八年级上册数学一次函数测试题及答案
- 格式:doc
- 大小:112.50 KB
- 文档页数:2
O yx O y x x y O O y x 第四章 一次函数单元测试(共120分,100分钟)一、选择题:(每小题3分,共30分)1.一次函数83y x =-+的图象经过的象限是( )A.一、二、三B.二、三、四C.一、二、四D.一、三、四2.若y=(m -2)x+m 2-4是正比例函数,则m 的取值是( )A .2B .-2C .±2D .任意实数3.已知点()14,y -,()22,y 都在直线122y x =-+上,则1y ,2y 大小关系是( ) A.12y y > B.12y y = C.12y y < D.不能比较4.如图,函数y=kx+k 的图象可能是下列图象中( )A B C D5.下列函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -= 6.已知3-y 与x 成正比例,且x =2时,y =7,则y 与x 的函数关系式为( )A .32+=x yB .32-=x yC .323+=-x yD .33-=x y7.下列各点,在直线y =x +5上的是( )A . (0,4)B .(-1,2)C .(2,6)D . (-5, 0)8.若将直线23y x =-向下平移3个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+说法正确的是( )A.经过第一、二、四象限B.与x 轴交于()2,0-C.与y 轴交于(0,6)D.y 随x 的增大而增大 9.关于x 的函数()3y k x k =-+,给出下列结论:①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点()1,3-;③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<.其中正确结论的序号是( )A.①②④B.①③④C.①②③④D.②③④10.如图,点B 在直线2y x =上,过点B 作BA x ⊥轴于点A ,作//BC x 轴与直线()0y kx k =≠交于点C ,若:1:2AB BC =,则k 的值是( )A.27B.23C.13D.25二、填空题:(每小题4分,共28分)11.一次函数图象过(1,2)且y 随x 的增大则减小,请写出一个符合条件的函数解析式 .12.直线y = -3x +6与x 轴交点坐标是 .13.一次函数y=kx+b 的图像位于第一、三、四,则y 随x 的增大而_________.14.直线63+=x y 与两坐标轴围成的三角形的面积是15.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =__________.16.若k x k y )1(-=-7是一次函数,则k = .17.若点A (x ,4),B (0,8)和C (-4,0)在同一直线上,则x = .三、解答下列各题:(共62分)18.(9分)已知一次函数2(2)312y k x k =--+.(1)k 为何值时,图象经过原点;(2)k 为何值时,图象与直线y = -2x +9的交点在y 轴上;(3)k 为何值时,图象平行于2y x =-的图象;19.(9分)如图是某汽车行驶的路程S (km )与时间t (min)的函数关系图.回答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?(3)当16≤t ≤30时,求S 与t 的函数关系式.20.(10分)直线122y x =-+分别交x 轴,y 轴于A,B 两点,O 是原点,直线y=kx+b 经过AOB △的顶点A 或B,且把AOB △分成面积相等的两部分,求该直线所对应的函数表达式.9 16 30 t /minS /km40 1221.(10分)如图,直线132y x =-+与x,y 轴分别交于A,B 两点.(1)分别求点A 、点B 的坐标.(2)在x 轴上有一点M,线段AB 上有一点N,当OMN △是以ON 为斜边的等腰直角三角形时,求点M 的坐标。
八年级数学上册《第十九章一次函数》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.在圆的面积公式S=πr2中,变量是()A.S,πB.S,r C.π,r D.只有r2.已知正比例函数y=(m−3)x的图象过第二、四象限,则m的取值范围是( )A.m≥3B.m>3C.m≤3D.m<33.已知小明家、体育场、超市在一条笔直的公路旁(小明家、体育场、超市到公路的距离忽略不计),图中的信息反映的过程是小明从家跑步去体育场,在体育场锻炼了一阵后又走到超市买些学习用品,然后再走回家.图中x表示小明所用的时间,y表示小明离家的距离.根据图中的信息,下列说法中错误的是().A.体育场离小明家的距离是2.5kmB.小明在体育场锻炼的时间是15minC.小明从体育场出发到超市的平均速度是50m/minD.小明从超市回家的平均速度是60m/min4.一次函数y=−2x+4的图象可由y=−2x的图象平移得到的,则平移的方法为()A.向上平移4个单位B.向下平移4个单位C.向右平移4个单位D.向左平移4个单位5.点P(a,b)在函数y=4x+3的图象上,则代数式8a−2b+1的值等于()A.7 B.5 C.-5 D.-66.一次函数y=2ax−b(a<0)的图象经过两个点A(−1,y1)和B(2,y2),则y1,y2的大小关系是()A.y1>y2B.y1<y2C .当b >0时y 1>y 2D .当b <0时7.如图,一次函数y =kx +b 与y =x +2的图象相,交于点P(m ,4),则关于x 、y 的二元一次方程组{kx −y =−b y −x =2的解是( )A .{x =2y =4B .{x =1y =4C .{x =3y =4D {x =4y =48.如图,若一次函数y 1=−x −1与y 2=ax −3的图象交于点P(m ,−2)则关于x 的不等式−x −1<ax −3的解集是( )A .x >2B .x >1C .x <1D .x <−29.清明假期第一天天气晴朗,小明和爸爸去爬山.小明和爸爸同时从山脚出发,由于爸爸有爬山经验,匀速爬到山顶.小明刚开始的速度比爸爸快,累了之后减速继续爬山,和爸爸相遇后0.5h 才加速追赶爸爸,最终爸爸用2h 爬到了山顶,小明比爸爸晚了6min 到达.他们出发的时间x (单位:h )与爬山的路程y (单位:km )的函数图象如图所示,则下列说法错误的是( )A .爸爸爬山的速度为3km/hB .1.5h 时爸爸与小明的距离为0.5kmC .山脚到山顶的总路程为6kmD .小明加速追赶爸爸时的速度为3km/h二、填空题10.已知函数y =(m −1)x |m|−3是关于x 的一次函数,则m 的值为 .11.在平面直角坐标中,点A(−3,−2)、B(−1,−2)直线y =kx(k ≠0)与线段AB 有交点,则k 的取值范围为 .12.将直线y =−2x −1向左平移a (a >0)个单位长度后,经过点(1,−5),则a 的值为 .13.如图,直线y =2x +1和y =kx +3相交于点A(34,52),则关于x 的不等式kx +3≤2x +1的解集为 .14.某苹果种植合作社通过网络销售苹果,如图所示的线段AB 反映了苹果的日销售量y (千克)与销售单价x (元/千克)间的函数关系,已知1千克苹果的成本是5元,如果某天该合作社的苹果销售单价为8元/千克,那么这天销售苹果的盈利是 元.三、解答题15.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?16.如图,在平面直角坐标系内,直线AB与x轴交于点A(1,0),与y轴交于点B(0,−2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=3,求点C的坐标.17.潮州市湘桥区农投公司现有22吨优质农产品需要销售,经市场调查,采用批发、零售两种销售方式,这两种销售方式每天的销量及每顿所获得利润如表:销售方式批发零售利润(元/吨)1200 2000假设农投公司售完22吨优质农产品,共批发了x吨,所获总利润为y元.(1)求出y与x之间的函数关系式;(2)如果农投公司销售这批优质农产品共获利28000元,请计算农投公司通过批发方式销售这批农产品共多少吨?18.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?19.某商场计划购进甲、乙两种商品共80件进行销售,已知甲种商品的进价为120元/件,乙种商品的进价为80元/件,甲种商品的销售单价为150元/件,乙种商品的销售单价y(元/件)与购进乙种商品的数量x(件)之间的函数关系如图所示.(1)求y(元/件)关于x(件)的函数关系式(不要求写出自变量x的取值范围);(2)当购进乙种商品30件时,求销售完80件甲、乙两种商品获得的总利润;(3)实际经营时,因原材料价格上张,甲、乙两种商品的进价均提高了10%,为保证销售完后总利润不变,商场决定将这两种商品的销售单价均提高m元,且m不超过乙种商品原销售单价的9%,求m的最大值.参考答案1.B2.D3.C4.A5.C6.A7.A8.B9.D10.-111.23≤k ≤212.113.x ≥3414.660015.(1)解:设该一次函数解析式为y=kx+b将(150,45)、(0,60)代入y=kx+b 中,得 {150k +b =45b =60解得: {k =−110b =60∴该一次函数解析式为y= −110 x+60.(2)解:当y= −110 x+60=8时解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530-520=10千米油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.16.(1)解:设直线AB 的解析式为y =kx +b把A(1,0),B(0,−2)分别代入得{k +b =0b =−2,解得{k =2b =−2∴直线AB 的解析式为y =2x −2;(2)解:设C(t ,2t −2),∵S △BOC =3∴12×2×t =3,解得t =3,∴C 点坐标为(3,4).17.(1)解:由题意可得y =1200x +2000(22−x)y =−800x +44000(2)解:当y =28000时−800x +44000=28000解得:x =20答:农投公司通过批发方式销售这批农产品20吨.18.(1)解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为(x +11)元,根据题意,得20(x +11)+30x =2920解得 x =54x +11=65答:甲、乙两种头盔的单价各是65元,54元.(2)解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w则m ≥12(40−m),解得m ≥1313,故最小整数解为m =14w =0.8×65m +(54−6)(40−m)=4m +1920∵4>0,则w 随m 的增大而增大∴m =14时,w 取最小值,最小值=4×14+1920=1976.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.19.(1)解:设y 关于x 的函数关系式为y =kx +b依题意得{20k +b =120,60k +b =100解得{k =−12b =130,所以y 关于x 的函数关系式为y =−12x +130 (2)解:当x =30时,y =−12×30+130=115利润为(150−120)×(80−30)+(115−80)×30=2550(元)答:当购进乙种商品30件时,总利润为2550元.(3)解:依题意,甲种商品进价为120×(1+10%)=132(元/件)乙种商品的进价是80×(1+10%)=88(元/件)根据提价前后总利润不变得(150+m−132)(80−x)+(−12x+130+m−88)x=(150−120)(80−x)+(−12x+130−80)x,化简得,x=−20m+240∵m≤9%(−12x+130)∴m≤9%[−12(−20m+240)+130]∴m≤9∴m的最大值为9.。
八年级数学《一次函数》经典练习题一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x 的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题(1)1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y 有如下的对应关系:x(℃)…-10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).三、1.(1)因为与成正比例,所以(k是不等于0的常数),即.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。
八年级上册数学一次函数测试题及答案填空题.
(1)点A在y轴右侧,距y轴6个单位长度,距x轴8个单位长度,则A点的坐标是,A点离开原点的距离是.
(2)点(-3,2),(a,a+1)在函数y=kx-1的图像上,则k=a= (3)正比例函数的图像经过点(-3,5),则函数的关系式是.
(4)函数y=-5x+2与x轴的交点是,与y轴的交点是,与两坐标轴围成的三角形面积是.
(5)已知y与4x-1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
(6)写出下列函数关系式
①速度60千米的匀速运动中,路程S与时间t的关系
②等腰三角形顶角y与底角x之间的关系
③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y(升)与汽车行驶路程x(千米)之间的关系
④矩形周长30,则面积y与一条边长x之间的关系
在上述各式中,是一次函数,是正比例函数(只填序号)
(7)正比例函数的图像一定经过点.
(8)若点(3,a)在一次函数y=3x+1的图像上,则.
(9)一次函数y=kx-1的图像经过点(-3,0),则k=.
(10)已知y与2x+1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
(11)函数y=-x+m^2与y=4x-1的图像交于轴,则m=.
答案:
(1)、(6,+8)和(6,-8)、10(2)、-1、-1(3)、y=-x
(4)、(0.4,0)、(0,2)、0.4(5)、y=(4x-1)
(6)、s=60t、y=180-2x、y=100-0.18x、y=x(x-15)、①②③、①
(7)、(0,0)(8)、10(9)、-(10)、y=(2x+1)
(11)、正负。
一、单选题(共10题;共分)1.下列各曲线中,不表示y是x的函数的是()A. B. C. D.2.函数的图象一定经过点()A. (3,5)B. (-2,3)C. (2,7)D. (4,10)3.y=kx+(k-3)的图象不可能是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A. 1<x<2B. x>2C. x>0D. 0<x<16.一次函数y=mx+n与正比例函数y=mnx(m、n常数,且m≠0),在同一坐标系中的大致图象是()A. B. C. D.7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y与浆洗一遍的时间x之间关系的图象大致为()A. B.C. D.8.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()A. B. C. D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.x上,若A1(1,10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y= √330),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A. 22n√3B. 22n−1√3C. 22n−2√3D. 22n−3√3二、填空题(共10题;共分)11.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________ .12.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.13.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 ________象限.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ________.15.如图,在坐标系中,一次函数y=−2x+1与一次函数y=x+k的图像交于点A(−2,5),则关于x的不等式x+k>−2x+1的解集是________.16.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t的取值范围为________.17.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是________.18.如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(4√3,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为________19.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 ________s能把小水杯注满.20.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 ________三、解答题(共2题;共22分)21.已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.22.我县为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y(元)与所用的水量x(吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y与x之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨。
八年级数学-一次函数练习题(含解析)一、单选题1.下列的点在函数y =13x -2上的是( ) A .(0,2) B .(3,-2) C .(-3,3) D .(6,0)2.当2x =时,函数41=-+y x 的值是( )A .-3B .-5C .-7D .-93.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式3520y x =+来表示,则y 随x 的增大而( ).A .增大B .减小C .不变D .以上答案都不对4.下列不是一次函数关系的是( )A .矩形一条边的长固定,面积与另一条边的长的关系B .矩形一条边的长固定,周长与另一条边的长的关系C .圆的周长与直径的关系D .圆的面积与直径的关系5.已知函数()15my m x m =-+是一次函数,则m 的值为( ) A .1 B .1- C .0或1- D .1或1-6.若直线1y k x 1=+与2y k x 4=-的交点在x 轴上,那么12k k 等于( ) A .4 B .4- C .14 D .14- 7.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .38.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >9.如果一次函数y=kx+b (k 、b 是常数,k≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <010.关于函数y =-x -2的图象,有如下说法:①图象过点(0,-2);②图象与x 轴的交点是(-2,0);③从图象知y 随x 增大而增大;④图象不经过第一象限;⑤图象是与y =-x 平行的直线.其中正确的说法有( )A .2种B .3种C .4种D .5种二、填空题 11.将直线12y x =-向上平移一个单位长度得到的一次函数的解析式为_______________. 12.函数y=kx+b 的图象平行于直线y=-2x ,且与y 轴交于点(0,3),则k=______,b=____.13.一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是 ________.14.在一次实验中小明把一根弹簧的上端固定在其下端悬挂物体,如表所示,为测得的弹簧的长度()y cm 与所挂物体质量()x kg 的一组对应值.若所挂重物为7k g 时(在允许范围内),此时的弹簧长度为________cm .15.若直线y mx n =-+经过第一、二、三象限,则直线y nx m =-+不经过第________象限.三、解答题16.如图,正比例函数的图像经过点()1,2-,求此函数的解析式.17.已知y 与23x -成正比例,且当4x =时,10y =,求y 与x 的函数解析式.18.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.19.已知一次函数的图象经过A(−2,−3),A(1,3)两点. (1)求这个一次函数的表达式;(2)试判断点A(−1,1)是否在这个一次函数的图象上.20.如图,已知一次函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),一次函数y1=(m﹣2)x+2与x轴交于点B.(1)求m、n的值;(2)求△ABO的面积;(3)观察图象,直接写出当x满足时,y1>y2.21.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.参考答案1.D【解析】A 选项:当x =0时,102223y =⨯-=-≠. 因此,点(0, 2)不在该函数的图象上. 故A 选项不符合题意.B 选项:当x =3时,132123y =⨯-=-≠-. 因此,点(3, -2)不在该函数的图象上. 故B 选项不符合题意.C 选项:当x =-3时,()132333y =⨯--=-≠. 因此,点(-3, 3)不在该函数的图象上. 故C 选项不符合题意.D 选项:当x =6时,16203y =⨯-=. 因此,点(6, 0)在该函数的图象上. 故D 选项符合题意.故本题应选D.2.C【解析】解:当2x =时,函数414217y x =-+=-⨯+=-,故选C.3.A【解析】解:由题目分析可知:在某个地点岩层温度y 随着所处深度x 的变化的关系可以由公式y=35x+20来表示,由一次函数性质,进行分析,因为35>0,故应有y 随x 的增大而增大.故选:A .4.D【解析】A 项,矩形的面积=一条边长×另一条边长,当矩形一条边的长固定,面积与另一条边的长的关系是一次函数关系,故本选项不符合题意;B 项,矩形的周长=2×一条边长+2×另一条边长,当矩形一条边的长固定,周长与另一条边的长的关系是一次函数关系,故本选项不符合题意;C 项,圆的周长=π×直径,圆的周长与直径的关系是一次函数关系,故本选项不符合题意;D 项,圆的面积=4π×直径2,圆的面积与直径的关系不是一次函数关系,故本选项符合题意.故选D .5.B【解析】 由题意可知:110m m =-≠⎧⎪⎨⎪⎩,解得:m=−1故选:B . 6.D【解析】解:令y 0=,则1k x 10+=, 解得11x k =-, 2k x 40-=, 解得24x k =, Q 两直线交点在x 轴上,1214k k ∴-=,12k 1k 4∴=-. 故选:D .7.A【解析】把(0,0)代入y=(k+2)x+k 2-4得k 2-4=0,解得k=±2,而k+2≠0,所以k=2.故选A .8.B【解析】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .9.B【解析】∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.10.C【解析】①将(0,−2)代入解析式得,左边=−2,右边=−2,故图象过(0,−2)点,正确;②当y=0时,y=−x−2中,x=−2,故图象过(−2,0),正确;③因为k=−1<0,所以y随x增大而减小,错误;④因为k=−1<0,b=−2<0,所以图象过二、三、四象限,正确;⑤因为y=−x−2与y=−x的k值(斜率)相同,故两图象平行,正确.故选C.11.112y x=-+【解析】由平移的规律知,得到的一次函数的解析式为112y x=-+.12. -23【解析】∵y=kx+b的图象平行于直线y=−2x,∴k=−2,则直线y=kx+b的解析式为y=−2x+b,将点(0,3)代入得:b=3,故答案为:−2,3.【解析】解:∵y 随x 增大而减小,∴k<0,∴2m -6<0,∴m<3.14.32【解析】解:由表格可得:当所挂物体重量为1千克时,弹簧长20厘米;当不挂重物时,弹簧长18厘米,则y=2x+18,当所挂重物为7kg 时,弹簧的长度为:y=14+18=32(cm ).故答案为:32.15.一【解析】由直线y=-mx+n 的图象经过第一、二、三象限,∴-m >0,n >0,∴m<0,-n <0∴直线y=-nx+m 经过第二、三、四象限,∴直线y=-nx+m 不经过第一象限,故答案为:一.16.2y x =-.解:设该正比例函数的解析式为()0y kx k =≠.∵该正比例函数经过点()1,2-,则21k -=⨯,解得:2k =-.∴该正比例函数的解析式为:2y x =-.17.46y x =-【解析】设函数解析式为()()230y k x k =-≠,把4x =,10y =代入()23y k x =-,得:()1083k =-, 解得,2k =,所以,函数解析式为()22346y x x =-=-.18.(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x −2k+6的图象y 随x 的增大而减小, ∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.19.(1)A =2A +1;(2)点A (−1,1)不在这个一次函数的图象上.【解析】解:(1)设这个一次函数的表达式为A =AA +A .由题意得{−2A +A =−3,A +A =3, 解得{A =2,A =1,∴这个一次函数的表达式为A =2A +1.(2)当A =−1时,A =2×(−1)+1=−1≠1.∴点A (−1,1)不在这个一次函数的图象上.20.(1)m=3, n=4;(2)4;(3)x <2.【解析】(1)∵点A (2,n )在正比例函数y=2x 的图象上,∴n=2×2=4,∴A(2,4);∵点A (2,4)在一次函数y 1=(m ﹣2)x+2的图象上,∴4=2(m-2)+2,解得m=3,∴y 1=x+2.(2)当y 1=0时,x+2=0,即x=-2,∴点B 的坐标为(-2,0), ∴12442AOB S ∆=⨯⨯=. (3)观察图象可知,当x 满足x <2时,y 1>y 2.21.(1)y=x+1;(2)C (0,1);(3)1【解析】(1)∵正比例函数y=2x 的图象与一次函数y=kx+b 的图象交于点A (m ,2), ∴2m=2,m=1.把(1,2)和(-2,-1)代入y=kx+b ,得221k b k b +⎧⎨-+-⎩== 解得:11k b ⎧⎨⎩== 则一次函数解析式是y=x+1;(2)令x=0,则y=1,即点C (0,1);(3)令y=0,则x=-1.则△AOD 的面积=11212⨯⨯=.。
一、单选题(共7题;共14分)1.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B−E−D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是().A. 监测点AB. 监测点BC. 监测点CD. 监测点D2.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A. y=2x﹣2B. y=2x+1C. y=2xD. y=2x+23.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为( )A. (√5)7B. 2(√5)7C. 2(√5)8D. (√5)94.如图所示,一次函数y=kx+b(k、b为常数,且k ≠0)与正比例函数y=ax(a为常数,且a ≠0)相交于点P,则不等式kx+b>ax的解集是()A. x>1B. x<1C. x>2D. x<25.如图,直线y=x+2与y轴相交于点A0,过点A0作x轴的平行线交直线y=0.5x+1于点B1,过点B1作y轴的平行线交直线y=x+2于点A1,再过点A1作x轴的平行线交直线y=0.5x+1于点B2,过点B2作y轴的平行线交直线y=x+2于点A2,…,依此类推,得到直线y=x+2上的点A1,A2,A3,…,与直线y=0.5x+1上的点B1,B2,B3,…,则A7B8的长为()A. 64B. 128C. 256D. 5126.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A. x≤﹣2B. x≥﹣2C. x<﹣2D. x>﹣27.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A. M处B. N处C. P处D. Q处二、填空题(共6题;共6分)8.已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+ b=________.9.设m、x、y均为正整数,且√m−√28=√x−√y,则(x+y+m)²=________.10.菱形0BCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为________.11.如图,在平面直角坐标系中,一次函数y=x+3 √2的图象与x轴交于点A,与y轴交于点B,点P在线12.已知一次函数的图象过点且不经过第一象限,设,则m的取值范值是________;13.如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标是________.三、计算题(共1题;共5分)14.计算:(1)√2+1√8+(√3−1)0(2)(−12)−1−3√13+(1−√2)0+√12四、解答题(共2题;共20分)15.楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)16.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4 √5,OCOA =12(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.五、综合题(共6题;共88分)17.已知四边形OABC是边长为4的正方形,分别以OA,OC所在的直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过A,C两点.(1)写出点A,点C坐标并求直线l的函数表达式;(2)若P是直线l上的一点,当△OPA的面积是5时,请求出点P的坐标;(3)如图2,点D(3,﹣1),E是直线l上的一个动点,求出使|BE﹣DE|取得最大值时点E的坐标和最大值(不需要证明).18.如下图所示,直线y=-1x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q2以每秒1个单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)求出点C的坐标;(2)若△OQC是等腰直角三角形,则t的值为________;(3)综上所述,若△OCQ是等腰直角三角形,则t的值为2或4. (3)若CQ平分△OAC的面积,求直线CQ 对应的函数表达式.19.如图,直线l:y=kx+6与x轴、y轴分别交于点B、C两点,点B的坐标是(-8,0),点A的坐标为(-6,0).(1)求k的值.(2)若点P是直线l在第二象限内一个动点,当点P运动到什么位置时,△PAC的面积为3?并求出此时直线AP的解析式.(3)在x轴上是否存在一点M,使得△BCM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.20.如图1,在平面直角坐标系中,直线l:y=34x+32与x轴交于点A,且经过点B(2,m),点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒√2个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.21.已知:如图,直线l1:y1=−x+n与y轴交于A(0,6),直线l2:y2=kx+1分别与x轴交于点B(−2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)直接写出直线l1、l2的函数表达式;(2)求ΔABD的面积;(3)在x轴上存在点P,能使ΔABP为等腰三角形,求出所有满足条件的点P的坐标.22.如图,己知函数y= 4x + 4的图象与坐标轴的交点分别为点A、B,点C与点B关于x轴对称,动点P、3Q分别在线段BC、AB上(点P不与点B、C重合).且∠APQ=∠ABO(1)点A的坐标为________,AC的长为________;(2)判断∠BPQ与∠CAP的大小关系,并说明理由;(3)当△APQ为等腰三角形时,求点P的坐标.六、综合题(共1题;共11分)x+4的图像与x轴和y轴分别相交于A、B两点.动23.如图,在平面直角坐标系中,一次函数y=−23点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A 关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=1秒时,点Q的坐标是________;3(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.答案解析部分一、单选题1. C2. B3. B4. D5.【答案】 C6.【答案】 A7.【答案】 D二、填空题8.【答案】2.5 9.【答案】 256 10.【答案】( 2√3−3,2−√3 ) 11.【答案】59≤m ≤1 12.【答案】 3+3√2 13.【答案】 (−1,−1)三、计算题14.【答案】 (1) 原式=√2−1−2√2+1=−√2(2)原式=−2−√3+1+2√3=√3−1四、解答题15.【答案】 解:(1)由题意,得当0<x≤5时y=30.当5<x≤30时,y=30﹣0.1(x ﹣5)=﹣0.1x+30.5.∴y=;(2)当0<x≤5时,(32﹣30)×5=10<25,不符合题意,当5<x≤30时,[32﹣(﹣0.1x+30.5)]x=25,解得:x 1=﹣25(舍去),x 2=10.答:该月需售出10辆汽车.16.【答案】 (1)解:∵ OC OA =12 ,∴ 可设OC=x ,则OA=2x ,在Rt △AOC 中,由勾股定理可得OC 2+OA 2=AC 2 ,∴x 2+(2x )2=(4 √5 )2 , 解得x=4或x=-4(不合题意,舍去),∴OC=4,OA=8,∴A (8,0),C (0,4),设直线AC 解析式为y=kx+b ,∴ {8k +b =0b =4, 解得: {k =−12 ,∴直线AC 解析式为y= −12 x+4(2)解:由折叠的性质可知AE=CE ,设AE=CE=y ,则OE=8-y ,在Rt △OCE 中,由勾股定理可得OE 2+OC 2=CE 2 ,∴(8-y )2+42=y 2 , 解得y=5,∴AE=CE=5,∵∠AEF=∠CEF ,∠CFE=∠AEF ,∴∠CFE=∠CEF ,∴CE=CF=5,∴S △CEF = 12 CF•OC= 12 ×5×4=10,即重叠部分的面积为10;(3)解:由(2)可知OE=3,CF=5,∴E (3,0),F (5,4),设直线EF 的解析式为y=k′x+b′,∴ {3k ′+b ′=05k ′+b ′=4 , 解得: {k ′=2b ′=−6, ∴直线EF 的解析式为y=2x-6五、综合题17.【答案】 (1)解:∵四边形OABC 是边长为4的正方形,∴A (4,0)和C (0,4);设直线l 的函数表达式y=kx+b (k≠0),经过A (4,0)和C (0,4)得 {0=4k +b b =4, 解之得 {k =−1b =4, ∴直线l 的函数表达式y=﹣x+4(2)解:设△OPA 底边OA 上的高为h ,由题意等 12 ×4×h=5,∴h= 52, ∴|﹣x+4|= 52 ,解得x= 32 或132 ∴P 1( 32 , 52 )、P 2(132, −52 )(3)解:∵O 与B 关于直线l 对称,∴连接OD 并延长交直线l 于点E ,则点E 为所求,此时|BE ﹣DE|=|OE ﹣DE|=OD ,OD 即为最大值,如图2.∴﹣1=3k 1 , ∴k 1= −13∴直线OD 为 y =−13x ,解方程组: {y =−x +4y =−13x,得 {x =6y =−2 , ∴点E 的坐标为(6,﹣2). 又D 点的坐标为(3,﹣1) 由勾股地理可得OD= √10 .18.【答案】 (1)解:由 {y =−12x +3y =x解得: {x =2y =2 ,∴点C 的坐标为(2,2)(2)4 3)解:令- x +3=0,得x =6, ∴A(6,0). ∴点Q 的坐标为(3,0)时,CQ 平分△OCA 的面积. 设直线CQ 的函数表达式为y =kx +b. 把C(2,2),Q(3,0)代入y=kx+b 得: {3k +b =02k +b =2,解得k =-2,b =6, ∴当直线CQ 平分△OCA 的面积时,其对应的函数表达式为y =-2x +6. 19.【答案】 (1)解:直线l :y=kx+6过点B (-8,0), 0=-8k+6,K= 34(2)解:当x=0时,y= 34 x+6=6,∴点C 的坐标为(0,6) 如图,设点P 的坐标为(x , 34 x+6),∴S △PAC =S △BOC +S △BAP +S △AOC = 12 ×8×6- 12 ×2( 34 x+6)- 12 ×6×6=- 34 x取S △PAC =3,解得x=4,∴点P 的坐标为(4,3),设此时直线AP 的解析式为y=ax+b (a≠0), 将A (-6,0),P (-4,3)代入y=ax+b , 得 {-6a +b =0−4a +b =3 解得= a =32b =9,∴当点P 的坐标为(-44,3)时,△PAC 的面积为3,此时直线AP 的解析式为y= 32 x+9 (3)解:点M 的坐标为(-18,0)或(- 74 ,0)或(2,0)或(8,0) 20.【答案】 (1)解:将点B (2,m )代入 y =34x +32 得m=3 ∴ B(2,3)C(3,0)设直线BC 解析式为 y =kx +b 得到 {2k +b =33k +b =0 ∴ {k =−3b =9 ∴直线BC 解析式为 y =−3x +9(2)解:如图,过点O 作 OD//AB 交BC 于点D∴S △ABC =S △ABD , k AB =k OD =34 ∴直线OD 的解析式为y= 34x ,∴ 联立方程组{y =34xy =−3x +9解得 {x =125y =95∴D(125,95) (3)解:①如图,当P 点在y 轴负半轴时,作 M 1N ⊥OP 于点N ,∵直线AB 与x 轴相交于点A ,∴点A 坐标为(-2,0),∵∠APO+∠PAO=90°,∠APO+∠PNM 1=90° ∴∠PAO=∠PNM 1 , 又∵AP=PM 1 , ∠POA=∠PNM 1=90° ∴△AOP ≅ △PNM 1 , ∴PN=OA=2, 设OP=NM 1=m ,ON=m-2 ∴ M 1(m ,2−m)代入y =−3x +9 解得 m =72 ∴ M 1(72,−32) ②如图,作 M 2H ⊥OP 于点H可证明△AOP ≅ △PHM 2 ,设HM 2=n ,OH=n-2∴ M 2(n,n −2)代入y =−3x +9 ,解得 n =114,∴M 2(114, 34 ),∴综上所述 M 1(72,−32) 或M 2( 114, 34 ) (4)解:如图,作射线AQ 与x 轴正半轴的夹角为45°,过点B 作x 轴的垂线交射线AQ 于点Q ,作 EK ⊥AQ 于点K ,作 BT ⊥AQ 于点T ,∵∠CAQ=45°BG ⊥x 轴,B (2,3)∴AG=4,∴AQ=4 √2 ,BQ=7,t=BE 1+√2 =BE+EK≥BT ,由面积法可得: 12AQ ⋅BT =12BQ ⋅AG ∴ 12 ×4 √2 ×BT= 12 ×7×4,∴BT= 72√2 因此t 最小值为 72√2 . 21.【答案】 (1)解:∵直线 l 1 : y 1=−x +n 与y 轴交于A (0,6), ∴n =6, ∴直线 l 1 : y 1=x +6 ,∵ y 2=kx +1 分别与x 轴交于点B (−2,0),∴−2k +1=0, ∴k = 12 ,直线 l 2 : y 2=12x +1(2)解:设 l 1 与 x 轴交于点 E ,令 y 1=−x +6=0 ,得 x =6 , ∴点 E 坐标为 (6,0) , BE =8 . 由 {y =−x +6y =12x +1解得 x =103 , y =83 ,∴点 D 的坐标为 (103,83) , ∴ S ΔABD =S ΔABE −S ΔBDE =12×8×6−12×8×83=403.(3)解:在 RtΔAOB 中,由勾股定理可得 AB =√22+62=2√10 ,①当 BP =BA 时,满足条件的点 P 有两个,分别为 P 1(−2−2√10,0) , P 2(−2+2√10,0) ; ②当 AP =AB 时,由等腰三角形的三线合一可得 OP =OB ,于是满足条件的点 P 为 P 3(2,0) ; ③当 AP =AB 时,如图,设 OP =t ,则 AP =BP =t +2 ,在RtΔAOP中,AP2=AO2+OP2,∴(t+2)2=62+t2,解得t=8,∴P4(8,0).综上,满足条件的点P为P1(−2−2√10,0),P2(−2+2√10,0),P3(2,0),P4(8,0).22.【答案】(1)(3,0);5(2)解:∠BPQ=∠CAP.理由如下:∵点C与点B关于x轴对称,∴AB=AC,∴∠1=∠2,∵∠APQ=∠1,∴∠2=∠APQ,∵∠BPA=∠2+∠3,即∠BPQ+∠APQ=∠2+∠3,∴∠BPQ=∠3;(3)解:当PA=PQ,如图1,则∠PQA=∠PAQ,∵∠PQA=∠1+∠BPQ=∠APQ+∠BPQ=∠BPA,∴BP=BA=5,∴OP=BP﹣OB=1,∴P(0,﹣1);当AQ=AP,则∠AQP=∠APQ,而∠AQP=∠BPA,所以此情况不存在;当QA=QP,如图2,则∠APQ=∠PAQ,而∠1=∠APQ,∴∠1=∠PAQ,∴PA=PB,设P(0,t),则PB=4﹣t,∴PA=4﹣t,在Rt△OPA中,∵OP2+O A2=PA2,∴t2+32=(4﹣t)2,解得t= 78,∴P(0,78),综上所述,满足条件的P点坐标为(0,﹣1),(0,78).六、综合题23.【答案】(1)(4,0)(2)解:当点Q与原点O重合时,即OA=6, ∴AP= 12AO=3=3t, ∴t=1,①当0<t≤1时(如图1),∵一次函数与y轴交于B点,令x=0,∴y=4,∴B(0,4),即OB=4由(1)知OA=6,在Rt△AOB中,∴tan∠OAB= OBOA= 46= 23,∵AP=3t,∴OP=OA-PA=6-3t,∴P(6-3t,0),又∵点A关于点P的对称点为点Q,∴AP=PQ=3t,∴OQ=OA-AP-PQ=6-3t-3t=6-6t,∴Q(6-6t,0),∵四边形PQMN是正方形,∴PN=PQ=3t,MN∥AO,在Rt△APD中,∴tan∠PAD= PDPA= PD3t= 23,∴PD=2t,∴DN=PN-PD=3t-2t=t,∵MN∥AO,∴∠PAD=∠DCN,在Rt△DCN中,∴tan∠DCN= DNCN= tCN= 23,∴CN= 32t,∴S=S正方形PQMN-S△CDN,=(PQ)2- 12·DN·CN,=(3t)2- 12·t·32t,= 334t2,②当1<t≤ 43时(如图2),由①可知:DN=t,CN= 32t,OP=6-3t,PN=3t,∴S=S矩形POEN-S△CDN,=PO·PN-12·DN·CN,=(6-3t)×3t- 12·t·32t,=18t- 394t2,③当43<t≤2时(如图3),由①可知:PD=2t,OP=6-3t,OB=4,∴S=S四边形POBD,= 12·(PD+OB)·OP,= 12×(2t+4)×(6-3t),=-3t2+12t,综上所述:S={334t2,0≤t<1−394t2+18t,1≤t≤43−3t2+12,43<t≤2(3)解:解:如图4,由(2)中①可知:P(6-3t,0),Q(6-6t,0),PN=PQ=3t,A(6,0),∴M(6-6t,3t),N(6-3t,3t),∵T是正方形PQMN对角线的交点,∴T(6- 92t,32t),设直线AT解析式为:y=kx+b,∴{6k+b=0(6−92t)k+b=32t,解得:{k=−13b=2,∴AT解析式为:y=- 13x+2,∴点T是直线y=- 13x+2上一段线段上的点(-3≤x<6),同理可得直线AN解析式为:y=-x+6, ∴点N是直线y=-x+6上一段线段上的点(0≤x≤6),∴G(0,6),∴OG=6,∵OA=6,在Rt△AOG中,∴AG=6 √2,又∵T是正方形PQMN对角线的交点,∴PT=TN,∴OT+PT=OT+TN,∴当O、T、N在同一条直线上,且ON⊥AG时,OT+TN最小,即OT+PT最小, ∵S△AOG= 12·AO·GO= 12·AG·NO,∴NO= AO×GOAG =6√2=3 √2,∴OT+PT=OT+TN=ON=3 √2, 即OT+PT最小值为3 √2.。
《第4章一次函数》一、选择题1.下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个2.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=﹣2x+24(0<x<12) B.y=﹣x+12(0<x<24)C.y=2x﹣24(0<x<12)D.y=x﹣12(0<x<24)3.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=()A.﹣1 B.3 C.1 D.﹣1或34.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)5.对于函数y=﹣x+3,下列说法错误的是()A.图象经过点(2,2)B.y随着x的增大而减小C.图象与y轴的交点是(6,0)D.图象与坐标轴围成的三角形面积是96.关于x的一次函数y=kx+k2+1的图象可能正确的是() A.B. C.D.7.P1(x1,y1),P2(x2,y2)是一次函数y=﹣2x+5图象上的两点,且x1<x2,则y1与y2的大小关系是()A.y1<y2 B.y1=y2C.y1>y2 D.y1>y2>08.已知一次函数y=x+m和y=﹣x+n的图象都经过点A(﹣2,0),且与y轴分别交于B,C两点,那么△ABC的面积是()A.2 B.3 C.4 D.69.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.810.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,点B2013的坐标为()A.(42012×,42012) B.(24026×,24026)C.(24026×,24024)D.(44024×,44024)二、填空题11.将直线y=2x向上平移1个单位长度后得到的直线是.12.函数y=中,自变量x的取值范围是.13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.14.直线y=3x﹣m﹣4经过点A(m,0),则关于x的方程3x﹣m﹣4=0的解是.15.已知某一次函数的图象经过点A(0,2),B(1,3),C(a,1)三点,则a的值是.16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是天.17.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是.18.如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为.三、解答题(共66分)19.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a 的值.20.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0。
一、选择题1.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .72.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .无法比较3.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为(1,1)A ,(3,1)B ,(2,2)C ,当直线3y kx =+与ABC ∆有交点时,k 的取值范围是( )A .2132k -≤≤- B .223k -≤≤- C .223k -<<-D .122k -≤≤-4.对于函数31y x =-+,下列结论正确的是( )A .它的图象必经过点(1,3)B .它的图象经过第一、三、四象限C .当x >0时,y <0D .y 的值随x 值的增大而减小5.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 6.弹簧大家了解吗?弹簧挂上物体后会伸长。
测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系: x 0 1 2 3 4 5 y1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B.物体质量每增加1kg,弹簧长度y增加0.5cmC.y与x的关系表达式是y=0.5xD.所挂物体质量为7kg时,弹簧长度为13.5cm7.如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段BE B.线段EF C.线段CE D.线段DEx的函数的是()8.下列各图象中,y不是..A.B.C.D.9.如图,△ABC的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )A .4B .8C .82D .1610.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .11.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④12.一蓄水池中有水350m ,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分 1 2 3 4 … 水池中水量/3m48464442…A .蓄水池每分钟放水32mB .放水18分钟后,水池中水量为314mC .蓄水池一共可以放水25分钟D .放水12分钟后,水池中水量为324m二、填空题13.为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的1l 和2l 分别表示去年和今年的水费y (元)和用水量x (3m )之间的函数关系图像.如果小明家今年和去年都是用水1503m ,要比去年多交水费________元.14.把一根长为20cm 的蜡烛,每分钟燃烧2cm ,蜡烛剩余长度y(cm)与燃烧时间t(分)之间的关系为_______(不需要写出自变量的取值范围).15.一列火车以100km /h 的速度匀速前进.则它的行驶路程s (单位:km )关于行驶时间t (单位:h )的函数解析式为_____. 16.已知()111,P y ,()222,P y 在正比例函数14y x =-的图象上,则1y ___________2y .(填“>”或“<”或“=”).17.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,下列结论: ①甲、乙两地相距1800千米;②点B 的实际意义是两车出发后4小时相遇; ③动车的速度是280千米/小时; ④6,900.m n ==其中正确的是_______________________.(写出所有正确结论的序号)18.某书定价40元,如果一次购买20本以上,超过20本的部分打八折.试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系____.19.若长方形的周长为24cm ,一边为cm x ,面积为2cm y ,则y 与x 的关系式为y =__________.20.某通讯公司的4G 上网套餐每月上网费用y (单位:元)与上网流量x (单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a 的值为__________.三、解答题21.如图,在平面直角坐标系中,()1,4A -,()3,3B -,()2,1C -.(1)已知111A B C △与ABC 关于x 轴对称,画出111A B C △(请用2B 铅笔将111A B C △描深);(2)在y 轴上找一点P ,使得PBC 的周长最小,试求点P 的坐标.22.甲船从A 港出发顺流匀速驶向B 港,乙船从B 港出发逆流匀速驶向A 港,甲船后面拖拽着一艘无动力小艇,行驶一段时间后,甲船发现拖拽小艇缆绳松了,小艇不知去向,立刻原路返回寻找,找到小艇后,继续拖拽小艇顺流驶向B港.已知小艇漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船与A港的距离、与行驶时间之间的函数图象如图1所示.(1)求乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y与行驶时间x之间的函数关系式;(4)甲船拖拽的小艇与A港的距离和经历的时间之间的函数图像如图2所示,求点C的坐标.23.甲、乙两家商场平时以同样价格出售相同的商品,元旦假期,甲、乙两家商场打折促销,甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数关系式;(2)小明需要购买原价为300元的商品,在元旦期间他去哪家商场购买更省钱?24.如图,直线l与x轴交于点A,与y轴交于点B(0,2).已知点C(﹣1,3)在直线l上,连接OC.(1)求直线l的解析式;(2)点P为x轴上一动点,若△ACP的面积与△AOB的面积相等,求点P的坐标.25.甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象,已知甲气球的函数解析式为y=x+5(x≥0)(1)求乙气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.26.已知y 与2x -1成正比例,当x =3时,y =10. (1)求y 与x 之间的函数关系式; (2)当y =-2时,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】把2x =-代入解析式即可. 【详解】解:把2x =-代入23y x =+得, 2(2)31y =⨯-+=-,故选:A . 【点睛】本题考查了求一次函数的函数值,解题关键是把自变量的值代入后能准确熟练计算.2.A解析:A 【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较. 【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<, 所以y 随着x 的增大而减小, ∵-2<1, ∴12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-,∴12y y >; 故选:A . 【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.3.B解析:B 【分析】把A 点和B 点坐标分别代入y=kx+3中求出对应的的值,即可求得直线y=kx+3与△ABC 有交点时k 的临界值,然后再确定k 的取值范围. 【详解】解:把A (1,1)代入y=kx+3得1=k+3,解得k=-2 把B (3,1)代入y=kx+3得1=3k+3,解得:k=23-所以当直线y=kx+3与△ABC 有交点时,k 的取值范围是223k -≤≤-. 故答案为B . 【点睛】本题考查了一次函数与系数的关系,将A 、B 点坐标代入解析式确定k 的边界点是解答本题的关键.4.D解析:D 【分析】根据一次函数图象上点的坐标特征对A 进行判断;根据一次函数的性质对B 、D 进行判断;利用x >0时,函数图象在y 轴的左侧,y <1,则可对C 进行判断. 【详解】A 、当1x =时,312y x =-+=-,则点(1,3)不在函数31y x =-+的图象上,所以A 选项错误;B 、30k =-<,10b =>,函数图象经过第一、二、四象限,所以B 选项错误;C 、当x >0时,y <1,所以C 选项错误;D 、y 随x 的增大而减小,所以D 选项正确. 故选:D . 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.由于y=kx+b 与y 轴交于(0,b ),当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.5.B解析:B【分析】根据横坐标分别求出A,B,C的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为1112m m22⨯⨯+-+×1×[m-(-2+m)]+12×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.【点睛】本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键.6.C解析:C【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【详解】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项不符合题意;B、物体质量每增加1kg,弹簧长度y增加0.5cm,故B选项不符合题意;C、y与x的关系表达式是y=0.5x+10,故C选项符合题意;D、由C知,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D 选项不符合题意;故选:C.【点睛】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.7.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】A、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故选项A错误;B、由图1可知,若线段EF是y,则y随x的增大越来越小,故选项B错误;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故选项C错误;D、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故选项D正确;故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.8.B解析:B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键. 9.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC 扫过的面积S=S 平行四边形BCFE =CF•FD=16.故选D .10.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0,故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0,故y=nx+m 过一,二,四象限,故B 正确,D 错误;故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 12.D解析:D【分析】根据题意可得蓄水量为502y t =-,从而进行判断即可;【详解】设蓄水量为y 立方米,时间为t 分,则可得502y t =-, 蓄水池每分钟放水32m ,故A 不符合题意;放水18分钟后,水池中水量为35021814y m =-⨯=,故B 不符合题意; 蓄水池一共可以放水25分钟,故C 不符合题意;放水12分钟后,水池中水量为35021226y m =-⨯=,故D 符合题意;故答案选D .【点睛】本题主要考查了函数的表示方法,准确分析判断是解题的关键.二、填空题13.210【分析】根据函数图象中的数据可以求得x>120时l2对应的函数解析式从而可以求得x=150时对应的函数值由l1的图象可以求得x=150时对应的函数值从而可以计算出题目中所求问题的答案【详解】解解析:210【分析】根据函数图象中的数据可以求得x>120时,l 2对应的函数解析式,从而可以求得x=150时对应的函数值,由l 1的图象可以求得x=150时对应的函数值,从而可以计算出题目中所求问题的答案.【详解】解:设当x>120时,l 2对应的函数解析式为y=kx+b ,120480160720k b k b +=⎧⎨+=⎩ 解:6240k b =⎧⎨=-⎩故x>120时,l 2的函数解析式y=6k-240,当x=150时,y=6×150-240=660,由图象可知,去年的水价是480÷160=3(元/m 3),小明去年用水量150m 3,需要缴费:150×3=450(元),660-450=210(元),所以要比去年多交水费210元,故答案为:210【点睛】本题考查的是一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.14.y=20-2t 【分析】根据题意可得燃烧的长度为2tcm 根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度根据等量关系再列出函数关系式即可【详解】由题意得:y=20−2t 故答案为y=20−2t 【解析:y=20-2t【分析】根据题意可得燃烧的长度为2tcm ,根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度,根据等量关系再列出函数关系式即可.【详解】由题意得:y=20−2t ,故答案为y=20−2t.【点睛】本题考查函数关系式,解题的关键是准确获取题文信息.15.s =100t 【分析】利用路程=速度×时间用t 表示出路程s 即可【详解】解:根据题意得s =100t 故答案为s =100t 【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式也称为函数关系式注解析:s =100t【分析】利用路程=速度×时间,用t 表示出路程s 即可.【详解】解:根据题意得s =100t .故答案为s =100t .【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.16.【分析】根据正比例函数的增减性解答【详解】∵<0∴y 随着x 的增大而减小∵1<2∴>故答案为:>【点睛】此题考查了正比例函数的增减性:当k>0时y 随x 的增大而增大;当k<0时y 随x 的增大而减小熟练掌握解析:>【分析】根据正比例函数的增减性解答.【详解】 ∵14k =-<0, ∴y 随着x 的增大而减小,∵1<2,∴1y >2y ,故答案为:>.【点睛】此题考查了正比例函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟练掌握正比例函数的增减性是解此题的关键.17.①②④【分析】根据题意和函数图像中的数据可以判断B点表示两车相遇的点C点表示动车先行到达终点D点表示列车达到终点进而求出动车和列车的速度再结合题中各数据逐个分析即可解答本题【详解】解:对于①:由图像解析:①②④【分析】根据题意和函数图像中的数据可以判断B点表示两车相遇的点,C点表示动车先行到达终点,D点表示列车达到终点,进而求出动车和列车的速度,再结合题中各数据逐个分析即可解答本题.【详解】解:对于①:由图像可知,甲、乙两地相距1800千米,故①说法正确;对于②:点B的实际意义是两车出发后4小时相遇,故②说法正确;对于③:C点表示动车先行到达终点,D点表示列车达到终点,普通列车的速度为:1800÷12=150(km/h),动车的速度为:(1800-150×4)÷4=300(km/h),故③说法错误;对于④:动车到达终点所需要的时间为1800÷300=6小时,故m=6,动车到达终点的6小时内,列车运行的路程为6×150=900km,此时n=1800-900=900,故④说法正确;故答案为:①②④【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,确定好B、C、D点各代表的含义,利用数形结合的思想解答.18.【分析】分类:当0≤x≤20用数量乘以单价得到付款金额y;当x>20用20的金额加上超过20本的金额得到付款金额【详解】解:当0≤x≤20y=40x;当x >20y=40×20+40×08(x-20)解析:40(020)32+160(20)x xyx x≤≤⎧=⎨>⎩【分析】分类:当0≤x≤20,用数量乘以单价得到付款金额y;当x>20,用20的金额加上超过20本的金额得到付款金额.【详解】解:当0≤x≤20,y=40x;当x>20,y=40×20+40×0.8(x-20)=32x+160;即y=() 40020 32160(20) x xx x⎧≤≤⎨+⎩>故答案为y=() 40020 32160(20)x xx x⎧≤≤⎨+⎩>.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.19.【分析】首先利长方形周长公式表示出长方形的另一边长然后利用长方形的面积公式求解即可【详解】∵长方形的周长为24cm 其中一边长为xcm ∴另一边长为:(12-x )cm ∵长方形面积为∴y 与x 的关系式为y=解析:212x x -+【分析】首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解即可.【详解】∵长方形的周长为24cm ,其中一边长为xcm ,∴另一边长为:(12-x )cm ,∵长方形面积为2cm y ,∴y 与x 的关系式为y=x(12−x)=-x 2+12x .故答案为:y=-x 2+12x【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.20.59【解析】由题意得解得a=59故答案为59解析:59【解析】 由题意得,300.29600500a -=-,解得a=59. 故答案为59. 三、解答题21.(1)答案见解析;(2)(0,95). 【分析】(1)分别作出ABC 三个顶点关于x 轴的对称点,再首尾顺次连接即可;(2)作点C 关于y 轴的对称点C ',再利用待定系数法求出BC '所在直线解析式,再令x =0,求出y ,即可求出P 点坐标.【详解】(1)如图所示111A B C △即为所求.(2)如图所示P 点即为所求,由对称可知,点C 关于y 轴的对称点C '的坐标为(2,1),设BC '所在直线解析式为y kx b =+,则3312k bk b=-+⎧⎨=+⎩,解得2595kb⎧=-⎪⎪⎨⎪=⎪⎩,即BC'所在直线解析式为2955y x=-+.当0x=时,95y=,即P点坐标为(0,95).【点睛】本题考查作图-轴对称变换以及利用待定系数法求一次函数解析式,解题的关键是掌握轴对称的定义和性质.22.(1)6/km h;(2)3km;(3)19(02)5630(2)215579()222x xy x xx x⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩;(4)3(2,27)2【分析】(1)由速度=路程÷时间列式求解;(2)因为甲船、乙船在逆流中行驶的速度相同,只需由图示得出甲船在逆流中行驶的时间.(3)观察图形,要分成3段讨论,每一段中已知两点,可用待定系数法确定一次函数的解析式.(4)根据等量关系:小艇脱离船中后,船顺流行驶的路程=船逆流行驶的路程+小艇漂流的路程,据此即可解答.【详解】解:(1)乙船在逆流中行驶的速度为6/km h.(2)甲船在逆流中行驶的路程为6(2.52)3()km⨯-=.(3)设甲船顺流的速度为/akm h ,由图象得23(3.5 2.5)24a a -+-=,解得9a =.当02x 时,19y x =,当2 2.5x 时,设116y x b =-+,把2x =,118y =代入,得130b =,1630y x ∴=-+,当2.5 3.5x 时,设129y x b =+,把 3.5x =,124y =代入,得27.5b =-,197.5y x ∴=-. 综上所述,19(02)5630(2)215579()222x x y x x x x ⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩; (4)水流速度为(96)2 1.5(/)km h -÷=,设甲船从A 港航行x 小时小艇缆绳松了. 根据题意,得9(2) 1.5(2.5)3x x -=-+,解得 1.5x =,1.5913.5⨯=,即小艇缆绳松了时甲船到A 港的距离为13.5km . ∴点C 坐标3(2,27)2. 【点睛】 此题为一次函数的应用,渗透了函数与方程的思想,要求学生要提高阅读理解水平,从中挖掘有用信息,记住船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.23.(1)0.9y x 甲;(0100)0.820(100)x x y x x ⎧=⎨+>⎩乙;(2)乙商场. 【分析】(1)甲是单价的0.9倍,乙的需要分大于100和小于等于100两种情形计算;(2)分别代入两种表达式中计算,比较大小后,作出判断.【详解】解:(1)由题意得,0.9y x 甲, 当0100x 时,y x =乙,当100x >时,100(100)0.80.820y x x =+-⨯=+乙,由上可得,(0100)0.820(100)x x y x x ⎧=⎨+>⎩乙, (2)当300x =时,0.9300270,0.830020260y y =⨯==⨯+=甲乙此时,y y >甲乙所以,小明购买原价为300元的商品,在元旦期间,他去乙家商场购买更省钱.【点睛】本题考查了函数的表示方式,理解打折的意义,学会用分类思想表示是解题的关键. 24.(1)y =﹣x+2;(2)P (103,0)或(23,0). 【分析】(1)利用待定系数法求函数解析式;(2)先求出直线BC 与x 轴的交点坐标,然后设P (t ,0),根据三角形面积公式列方程求解.【详解】解:(1)设直线l 的解析式y =kx+b ,把点C (﹣1,3),B (0,2)代入解析式得, 23b k b =⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩, ∴直线l 的解析式:y =﹣x+2;(2)把 y =0代入y =﹣x+2得﹣x+2=0,解得:x =2,则点A 的坐标为(2,0),∵S △AOB =12×2×2=2, ∴S △ACP =S △AOB =2,设P (t ,0),则AP =|t ﹣2|,∵12•|t ﹣2|×3=2,解得t =103或t =23, ∴P (103,0)或(23,0).【点睛】本题考查一次函数与几何图形,掌握一次函数的性质利用数形结合思想解题是关键.25.(1)y =12x+15(x≥0);(2)50min . 【分析】 (1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,从而列方程求解【详解】解:(1)设乙气球的函数解析式为:y =k x+b ,分别将(0,15),(20,25)代入,152520b k b=⎧⎨=+⎩, 解得:1215k b ⎧=⎪⎨⎪=⎩,∴乙气球的函数解析式为:y =12x+15(x≥0); (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,甲气球的函数解析式为:y =x+5∴x+5﹣(12x+15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【点睛】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象. 26.(1)y =4x -2;(2)x =0.【分析】(1)根据正比例函数定义设设y=k(2x -1),将数值代入计算即可;(2)将y=-2代入(1)的函数解析式求解.【详解】解:(1)设y=k(2x -1),当x =3时,y =10,∴5k=10,解得k=2,∴y 与x 之间的函数关系式是y =4x -2;(2)当y=-2时4x -2=-2,解得x =0.【点睛】此题考查正比例函数的定义,求函数解析式,已知函数值求自变量,正确理解正比例函数的定义是解题的关键.。
第十一章一次函数测试题(时间:90分钟总分120分)一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()A.y B.y C.y D.y ??2.下面哪个点在函数y x+1的图象上()A.(2,1) B.(-2,1) C.(2,0) D.(-2,0)3.下列函数中,y是x的正比例函数的是()A.y 2x-1 B.y C.y 2x2 D.y -2x+14.一次函数y -5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四5.若函数y (2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m B.m C.m D.m -6.若一次函数y (3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k 3 B.0 k≤3 C.0≤k 3 D.0 k 37.已知一次函数的图象与直线y -x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y -x-2 B.y -x-6 C.y -x+10 D.y -x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的()9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()10.一次函数y kx+b的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为()A.y -2x+3 B.y -3x+2 C.y 3x-2 D.y x-3二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x的函数y mx+2-m是正比例函数,则m ________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y kx的图象上,则此函数的解析式为________.13.已知一次函数y kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2 3x-2得x 2,则当x_________时直线y x+•2•上的点在直线y 3x-2上相应点的上方.15.已知一次函数y -x+a与y x+b的图象相交于点(m,8),则a+b _________.16.若一次函数y kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“”、“”或“=”)17.已知直线y x-3与y 2x+2的交点为(-5,-8),则方程组的解是________.18.已知一次函数y -3x+1的图象经过点(a,1)和点(-2,b),则a ________,b ______.19.如果直线y -2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x 9时,y 16;(2)y kx+b的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x 10时,y的值是多少?(3)当y 12时,•x的值是多少?23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A 种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y 2x 12.y 3x 13.y 2x+1 14. 2 15.1616.; 17. 18.0;7 19.±6 20.y x+2;421.①y x;②y x+ 22.y x-2;y 8;x 1423.①5元;②0.5元;③45千克24.①当0 t≤3时,y 2.4;当t 3时,y t-0.6.②2.4元;6.4元25.①y 50x+45(80-x) 5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x 40,41,42,43,44,∴y与x的函数关系式是y 5x+3600(x 40,41,42,43,44);②∵y随x的增大而增大,∴当x 44时,y最大 3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.- 1 -。
1
一次函数 测试题
一、填空
1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。
2、若函数y= -2x
m+2
是正比例函数,则m 的值是 。
3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。
4、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。
5、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。
6、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。
7、已知点A(-
2
1
,a), B(3,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。
8、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。
9、一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。
10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。
(1)y 随着x 的增大而减小, (2)图象经过点(1,-3)。
二、选择题
11、下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1
-3x 中,是一次函数的有
( )
(A )4个 (B )3个 (C )2个 (D )1个 12、下面哪个点不在函数
32+-=x y 的图像上( )
(A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1
13、直线
y=kx+b 在坐标系中的位置如图,则
(第13题图)
(A )1,12k
b =-=- (B )1
,12k b =-=
(C )1,12k
b ==- (D )1
,12
k b == 14、下列一次函数中,随着增大而减小而的是 ( ) (A )
x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y
15、已知一次函数y=kx+b 的图象如图所示,则k ,b 的符号是( )
(A) k>0,b>0 (B) k>0,b<0
(C) k<0,b>0 (D) k<0,b<0
(第15题图) 16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是( ) (A )34
m <
(B )3
14m -<< (C )1m <- (D )1m >-
17、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t
(时)的函数关系的图象是( )
(A) (B) (C ) (D )
18、下图中表示一次函数y =mx+n 与正比例函数y =m nx(m ,n 是常数,且mn<0)图像的是
( ).
2
三、计算题
19、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x 轴交于点B(3,0)
(1)求这两个函数的解析式; (2)画出它们的图象;
20、已知y -2与x 成正比,且当x=1时,y= -6
(1)求y 与x 之间的函数关系式 (2)若点(a ,2)在这个函数图象上,求a 的值
21、已知一次函数y=kx+b 的图象经过点(-1, -5),且与正比例函数y= 1
2 x 的图象相交于
点(2,a),求 (1)a 的值 (2)k ,b 的值
(3)这两个函数图象与x 轴所围成的三角形的面积。
22、某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费1.8元,超计划部分每吨按2.0元收费。
(1)写出该单位水费y (元)与每月用水量x (吨)之间的函数关系式:_________________ ①当用水量小于等于3000吨 ;②当用水量大于3000吨 。
(2)某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元。
(3)若某月该单位缴纳水费9400元,则该单位用水多少吨?
23、已知函数y=(2m+1)x+m -3 (1)若函数图象经过原点,求m 的值
(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围。
24、如图是某市出租车单程收费y (元)与行驶路程x (千米)之间的函数关系图象,根据图象回答下列问题:
(1)当行使路程为8千米时,收费应为 元; (2)从图象上你能获得哪些信息?(请写出2条)
①
② (3)求出收费y (元)与行使路程x (千米) (x ≥3)之间的函数关系式。
答 案
一、填空
1、y=-2x
2、-1
3、3
4、6
5、三
6、y=6x-2
7、a >b
8、t=-0.06h+20
9、y=2x+10 10、y=-3x 或y=-2x-1等。
二、选择题
11、B 12、C 13、B 14、D 15、D 16、C 17、D 18、C 三、计算题
19(1)y=4x,y=x+3,(2)略
20(1)y=-8x+2 (2)a=0,21(1)a=1 (2)k=2,b=-3 (3)3/4 22(1)①y=1.8x ②y=2x-600 (2)5800,5040(3) 5000 23(1)m=3 (2)m <-1/2
24(1) 11 (2) ①出租车的起步价是5元 ②出租车起步价的路程范围是3公里之内(包括3公里) (3)y=1.2x+1.4(x ≥3)
25(1) 8,32 (2)57 (3) y=-x+57(x ≥25) (4) 30。