确的是……………( )A.M <0B.M >0C.M=0D.M 的符号不能确定答案:A18. (2011年北京四中中考全真模拟15)二次函数y=-2(x-1)2+3的图象如何移动就得到y=-2x 2的图象( ) A. 向左移动1个单位,向上移动3个单位。
二、填空题1. (2011浙江省舟山,15,4分)如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是 .【答案】12x >2. (2011山东日照,17,4分)如图,是二次函数 y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1;④a -2b +c >0.其中正确的命题是 .(只要求填写正确命题的序号)【答案】①③.5. (2011宁波市,16,3分)将抛物线y =x 的图象向上平移1个单位,则平移后的抛物线的解析式为 【答案】y =x 2+17. (2011浙江省嘉兴,15,5分)如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),该图象与x 轴的另一个交点为C ,则AC 长为 .【答案】38. (2011山东济宁,12,3分)将二次函数245y x x =-+化为2()y x h k =-+的形式,则y = . 【答案】2(2)1y x =-+10.( 2011重庆江津, 18,4分)将抛物线y=x 2-2x 向上平移3个单位,再向右平移4个单位等到的抛物线是_______.(第15题)c+(第15题)c+【答案】y=(x-5)2+2 或 y=x 2-10x+2711. (2011江苏淮安,14,3分)抛物线y=x 2-2x -3的顶点坐标是 . 【答案】(1,-4)12. (2011贵州贵阳,14,4分)写出一个开口向下的二次函数的表达式______. 【答案】y =-x 2+2x +113. (2011广东茂名,15,3分)给出下列命题:命题1.点(1,1)是双曲线xy 1=与抛物线2x y =的一个交点. 命题2.点(1,2)是双曲线xy 2=与抛物线22x y =的一个交 点. 命题3.点(1,3)是双曲线xy 3=与抛物线23x y =的一个交点. ……请你观察上面的命题,猜想出命题n (n 是正整数): 【答案】点(1,n )是双曲线xn y =与抛物线2nx y =的一个交点 . 14. (2011山东枣庄,18,4分)抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:从上表可知,下列说法中正确的是 .(填写序号)①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大. 【答案】①③④。
选择题
江西2011中考B 卷)6.已知二次函数y=x 2+bx -2的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是( ) A .(1,0) B.(2,0) C.(-2,0) D.(-1,0)
(2011湖北黄冈)15.已知函数()()()()
22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为
A.0
B.1
C.2
D.3
(2011广东广州)5.下列函数中,当x>0时,y 值随x 值增大而减小的是( )
A.2x y =
B. 1-=x y
C. x y 43=
D. x
y 1= (2011年安徽芜湖市)10.二次函数2y ax bx c =++的图象如图所示,则反比例函数
a y x
=与一次函数y bx c =+在同一坐标系中的大致图象是( )
填空题
(湖南株洲2011)8.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水
点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线24y x x =-+(单位:米)
的一部分,则水喷出的最大高度是
A .4米
B .3米
C .2米
D .1米 (广东茂名)14、如图,已知△ABC 是等边三角形,点B 、C 、D 、
E 在同
一直线上,且CG=CD ,DF=DE ,则∠E= 度.
大题
(福建福州2011)22.(满分14分)
已知,如图11,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线l :333
y x =+对称. (1)求A 、B 两点坐标,并证明点A 在直线l 上;(2)求二次函数解析式;
(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个
动点,连接HN 、NM 、MK ,求HN NM MK ++和的最小值.
K H y l K H
y l 第8题图 x (米)
y (米)
(2011广东广州)24.(14分)已知关于x 的二次函数y=ax 2+bx+c(a>0)的图象经过点C(0,1),
且与x 轴交于不同的两点A 、B ,点A 的坐标是(1,0)
(1)求c 的值;
(2)求a 的取值范围;
(3)该二次函数的图象与直线y=1交于C 、D 两点,设A 、B 、C 、D 四点构成的四边形的对角线相交于点P ,记△PCD 的面积为S 1,△PAB 的面积为S 2,当0<a<1时,求证:S 1- S 2为常数,并求出该常数。
(2011广东)17.已知二次函数c bx x y ++-=2的图象如图所示,它与x 轴的一个交点坐标为(-1,0),
与y 轴的交点坐标为(0,3)。
(1)求出b ,c 的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y 为正数时,自变量x 的取值范围。
(2011广东)15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;
(2)试确定直线1+=cx y 经过的象限,并说明理由.
(2011广东)22.如图,抛物线14
17452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).
(1)求直线AB 的函数关系式;
(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移
动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点
P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,
并写出t 的取值范围;
(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),
连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所
求的t 值,平行四边形BCMN 是否菱形?请说明理由.
(2011年湖南邵阳)24.如图(十一)所示,在平面直角坐标系Oxy 中,
已知点A (-94
,0),点C (0,3),点B 是x 轴上一点(位于点A 的 右侧),以AB 为直径的圆恰好经过....
点C . (1)求∠ACB 的度数;
(2)已知抛物线y =ax 2+bx +3经过A 、B 两点,求抛物线的解析式; (3)线段BC 上是否存在点D ,使△BOD 为等腰三角形.若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由.
O x
A M N
B P
C 题22图 第17题图
O 3 -1 x y
(2011江西南昌)25.如图所示,抛物线m :y =ax 2+b (a <0,b >0)与x 轴于点A 、B (点A
在点B 的左侧),与y 轴交于点C .将抛物线m 绕点B 旋转180°,得到新的抛物线n ,它
的顶点为C 1,与x 轴的另一个交点为A 1.
(1)当a =-1,b =1时,求抛物线n 的解析式;
(2)四边形AC 1A 1C 是什么特殊四边形,请写出结果并说明理由; (3)若四边形AC 1A 1C 为矩形,请求出a ,b 应满足的关系式.
(江西2011中考B 卷)24.已知:抛物线2(2)y a x b =-+ (0)ab < 的顶点为A ,与x 轴的交点为B ,C (点B 在点C 的左侧). (1)直接写出抛物线对称轴方程;
(2)若抛物线经过原点,且△ABC 为直角三角形,求a ,b 的值;
(3)若D 为抛物线对称轴上一点,则以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,请写出a ,b 满足的关系式;若不能,说明理由.
(2011湖北黄冈)23.(12分)我市某镇的一种特产由于运输原因,长期只能在当
地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润
()216041100
P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:
每投入x 万元,可获利润()()299294101001601005
Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?
⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
⑶根据⑴、⑵,该方案是否具有实施价值?
(2011安徽)23.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0).
(1)求证h 1=h 3;
(2) 设正方形ABCD 的面积为S.求证S=(h 2+h 3)2+h 12;
(3)若12312
h h +=,当h 1变化时,说明正方形ABCD 的面积 为S 随h 1的变化情况.
(2011年安徽芜湖市)24.(本小题满分14分)
平面直角坐标系中,平行四边形ABOC 如图放置,点A 、C 的
坐标分别为(0,3)、(1-,0),将此平行四边形绕点0顺时针旋
转90°,得到平行四边形'''A B OC 。
(1)若抛物线过点C ,A ,A',求此抛物线的解析式;
(2)求平行四边形ABOC 和平行四边形'''A B OC 重叠部分△
'OC D 的周长;
(3)点M 是第一象限内抛物线上的一动点,间:点M 在何处
时△AMA'的面积最大?最大面积是多少?并求出此时点M 的坐
标。
第23题图 C
B A
C 1
A 1 x y O。