直线与圆的方程练习 必修
- 格式:doc
- 大小:305.00 KB
- 文档页数:4
直线与圆的方程练习题直线与圆是解析几何中的基本概念,掌握它们的方程及其应用是解题的关键。
下面将以几道习题为例,来进行练习。
1. 已知直线L过点A(3,4),斜率为2,求直线L的方程。
解析:由题目可知,直线L经过点A(3,4),斜率为2。
我们可以运用直线的点斜式来求解。
直线的点斜式方程为:y - y₁ = m(x - x₁)其中m为直线的斜率,(x₁, y₁)为直线上的已知点。
代入已知条件,得到直线L的方程为:y - 4 = 2(x - 3)化简得:y - 4 = 2x - 6最终方程为:y = 2x - 22. 已知圆O的圆心为(2,3),半径为5,求圆O的方程。
解析:圆的方程可以通过圆心和半径来确定。
我们可以利用圆的标准方程来求解。
圆的标准方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r为圆的半径。
代入已知条件,得到圆O的方程为:(x - 2)² + (y - 3)² = 5²化简得:(x - 2)² + (y - 3)² = 25最终方程为:x² - 4x + y² - 6y + 5 = 03. 已知直线L的方程为2x - 3y + 7 = 0,圆O的方程为x² + y² - 6x + 4y + 3 = 0,求直线L与圆O的交点坐标。
解析:直线与圆的交点坐标可以通过联立直线与圆的方程求解。
我们可以通过消元法来求解。
将直线L的方程转化为一般形式:2x - 3y = -7代入圆O的方程,得到联立方程组:x² + y² - 6x + 4y + 3 = 02x - 3y = -7通过联立方程组,我们可以求得直线L与圆O的交点坐标。
首先,将直线L的方程中的x表示为y的函数:x = (3y - 7) / 2将x代入圆O的方程中,得到二次方程:(3y - 7)² / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0化简得:(9y² - 42y + 49 + 4y² - 12y - 42 + 16y + 12) / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0整理得:13y² - 36y + 30 = 0通过求解二次方程,我们可以得到y的值,再带入x = (3y - 7) / 2,即可求得直线L与圆O的交点坐标。
第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。
2.请将答案正确填写在答题卡上。
第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。
A。
$-2$B。
$-1$C。
$1$D。
$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。
A。
$-0.25$B。
$1$C。
$-1$D。
$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。
A。
$(-3,1)$B。
$(3,1)$C。
$(3,-1)$D。
$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。
A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。
A。
$\left[\frac{3}{4},1\right]$B。
$\left[\frac{3}{4},+\infty\right)$C。
$(1,+\infty)$D。
$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。
第二章 直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1C .0D .1【答案】D【解析】已知直线1l :2y x =-,2l :y kx =,因为12//l l ,所以1k =故选:D2.(2020·洮南市第一中学高一月考)直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1C .-1D .1或-1【答案】D【解析】当10a +=时,1a =-,此时14:3l x =,2:9l y =-,显然两直线垂直, 当0a =时,此时1:240l x y -++=,2:9l x =,显然两直线不垂直, 当10a +≠且0a ≠时,因为12l l ⊥,所以()()()2110a a a a -+++=,解得:1a =,综上可知:1a =或1-.故选D.3.(2020·江苏省海头高级中学高一月考)直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)- B .(3,1)C .(3,1)-D .(3,1)--【答案】B【解析】根据直线(1)230m x my m ---+=得()230m x y x ---+=, 故直线过定点为直线20x y --=和30x -+=的交点,联立方程得2030x y x --=⎧⎨-+=⎩,解得31x y =⎧⎨=⎩ ,所以定点A 的坐标为()3,1A .故选:B. 4.(2020·广东高二期末)设a R ∈,则“a =1”是“直线ax+y -1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件,【答案】C【解析】若直线ax+y -1=0与直线x+ay+1=0平行,则21a =,且11a-≠解得1a =故选C 5.(2020·黑龙江高一期末)若曲线y与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦B .3,4⎛⎫+∞⎪⎝⎭C .(1,+∞)D .(1,3]【答案】A【解析】作出曲线y的图像,直线y =k (x ﹣2)+4恒过定点()2,4,当直线与曲线相切时,原点到直线240kx y k --+=的距离等于22=,解得34k =,由图可知, ()3401422k -<≤=--,故选:A 6.(2020·浙江柯城。
第二章直线和圆的方程(能力挑战卷)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线1:10l x my ++=和2:420l mx y ++=互相平行,则实数m 的值为()A.2- B.2 C.2± D.2或42.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A.22(2)1x y +-= B.22(2)1x y ++= C.22(1)(3)1x y -+-=D.22(2)(3)1x y -+-=3.圆22210x y ax y +-++=与圆221x y +=关于直线1x y -=对称,则实数a 的值为()A.2- B.1 C.2± D.24.设直线y x =222:O x y a +=相交于,A B 两点,且||AB =,则圆O 的面积为()A.π B.2π C.4π D.8π5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为() A.55 B.255 C.355 D.4556.已知,P Q 分别为圆2:(6)(M x y -+-23)4=与圆22:(4)(2)1N x y ++-=上的动点,A 为x 轴上的动点,则||||AP AQ +的最小值为()A.3-3- C.3- D.3-7.已知在平面直角坐标系中,ABC ∆的三个顶点分别是(0,3),(3,3)A B ,(2,0)C ,若直线x a =将ABC ∆分割成面积相等的两部分,则实数a 的值是() A. B.212+ C.313+ D.222-8.我国魏晋时期的数学家刘徽创立了“割圆术,也就是用圆内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长.先作出圆222x y +=的一个内接正八边形,使该八边形的其4个顶点在坐标轴上,则下列4条直线中不是该八边形的一条边所在直线的为()A.1)0x y +-= B.(10x y -+=C.1)0x y -=D.1)0x y -+=二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆22:(cos )(sin )1M x y θθ++-=,直线:l y kx =,下面四个命题,其中真命题是()A.对任意实数k 与θ,直线l 与圆M 相切B.对任意实数k 与θ,直线l 与圆M 有公共点C.对任意实数θ,必存在实数k ,使得直线l 与圆M 相切D.对任意实数k ,必存在实数θ,使得直线l 与圆M 相切10.已知点(3,1)M ,圆22:(1)(2)4C x y -+-=,过点M 的圆C 的切线方程可能为()A.30x -= B.20x -= C.3450x y --=D.3450x y +-=11.若曲线1y =+与直线:(l y k x =-2)4+有两个交点,则实数k 的值可以是()A.0.3 B.0.75 C.0.8 D.0.612.已知圆22111:0M x y D x E y F ++++=与22222:0N x y D x E y F ++++=的圆心不重合,直线()()121212:0l D D x E E y F F -+-+-=.下列说法正确的是()A.若两圆相交,则l 是两圆的公共弦所在的直线B.直线l 过线段MN 的中点C.过直线l 上一点(P 在两圆外)分别作圆M 圆N 的切线,切点为,A B ,则||||PA PB =D.直线l 与直线MN 相互垂直三、填空题:本题共4小题,每小题5分,共20分.13.过直线:0l x y +-=上一点P 作圆22:1O x y +=的两条切线,切点分别为,E F ,若60EPF ∠=︒,则点P 的坐标为14.已知0,0a b >>,直线1:(1)l a x y -+-210,:210l x by =++=,且12l l ⊥,则21a b+的最小值为15.已知直线:(4)l y k x =+与圆22(2)4x y ++=相交于,A B 两点,M 是线段AB 的中点,则点M 的轨迹方程为;点M 到直线3460x y +-=的距离的最小值为.(本题第一空分,第二空3分)16.在平面直角坐标系xOy 中,已知点(1,0)A -,(5,0)B .若圆22:(4)()4M x y m -+-=上存在唯一的点P ,使得直线,PA PB 在y 轴上的截距之积为5,则实数m 的值为四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知直线l 过直线250x y +-=与20x y -=的交点.(1)若点(5,0)A 到直线l 距离为3,求直线l 的方程;(2)求点(5,0)A 到直线l 距离的最大值.18.(12分)在下列所给的三个条件中任选一个,补充在下面的横线中,并加以解答.条件①:直线l 与直线4350x y -+=垂直;条件②:直线l 的一个方向向量为(4,3)a =-;条件③:直线l 与直线3420x y ++=平行.已知直线l 过点(1,2)P -,且(1)求直线l 的一般式方程;(2)若直线l 与圆225x y +=相交于,P Q ,求弦长|PQ .注:如选择多个条件分别解答,按第一个解答计分.19.(12分)已知圆22:240C x y x y m ++-+=与y 轴相切,O 为坐标原点,动点P 在圆外,过P 作圆C 的切线,切点为M .(1)求圆C 的圆心坐标及半径;(2)求满足||2||PM PO =的点P 的轨迹方程.20.(12分)已知圆22:(4)4M x y +-=,P 是直线:20l x y -=上的动点,过点P 作圆M的切线PA ,切点为A .(1)当切线PA 的长度为P 的坐标.(2)若PAM △的外接圆为圆N ,试问:当点P 运动时,圆N 是否过定点?若过定点,求出所有的定点的坐标;若不过定点,请说明理由.21.(12分)已知ABC 的三个顶点分别为()20A -,,()20B ,,()02C ,.(1)若过()12P ,的直线y ax b =+将ABC 分割为面积相等的两部分,求b 的值;(2)一束光线从()10E ,点出发射到BC 上的D 点,经BC 反射后,再经AC 反射到x 轴上的F 点,最后再经x 轴反射,反射光线所在直线为l ,证明直线l 经过一定点,并求出此定点的坐标.22.(12分)已知圆22:860C x y x y F +--+=与圆22:4O x y +=相外切,切点为A ,过点()4,1P 的直线与圆C 交于点M ,N ,线段MN 的中点为Q .(1)求点Q 的轨迹方程;(2)若AQ AP =,点P 与点Q 不重合,求直线MN 的方程及AMN 的面积.参考答案1.A 【解析】因为直线1:10l x my ++=和2:420l mx y ++=互相平行,所以2140m ⨯-=,解得2m =或2m =-.当2m =时,1:210l x y ++=与2:2420l x y ++=重合,不符合题意,故2m =-.故选A .2.【解析】方法一(直接法)设圆心坐标为(0,)b ,则由题意知22(01)(2)1b -+-=,解得2b =,故圆的方程为22(2)1x y +-=.故选A .方法二(数形结合法)根据点(1,2)到圆心的距离为1,作图易知圆心为(0,2),故圆的方程为22(2)1x y +-=.故选A .方法三(验证法)将点(1,2)代人四个选项,可排除B,D ,又圆心在y 轴上,所以排除C .故选A .3.D 【解析】因为圆22210x y ax y +-++=的圆心坐标为,12a ⎛⎫- ⎪⎝⎭,圆221x y +=的圆心坐标为(0,0),所以两圆心的中点坐标为1,42a ⎛⎫- ⎪⎝⎭,又两圆关于直线1x y -=对称,所以点1,42a ⎛⎫- ⎪⎝⎭在直线1x y -=上,所以1142a -+=,解得2a =故选D .4.C 【解析】圆222:O x y a +=的圆心坐标为(0,0),半径为||a ,直线y x =-2圆222:O x y a +=相交于,A B 两点,且||23,AB =∴圆心(0,0)到直线2y x =-的距离22|2|1,1(3)2d a -==∴+=,即24a =,圆的半径||2,r a ==∴圆O 的面积4S π=,故选C.5.B 【解析】因为圆与两坐标轴都相切,且点(2,1)在该圆上,所以可设圆的方程为222()()x a y a a -+-=,所以222(2)(1)a a a -+-=,即2a -650a +=,解得1a =或5a =,所以圆心的坐标为(1,1)或(5,5),所以圆心到直线230x y --=的距离为2212113|2552(1)⨯--=+-或22|2553|2(1)⨯--=+-255,故选B .6.A 【解析】圆22:(4)(2)1N x y ++-=关于x 轴对称的圆为:(N x '+224)(2)1y ++=,则||||AP AQ +的最小值为12MN '--=221053553+-=-,故选A .7.A 【解析】如图所示,易知直线AB 的方程是y =3直线AC 的方程是123x y +=,即32x y +-60=,且直线x a =只与边,AB AC 相交.设直线x a =与AB 交于点D ,AC 交于点E ,则点D ,E 的坐标分别为63(,3),,2a a a -⎛⎫ ⎪⎝⎭,从而6331||3,||222ADE a DE a S AD ∆-=-==.2133||224DE a a a =⋅=(1).又ABC S ∆=1933,22⨯⨯=所以1924ADE ABC S S ∆∆==(2),由(1)-(2)得23944a =,解得a =a =舍去),故选A .8.C 【解析】如图所示,可知(1,1)A B ,(1,1),(C D E -所以,,, AB BC CD DE 所在直线的方程分别为(11)y x y x y x y x =-=-+=+=+,1)0,(1x y x +-=--1)0,1)0y x y x y +=-+=-+=,故选C.9.BD 【解析】由题意知,圆心坐标(cos ,sin )θθ-,圆心M 到直线l 的距离为|sin()|1d θα==+ (其中tan k α=),所以对任意实数k 与θ,直线l 与圆M 有公共点,且对任意实数k ,必存在实数θ,使得直线l 与圆M 相切.故选BD .10.AC 【解析】由题意得圆心(1,2)C ,半径222.(31)(12)r =-+-= 程为3x =,即30x -=.又点(1,2)C 到直线30x -=的距离3d =12,r ==∴直线30x -=是圆C 的切线.当过点M 的圆C 的切线的斜率存在时,设切线方程为1(3)y k x -=-,即130kx y k -+-=,则圆心C 到切线的距离2d ==,解得3,4k =∴切线方程为31(3)4y x -=-,即3450x y --=.综上可得,过点M 的圆C 的切线方程为30x -=或3450x y --=.故选AC.11.BD 【解析】曲线1y =+可化为22(1)4,22x y x +-=- ,1y ,所以曲线1y =+是以(0,1)为圆心,2为半径的半圆.如图,直线:(2)4l y k x =-+恒过点(2,4)A .当直线l 与半圆相切时,圆心到直线l 的距离2d r ==,2=,解得512k =.当直线l 过点(2,1)B -时,直线l 的斜率为4132(2)4-=--.因为曲线1y =+与直线:(2)4l y k x =-+有两个交点,所以实数k 的取值范围为53,124⎛⎤ ⎥⎝⎦.故选BD.12.BD 【解析】A 中,若2112212A F F A F F ⋅=,则()()a c a c --=2(2)c ,即2c a c =-或2c c a =-(舍去),解得15132c a -=≠,所以A 不正确B 中,连接1112,B F B A ,若11290F B A ∠=︒,则由射影定理可得2112OB F O OA =⋅,即2b ca =,所以220c ca a +-=,即210,e e e +-=∈(0,1),解得512e =,所以B 正确;C 中,连接1,PF PO ,若1PF ⊥x 轴,且21//PO A B ,则且直线PO 与直线21A B 的斜率相等,所以2b bac a =--,即b c =,所以2c e a ===,所以C 不正确;D 中,连接122211,,A B A B A B ,则四边形1221A B A B 为菱形,若四边形1221A B A B 的内切圆过焦点12,F F ,则内切圆的圆心为原点,圆心到直线21A B 的距离等于c ,因为直线21A B 的方程为1x y a b+=,即0bx ay ab +-=,所以原点到直线21A B的距离d c ==,222b a c =-,整理得()()2222222a a c c a c -=-,所以42310e e -+=,2(0,1)e ∈,解得232e =,所以1,D 2e -==正确.故选BD.13.【解析】因为60EPF ∠=︒,所以30OPE OPF ∠=∠=︒,因为OE PE ⊥,所以||2||2OP OE ==.设(,),P x x -由||2OP ==,解得x =,故点P的坐标为.14.8【解析】因为12l l ⊥,所以(1)1120a b -⨯+⨯=,即21a b +=.因为0,0a b >>,所以21214(2)224b a a b a b a b a b⎛⎫+=++=++++ ⎪⎝⎭8=,当且仅当4b a a b =,即11,24a b ==时等号成立,所以21a b +的最小值为8.15.22(3)1(4)x y x ++=≠-,2.【解析】由题意知圆22(2)4x y ++=的圆心为(2,0)-,半径2r =,所以圆心(2,0)-到直线:(4)l y k x =+的距离2d ==<.直线:(4)l y k x =+过定点(4,0)-,且点(4,0)-在圆22(2)4x y ++=上,不妨设(4,0),(,)(4)A M x y x -≠-,()11,B x y ,则11242x x y y =+⎧⎨=⎩,将(24,2)x y +代人22(2)4x y ++=,得22(3)1(4)x y x ++=≠-,所以点M 的轨迹是以(3,0)-为圆心,以1为半径的圆(除去点(4,0))A -,则点M 到直线3460x y +-=的距离的最小值为|336|125-⨯--=.16.【解析】根据题意,设点P 的坐标为(,)a b ,则直线PA 的方程为(1)1b y x a =++,其在y 轴上的截距为1b a +,直线PB 的方程为y =(5)5b x a --,其在y 轴上的截距为55b a --.若点P 满足使得直线,PA PB 在y 轴上的截距之积为5,则有5515b b a a ⎛⎫⨯-= ⎪+-⎝⎭,变形可得22(2)b a +-=9,则点P 在圆22(2)9x y -+=上.若圆22:(4)()4M x y m -+-=上存在唯一的点P 满足题意,则圆M 与圆22(2)9x y -+=有且只有一个公共点,即两圆内切或外切.又两圆的圆心距为2,所以两圆外切,所以2425m +=,解得m =.17.【解析】(1)由250 20x y x y +-=⎧⎨-=⎩得21x y =⎧⎨=⎩,所以交点坐标为(2,1).(1分)当直l 的斜率存在时,设l 的方程为1(2)y k x -=-,即12kx y k -+-=0则点A 到直线l3=,解得43k =,所以l 的方程为4350x y --=;(3分)当直线l 的斜率不存在时,直线l 的方程为2x =,符合题意.故直线l 的方程为4350x y --=或2x =(5分)(2)设直线250x y +-=与20x y -=的交点为P ,由(1)可知(2,1)P ,过点P 任意作直线l(如图所示),设d 为点A 到直线l 的距离,则d PA (当l PA ⊥时,等号成立),(8分)由两点间的距离公式可知||PA =..(10分)18.【解析】(1)选条件①.直线4350x y -+=的斜率为4,3(2分)因为直线l 与直线4350x y -+=垂直,所以l 的斜率为34-.(4分)又直线l 过点(1,2)P -,所以直线l 的方程为32(1)4y x +=--,即3450x y ++=.(6分)选条件②.因为直线l 的一个方向向量为(4,3)a =-,所以直线l 的斜率为34-.2分)又直线l 过点(1,2)P -所以直线l 的方程为32(1)4y x +=--,即3450x y ++=.(6分)选条件③.直线3420x y ++=的斜率为34-,因为直线l 与直线3420x y ++=平行,所以直线l 的斜率为34-.(4分)又直线l 过点(1,2)P -,所以直线l 的方程为32(1)4y x +=--,即3450x y ++=(6分)(2)圆225x y +=的半径r =,圆心(0,0)到直线:3450l x y ++=的距离为1d ==,(8分)设PQ的中点为,||2M PM ===,所以||2||224PQ PM ==⨯=(12分)19.【解析】(1)圆22:240C x y x y m ++-+=可化为22(1)(2)x y ++-=5m -所以圆C 的圆心坐标为(1,2)-.又圆C 与y 轴相切,1=即4m =,故圆C 的半径为1.(6分)(2)设(,)P x y ,则22222||||||(1)(2)1PM PC MC x y =-=++--,222||PO x y =+(8分)由于||2||PM PO =,则()2222(1)(2)14x y x y ++--=+,整理得点P 的轨迹方程为221217339x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.(12分)20.(1)(0,0)或168 ,55⎛⎫ ⎪⎝⎭;(2)过定点,定点(0,4)和84,55⎛⎫ ⎪⎝⎭.(1)由题可知圆M 的圆心为(0,4)M ,半径2r =.设(2,)P b b ,因为PA 是圆M 的一条切线,所以90MAP ∠=︒.在Rt MAP △中,222MP AM AP =+,故4MP =.又MP =,4=,解得0b =或85.所以点P 的坐标为(0,0)或168 ,55⎛⎫ ⎪⎝⎭.(2)因为90MAP ∠=︒,所以PAM △的外接圆圆N 是以MP 为直径的圆,且MP 的中点坐标为4,2b b +⎛⎫ ⎪⎝⎭,所以圆N 的方程为()()222244424b b b x b y +-+⎛⎫-+-= ⎪⎝⎭,即()22(24)40x y b x y y +--+-=.由2224040x y x y y +-=⎧⎨+-=⎩,解得04x y =⎧⎨=⎩或8545x y ⎧=⎪⎪⎨⎪=⎪⎩,所以圆N 过定点(0,4)和84,55⎛⎫ ⎪⎝⎭.21.(1)2b =-;(2)证明见解析,()14--,.(1)直线BC 的方程为:20x y―+=,直线y ax b =+只能与BC 、AB 相交,其与BC 的交点为Q 点,由2y ax b x y =+⎧⎨+=⎩得21Q b a y a +=+,0Q y >,直线y ax b =+与x 轴交点为0b R a ⎛⎫- ⎪⎝⎭,,22b a-<<,由12BR BQBA CB =12=,化简得:()2(2)41b a a a +=+,又2b a +=,231280b b ∴-+=,解得:2b =而20a b =->,2b ∴=(2)设()0F m ,,直线AC 的方程为:20x y -+=,直线BC 的方程为:20x y +-=,设()0F m ,关于直线AC 的对称点为()111F x y ,,则111120221m x y y x m +⎧-+=⎪⎪⎨⎪=--⎪⎩,解得()122F m -+,,同理可得1F 关于直线BC 的对称点为()24F m -,,则2F 在直线ED 上,所以直线ED 的斜率为41m --,l ∴的斜率为41m +,l 方程为()41y x m m =-+,即()44m y x y +=-,l ∴过定点()14--,.22.(1)22(4)(2)1x y -+-=;(2)MN :3130x y +-=,AMN S =(1)由题设,22:(4)(3)25C x y F -+-=-,∴(4,3)CC 与圆O 相外切,25+==,可得16F =,即22:(4)(3)9C x y -+-=,又()4,1P 在圆C 内,且在MN 上,MN 的中点为Q ,则CQ MN ⊥,∴Q 在以CP 为直径的圆上,则Q 的轨迹方程为22(4)(2)1x y -+-=.(2)由题设知:OC 交圆O 于A ,则22434x y y x ⎧==+⎪⎨⎪⎩,可得86(,55A ,又AQ AP =,∴,P Q 是以A 为圆心,AP 为半径的圆与Q 轨迹的交点,∴圆A :228629()()555x y -+-=,与Q 轨迹作差,即可得MN 的方程为3130x y +-=,∴C 到MN 的距离为d =||MN =,A 到MN 的距离为246|13|55h +-=∴1||210AMN S h MN =⋅= .。
直线与圆的方程的应用(一)基础巩固1.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-34,0 B.⎝ ⎛⎦⎥⎤-∞,-34∪[0,+∞) C.⎣⎢⎡⎦⎥⎤-33,33 D.⎣⎢⎡⎦⎥⎤-23,0 解析:圆心的坐标为(3,2),且圆与x 轴相切.当|MN |=23时,弦心距最大,由点到直线的距离公式得|3k -2+3|1+k2≤1, 解得k ∈⎣⎢⎡⎦⎥⎤-34,0. 答案:A2.直线3x +y -23=0截圆x 2+y 2=4得到的劣弧所对的圆心角为( )A .30°B .45°C .60° D.90°解析:∵圆心到直线的距离为d =232=3,圆的半径为2,∴劣弧所对的圆心角为60°.答案:C3.已知圆的方程为x 2+y 2-6x -8y =0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( ) A .10 6 B .20 6 C .30 6 D.40 6解析:圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1.根据题意最短弦BD 和最长弦(即圆的直径)AC 垂直,故最短弦的长为252-12=46,最长弦为圆的直径,故最长弦为10,所以四边形ABCD 的面积为12|AC ||BD |=12×10×46=20 6.答案:B4.圆x 2+y 2=4上与直线l :4x -3y +12=0距离最小的点的坐标是( ) A.⎝ ⎛⎭⎪⎫85,65B.⎝ ⎛⎭⎪⎫85,-65C.⎝ ⎛⎭⎪⎫-85,65 D.⎝ ⎛⎭⎪⎫-85,-65 解析:圆的圆心(0,0),过圆心与直线4x -3y +12=0垂直的直线方程为3x +4y =0.3x +4y =0与x 2+y 2=4联立可得x 2=6425,所以它与x 2+y 2=4的交点坐标是⎝ ⎛⎭⎪⎫-85,65,⎝ ⎛⎭⎪⎫85,-65.又圆上一点与直线4x -3y +12=0的距离最小,所以所求的点的坐标为⎝ ⎛⎭⎪⎫-85,65. 答案:C5.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.解析:由题意知,圆心(0,0)到直线的距离小于1,即|c |122+(-5)2<1,|c |<13,-13<c <13.答案:(-13,13)6.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.解析:两圆圆心分别为O (0,0),O 1(m ,0),且5<|m |<3 5.又易知OA ⊥O 1A ,。
《直线和圆的方程》练习与答案一、单项选择题1.若过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y 等于()A.-32B.32C.-1D.1答案C解析由已知,得y +34-2=tan 45°=1.故y =-1.2.直线2x +y +1=0与直线x -y +2=0的交点在()A.第一象限B.第二象限C.第三象限D.第四象限答案B解析x +y +1=0,-y +2=0,=-1,=1.∴交点(-1,1)在第二象限.3.已知直线l 经过第二、四象限,则直线l 的倾斜角α的取值范围是()A.0°≤α<90°B.90°≤α<180°C.90°<α<180°D.0°<α<180°答案C解析直线倾斜角α的取值范围是0°≤α<180°,又直线l 经过第二、四象限,所以直线l 的倾斜角α的取值范围是90°<α<180°.4.设点A 在x 轴上,点B 在y 轴上,AB 的中点是P (2,-1),则|AB |等于()A.5B.42C.25D.210答案C解析设A (x ,0),B (0,y ),由中点公式得x =4,y =-2,则由两点间的距离公式得|AB |=42+-22=20=2 5.5.已知直线2x +my -1=0与直线3x -2y +n =0垂直,垂足为(2,p ),则p +m +n 的值为()A.-6B.6C.4D.10答案A解析因为直线2x +my -1=0与直线3x -2y +n =0垂直,所以2×3+(-2)m =0,解得m =3,又垂足为(2,p ),p-1=0,p+n=0,=-1,=-8,则p+m+n=-1+3+(-8)=-6.6.设P,Q分别是3x+4y-10=0与6x+8y+5=0上的任意一点,则|PQ|的最小值为() A.3B.6C.95D.52答案D解析两条直线的方程分别为3x+4y-10=0与6x+8y+5=0,因为36=48≠-105,直线6x+8y+5=0可化为3x+4y+52=0,所以两平行线的距离即为|PQ|的最小值即d=|-10-52|32+42=52.二、多项选择题7.下列说法正确的是()A.直线x-y-2=0与两坐标轴围成的三角形的面积是2B.点(0,2)关于直线y=x+1的对称点为(1,1)C.过(x1,y1),(x2,y2)两点的直线方程为y-y1y2-y1=x-x1x2-x1D.经过点(1,1)且在x轴和y轴上截距都相等的直线方程为x+y-2=0答案AB解析A选项,直线在横、纵坐标轴上的截距分别为2,-2,所以围成三角形的面积是2,故正确;By=x+1上,且(0,2),(1,1)连线的斜率为-1,故正确;C选项,需要条件y2≠y1,x2≠x1,故错误;D选项,还有一条截距都为0的直线y=x,故错误.8.已知直线l:3x-y+1=0,则下列结论正确的是()A.直线l的倾斜角是π6B.若直线m:x-3y+1=0,则l⊥mC.点(3,0)到直线l的距离是2D.过(23,2)与直线l 平行的直线方程是3x -y -4=0答案CD解析对于A,直线l :3x -y +1=0的斜率k =tan θ=3,故直线l 的倾斜角是π3,故A 错误;对于B,直线l 的斜率k =3,直线m :x -3y +1=0的斜率k ′=33,kk ′=1≠-1,故直线l 与直线m 不垂直,故B 错误;对于C,点(3,0)到直线l 的距离d =|3×3-0+1|32+-12=2,故C 正确;对于D,过(23,2)与直线l 平行的直线方程是y -2=3(x -23),整理得3x -y -4=0,故D 正确.三、填空题9.已知点A (1,2),B (2,1),则线段AB 的长为________,过A ,B 两点直线的倾斜角为________.答案23π4解析根据两点之间的距离公式,得线段AB 的长为1-22+2-12=2,根据斜率公式,得过A ,B 两点直线的斜率为k AB =2-11-2=-1,又因为直线的倾斜角的范围为[0,π),所以过A ,B 两点直线的倾斜角为3π4.10.已知直线l 1经过点A (0,-1)和点-4a ,1l 2经过点M (1,1)和点N (0,-2).若l 1与l 2没有公共点,则实数a 的值为________.答案-6解析直线l 2经过点M (1,1)和点N (0,-2),∴2l k =1+21-0=3,∵直线l 1经过点A (0,-1)和点-4a ,1∴1l k =2-4a=-a 2,∵l 1与l 2没有公共点,则l 1∥l 2,∴-a2=3,解得a =-6.11.已知点O (0,0),A (4,0),B (0,4).若从点P (1,0)射出的光线经直线AB 反射后过点Q (-2,0),则反射光线所在直线的方程为____________;若从点M (m ,0),m ∈(0,4)射出的光线经直线AB 反射,再经直线OB 反射后回到点M ,则光线所经过的路程是________.(结果用m 表示)答案x -2y +2=02m 2+32解析设点P (1,0)关于直线AB 的对称点为P ′(x 0,y 0),直线AB :x +y -4=0,-1=-1,+y 0+02-4=0,解得x 0=4,y 0=3,故P ′(4,3),又Q (-2,0),∴直线P ′Q :y -0=3-04--2(x +2),即反射光线所在直线方程为x -2y +2=0.设点M (m ,0),m ∈(0,4)关于y 轴的对称点为P ″(-m ,0),关于直线AB 的对称点为P(x 1,y 1),-1=-1,+y 1+02-4=0,解得x 1=4,y 1=4-m ,故P (4,4-m ).故|P ″P|=4+m2+4-m2=2m 2+32.12.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:2x +y -7=0和l 2:2x +y -5=0上移动,则AB 的中点到原点的距离的最小值为________.答案655解析设AB 的中点坐标为(x ,y ),因为A (x 1,y 1),B(x 2,y 2),=x 1+x 22,=y 1+y 22,又A (x 1,y 1),B (x 2,y 2)分别在直线l 1:2x +y -7=0和l 2:2x +y -5=0上移动,x1+y1-7=0,x2+y2-5=0,两式相加得2(x1+x2)+(y1+y2)-12=0,所以4x+2y-12=0,即2x+y-6=0,即为AB中点所在直线方程,因此原点到直线2x+y-6=0的距离,即为AB的中点到原点的距离的最小值,由点到直线的距离公式,可得距离的最小值为|-6|4+1=655.四、解答题13.已知四边形ABCD的顶点A(m,n),B(5,-1),C(4,2),D(2,2),求m和n的值,使四边形ABCD为直角梯形.解(1)如图,当∠A=∠D=90°时,∵四边形ABCD为直角梯形,∴AB∥DC且AD⊥AB.∵kDC=0,∴m=2,n=-1.(2)如图,当∠A=∠B=90°时,∵四边形ABCD为直角梯形,∴AD∥BC,且AB⊥BC,∴kAD=kBC,kAB·kBC=-1.=2--14-5,·2--14-5=-1,解得m=165,n=-85.综上所述,m =2,n =-1或m =165,n =-85.14.已知直线l 过点(1,2),且在两坐标轴上的截距相等.(1)求直线l 的方程;(2)当直线l 的截距不为0时,求A (3,4)关于直线l 的对称点.解(1)当直线l 在两坐标轴上的截距相等且不为零时,可设直线l 的方程为x +y +b =0,将点(1,2)代入直线l 的方程,得1+2+b =0,解得b =-3,此时直线l 的方程为x +y -3=0;当直线l 过原点时,可设直线l 的方程为y =kx ,将点(1,2)代入直线l 的方程,得k =2,此时直线l 的方程为y =2x ,即2x -y =0.综上所述,直线l 的方程为x +y -3=0或2x -y =0.(2)当直线l 的截距不为0时,直线l 的方程为x +y -3=0,设点A 关于直线l 的对称点B 的坐标为(a ,b ),则线段AB 的中点为M 在直线l 上,则a +32+b +42-3=0,整理得a +b +1=0,又直线AB ⊥l ,且直线l 的斜率为-1,所以直线AB 的斜率为k AB =b -4a -3=1,整理得b =a +1,+b +1=0,=a +1,=-1,=0,因此,点A (3,4)关于直线l 的对称点为(-1,0).15.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0.求:(1)顶点C 的坐标;(2)直线BC 的方程.解(1)因为AC 边上的高BH 所在直线方程为x -2y -5=0,所以k AC =-2,又因为点A (5,1),所以AC 边所在直线方程为2x +y -11=0.又因为AB 边上的中线CM 所在直线方程为2x -y -5=0,x +y -11=0,x -y -5=0,=4,=3,所以C (4,3).(2)设B (m ,n ),则AB 的中点MCM 上,所以2×5+m 2-1+n2-5=0,即2m -n -1=0.又点B (m ,n )在高BH 所在直线上,所以m -2n -5=0.-2n -5=0,m -n -1=0,=-1,=-3.所以B (-1,-3).所以直线BC 的方程为y +33+3=x +14+1,即6x -5y -9=0.。
第二章直线和圆的方程章末测试卷(原卷版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知过点M(-2,a),N(a,4)的直线的斜率为-12,则|MN|=( )A.10 B.180C.63D.652.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.(x-2)2+(y-3)2=13.过点P(2,3),且与x轴的正半轴、y轴的正半轴围成的三角形的面积等于12的直线的方程是( )A.3x-2y+12=0 B.3x+2y-12=0C.2x+3y-13=0 D.2x-3y+13=04.若点P(3,-1)为圆(x-2)2+y2=25的弦AB的中点,则直线AB的方程是( )A.x+y-2=0 B.2x-y-7=0C.2x+y-5=0 D.x-y-4=05.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是( )A.(-22,22) B.(-2,2)C.(-24,24)D.(-18,18)6.已知圆C1:x2+y2-kx-y=0和圆C2:x2+y2-2ky-1=0的公共弦所在的直线恒过定点M,且点M在直线mx+ny=2上,则m2+n2的最小值为( )A.15B.55C.255D.457.已知P,Q分别为圆M:(x-6)2+(y-3)2=4与圆N:(x+4)2+(y-2)2=1上的动点,A 为x轴上的动点,则|AP|+|AQ|的最小值为( )A.55-3 B.101-3C.75-3 D.53-38.我国魏晋时期的数学家刘徽创立的“割圆术”,也就是用圆内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长.先作出圆x2+y2=2的一个内接正八边形,使该八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该八边形的一条边所在直线的为( )A.x+(2-1)y-2=0 B.(1-2)x-y+2=0C.x-(2+1)y+2=0 D.(2-1)x-y+2=0二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.若直线过点(1,2),且在两坐标轴上截距的绝对值相等,则直线的方程可能为( ) A.x-y+1=0 B.x+y-3=0C.2x-y=0 D.x-y-1=010.已知点M(3,1),圆C:(x-1)2+(y-2)2=4,过点M的圆C的切线方程可能为( ) A.x-3=0 B.x-2=0C.3x-4y-5=0 D.3x+4y-5=011.已知圆C1:x2+y2=r2(r>0),圆C2:(x-a)2+(y-b)2=r2交于不同的A(x1,y1),B(x2,y2)两点,则下列结论正确的是( )A.a(x1-x2)+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=a D.y1+y2=2b12.(2021·新高考Ⅰ卷)已知点P在圆(x-5)2+(y-5)2=16上,点A(4,0),B(0,2),则( ) A.点P到直线AB的距离小于10B.点P到直线AB的距离大于2C.当∠PBA最小时,|PB|=32D.当∠PBA最大时,|PB|=32三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若直线(a+1)x+2y+1=0与直线(a2-1)x-ay-1=0平行,则a的值为________.14.已知圆C:(x+5)2+y2=r2(r>0)和直线l:3x+y+5=0.若圆C与直线l没有公共点,则r的取值范围是__________.15.已知直线l:y=k(x+4)与圆(x+2)2+y2=4相交于A,B两点,M是线段AB的中点,则点M的轨迹方程为________;点M到直线3x+4y-6=0的距离的最小值为________.(本题第一空2分,第二空3分)16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图,Q(0,-3)是圆Q的圆心,圆Q过坐标原点O,点L,S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线l经过直线2x+y-5=0与x-2y=0的交点.(1)若点A(5,0)到直线l的距离为3,求直线l的方程;(2)求点A(5,0)到直线l的距离的最大值.18.(12分)已知①经过直线l1:x-2y=0与直线l2:2x+y-1=0的交点;②圆心在直线2x -y=0上;③被y轴截得弦长|CD|=22.从上面这三个条件中任选一个,补充在下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问:是否存在满足条件的圆Q,使得点A(-2,-1),B(1,-1)均在圆上?19.(12分)求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程.20.(12分)已知圆心为C的圆经过点A(0,2)和B(1,1),且圆心C在直线l:x+y+5=0上.(1)求圆C的标准方程;(2)若P (x ,y )是圆C 上的动点,求3x -4y 的最大值与最小值.21.(12分)为更好地了解鲸的生活习性,某动物保护组织在某头鲸身上安装了电子监测设备,从海岸线放归点O 处把它放归大海,并沿海岸线由西到东不停地对其进行跟踪观测.在放归点O 的正东方向有一观测站C ,可以对鲸的生活习性进行详细观测.已知OC =15 km ,观测站C 的观测半径为5 km.现以点O 为坐标原点,以由西向东的海岸线所在直线为x 轴建立平面直角坐标系,如图所示,测得鲸的行进路线近似满足曲线y =k x (k >0).(1)若测得鲸的行进路线上一点A (1,1),求k 的值;(2)在(1)问的条件下,则:①当鲸运动到何处时,开始进入观测站C 的观测区域内?(计算结果精确到0.1)②当鲸运动到何处时,离观测站C 最近(观测最便利)?(计算结果精确到0.1)(参考数据:41≈6.4,11.3≈3.4,58≈7.6)22.(12分)已知圆C :x 2+(y -4)2=4,直线l :(3m +1)x +(1-m )y -4=0.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时m 的值及最短弦长;(3)如图,已知点M (-3,4),在直线MC 上(C 为圆心),存在一定点N (异于点M ),满足对于圆C 上任一点P ,都有|PM ||PN |为一常数,试求所有满足条件的点N 的坐标及该常数.1.已知A (-2,1),B (1,2),点C 为直线x -3y =0上的动点,则|AC |+|BC |的最小值为( )A .22B .23C .25D .272.圆心在曲线y =3x(x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -3)2+(y -3)2=9B .(x -3)2+(y -1)2=(165)2C .(x -1)2+(y -3)2=(185)2D .(x -2)2+(y -32)2 =93.已知直线l 经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线l 的一个方向向量ν=(-3,2),则直线l 的方程为( )A .-3x +2y +1=0B .3x -2y +1=0C .2x +3y -5=0D .2x -3y +1=04.已知圆C 1:(x +a )2+(y -2)2=1与圆C 2:(x -b )2+(y -2)2=4外切,a ,b 为正实数,则ab 的最大值为( )A .23 B.94C.32D.625.若过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,则实数k 的取值范围是( )A .(0,5)B .(-5,0)C .(0,13)D .(0,5)6.已知在平面直角坐标系中,△ABC 的三个顶点分别是A (0,3),B (3,3),C (2,0),若直线x =a 将△ABC 分割成面积相等的两部分,则实数a 的值是( )A.3B .1+22C .1+33D .2-227.【多选题】已知两圆方程为x 2+y 2=16与(x -4)2+(y +3)2=r 2(r >0),则下列说法正确的是( )A .若两圆外切,则r =1B .若两圆公共弦所在的直线方程为8x -6y -37=0,则r =2C .若两圆在交点处的切线互相垂直,则r =3D .若两圆有三条公切线,则r =28.【多选题】已知△ABC 的三个顶点坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为( )A .x 2+y 2=1B .x 2+y 2=37C .x 2+y 2=4D .x 2+y 2=1659.已知过点P (4,1)的直线l 与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,当△AOB 的面积最小时,直线l 的方程为________.10.曲线y =1+9-x 2与直线y =k (x -3)+5有两个交点,则实数k 的取值范围是________.11.在平面直角坐标系Oxy 中,已知点A (-1,0),B (5,0).若圆M :(x -4)2+(y -m )2=4上存在唯一的点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为________.12.已知圆C 的圆心在直线l :x +y +1=0上且经过点A (-1,2),B (1,0).(1)求圆C 的方程;(2)若过点D (0,3)的直线l 1被圆C 截得的弦长为23,求直线l 1的方程.13.如图,在平面直角坐标系Oxy 中,过点P (0,1)且互相垂直的两条直线分别与圆O :x 2+y 2=4交于点A ,B ,与圆M :(x -2)2+(y -1)2=1交于点C ,D .(1)若|AB |=372,求CD 的长;(2)若线段CD 的中点为E ,求△ABE 面积的取值范围.14.已知圆C:x2+y2+2x-4y+m=0与y轴相切,O为坐标原点,动点P在圆外,过P作圆C的切线,切点为M.(1)求圆C的圆心坐标及半径;(2)求满足|PM|=2|PO|的点P的轨迹方程.15.已知圆M:x2+(y-4)2=4,点P是直线l:x-2y=0上的一动点,过点P作圆M的切线PA,PB,切点分别为A,B.(1)当切线PA的长度为23时,求点P的坐标;(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若过定点,求出所有定点的坐标;若不过定点,请说明理由.(3)求线段AB长度的最小值.第二章直线和圆的方程章末测试卷(解析版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知过点M(-2,a),N(a,4)的直线的斜率为-12,则|MN|=( )A.10 B.180 C.63D.65答案 D解析 k MN=a-4-2-a=-12,解得a=10,即M(-2,10),N(10,4),所以|MN|=(-2-10)2+(10-4)2=65.故选D.2.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.(x-2)2+(y-3)2=1答案 A解析 方法一(直接法):设圆心坐标为(0,b),则由题意知(0-1)2+(b-2)2=1,解得b=2,故圆的方程为x2+(y-2)2=1.故选A.方法二(数形结合法):根据点(1,2)到圆心的距离为1,作图易知圆心为(0,2),故圆的方程为x2+(y-2)2=1.故选A.方法三(验证法):将点(1,2)代入四个选项中,可排除B、D,又圆心在y轴上,所以排除C.故选A.3.过点P(2,3),且与x轴的正半轴、y轴的正半轴围成的三角形的面积等于12的直线的方程是( )A.3x-2y+12=0 B.3x+2y-12=0C.2x+3y-13=0 D.2x-3y+13=0答案 B解析 本题主要考查直线的截距式方程及三角形面积的计算.依题意,设直线方程为xa+yb=1(a>0,b>0),所以{12ab=12,2a+3b=1,所以{a=4,b=6,于是所求直线的方程为x4+y6=1,即3x+2y-12=0.故选B.4.若点P(3,-1)为圆(x-2)2+y2=25的弦AB的中点,则直线AB的方程是( )A.x+y-2=0 B.2x-y-7=0C.2x+y-5=0 D.x-y-4=0答案 D解析 设圆心为C(2,0),所以k PC=0+12-3=-1,所以k AB=1,所以l AB:x-y-4=0.故选D.5.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是( )A .(-22,22)B .(-2,2)C.(-24,24)D.(-18,18)答案 C解析 易知圆心坐标是(1,0),半径是1,直线l 的斜率存在.设直线l 的方程为y =k (x +2),即kx -y +2k =0,由点到直线的距离公式,得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.6.已知圆C 1:x 2+y 2-kx -y =0和圆C 2:x 2+y 2-2ky -1=0的公共弦所在的直线恒过定点M ,且点M 在直线mx +ny =2上,则m 2+n 2的最小值为( )A.15 B.55C.255 D.45答案 C解析 由圆C 1:x 2+y 2-kx -y =0和圆C 2:x 2+y 2-2ky -1=0,可得圆C 1和C 2的公共弦所在的直线方程为k (x -2y )+(y -1)=0,联立{x -2y =0,y -1=0,解得{x =2,y =1.即点M (2,1),又因为点M 在直线mx +ny =2上,即2m +n =2,又由原点到直线2x +y =2的距离为d =222+12=255,即m 2+n 2的最小值为255.7.已知P ,Q 分别为圆M :(x -6)2+(y -3)2=4与圆N :(x +4)2+(y -2)2=1上的动点,A 为x 轴上的动点,则|AP |+|AQ |的最小值为( )A .55-3 B.101-3C .75-3D .53-3答案 A解析 圆N :(x +4)2+(y -2)2=1关于x 轴对称的圆N ′:(x +4)2+(y +2)2=1,则|AP |+|AQ |的最小值为|MN ′|-1-2=102+52-3=55-3.故选A.8.我国魏晋时期的数学家刘徽创立的“割圆术”,也就是用圆内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长.先作出圆x 2+y 2=2的一个内接正八边形,使该八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该八边形的一条边所在直线的为( )A .x +(2-1)y -2=0 B .(1-2)x -y +2=0C .x -(2+1)y +2=0 D .(2-1)x -y +2=0答案 C解析 本题在数学文化背景下考查直线方程.如图所示,可知A (2,0),B (1,1),C (0,2),D (-1,1),E (-2,0),所以AB ,BC ,CD ,DE 所在直线的方程分别为y =1-01-2(x -2),y =(1-2)x +2,y =(2-1)x +2,y =12-1(x +2),整理为一般式即x +(2-1)y -2=0,(1-2)x -y +2=0,(2-1)x -y +2=0,x -(2-1)y +2=0.故选C.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.若直线过点(1,2),且在两坐标轴上截距的绝对值相等,则直线的方程可能为( )A .x -y +1=0B .x +y -3=0C .2x -y =0D .x -y -1=0答案 ABC解析 当直线过原点时,设直线的方程为y =kx ,把点(1,2)代入,得k =2,所以此时直线的方程为2x -y =0;当直线斜率k =1时,设直线的方程为y =x +b ,把点(1,2)代入,得b =1,所以此时直线的方程为x -y +1=0;当直线斜率k =-1时,设直线的方程为y =-x +b ,把点(1,2)代入,得b =3,所以此时直线的方程为x +y -3=0.10.已知点M (3,1),圆C :(x -1)2+(y -2)2=4,过点M 的圆C 的切线方程可能为( )A .x -3=0B .x -2=0C .3x -4y -5=0D .3x +4y -5=0答案 AC解析 由题意得圆心为C (1,2),半径r =2.∵(3-1)2+(1-2)2=5>4,∴点M 在圆C 外部.当过点M 的直线的斜率不存在时,直线方程为x =3,即x -3=0.又点C (1,2)到直线x -3=0的距离d =3-1=2=r ,∴直线x -3=0是圆C 的切线;当过点M 的圆C 的切线的斜率存在时,设切线方程为y -1=k (x -3),即kx -y +1-3k =0,则圆心C 到切线的距离d =|k -2+1-3k |k 2+12=2,解得k =34,∴切线方程为y -1=34(x -3),即3x -4y -5=0.综上可得,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0.故选AC.11.已知圆C 1:x 2+y 2=r 2(r >0),圆C 2:(x -a )2+(y -b )2=r 2交于不同的A (x 1,y 1),B (x 2,y 2)两点,则下列结论正确的是( )A .a (x 1-x 2)+b (y 1-y 2)=0B .2ax 1+2by 1=a 2+b 2C .x 1+x 2=aD .y 1+y 2=2b答案 ABC解析 因为圆C 1:x 2+y 2=r 2①,圆C 2:(x -a )2+(y -b )2=r 2②,交于不同的A (x 1,y 1),B (x 2,y 2)两点,所以①-②得到直线AB 的方程为2ax +2by =a 2+b 2,分别把A (x 1,y 1),B (x 2,y 2)两点代入直线AB 的方程可得2ax 1+2by 1=a 2+b 2③,2ax 2+2by 2=a 2+b 2④,故B 正确;③-④得到2a (x 1-x 2)+2b (y 1-y 2)=0,即a (x 1-x 2)+b (y 1-y 2)=0,故A 正确;由圆的性质可知,线段AB 与线段C 1C 2互相平分,所以x 1+x 22=0+a 2,y 1+y 22=0+b2,即x 1+x 2=a ,y 1+y 2=b ,故C 正确,D 错误.故选ABC.12.(2021·新高考Ⅰ卷)已知点P 在圆(x -5)2+(y -5)2=16上,点A (4,0),B (0,2),则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当∠PBA 最小时,|PB |=32D .当∠PBA 最大时,|PB |=32答案 ACD解析 设圆(x -5)2+(y -5)2=16的圆心为M (5,5),由题易知直线AB 的方程为x 4+y2=1,即x +2y -4=0,则圆心M 到直线AB 的距离d =|5+2×5-4|5=115>4,所以直线AB 与圆M 相离,所以点P 到直线AB 的距离的最大值为4+d =4+115,而4+115<5+1255=10,故A 正确.易知点P 到直线AB 的距离的最小值为d -4=115-4,而115-4<1255-4=1,故B 不正确.过点B 作圆M 的两条切线,切点分别为N ,Q ,如图所示,连接MB ,MN ,MQ ,则当∠PBA 最小时,点P 与N 重合,此时|PB |=|MB |2-|MN |2=52+(5-2)2-42=32,当∠PBA 最大时,点P 与Q 重合,此时|PB |=32,故C 、D 都正确.综上,选ACD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若直线(a +1)x +2y +1=0与直线(a 2-1)x -ay -1=0平行,则a 的值为________.答案 23或-1解析 本题主要考查两直线的平行关系.当a =-1时,两直线方程分别为2y +1=0,y -1=0,显然两直线平行;当a ≠-1时,由a 2-1a +1=-a 2≠-11,得a =23.故a 的值为23或-1.14.已知圆C :(x +5)2+y 2=r 2(r >0)和直线l :3x +y +5=0.若圆C 与直线l 没有公共点,则r 的取值范围是__________.答案 0<r <10解析 因为圆心C (-5,0)到直线l :3x +y +5=0的距离为|-15+5|32+12=1010=10,所以要使圆C 与直线l 没有公共点,则r 的取值范围是0<r <10.15.已知直线l :y =k (x +4)与圆(x +2)2+y 2=4相交于A ,B 两点,M 是线段AB 的中点,则点M 的轨迹方程为________;点M 到直线3x +4y -6=0的距离的最小值为________.(本题第一空2分,第二空3分)答案 (x +3)2+y 2=1(x ≠-4) 2解析 直线l :y =k (x +4)过定点(-4,0),且点(-4,0)在圆(x +2)2+y 2=4上,不妨设A (-4,0),M (x ,y )(x ≠-4),B (x 1,y 1),则{x 1=2x +4,y 1=2y ,将(2x +4,2y )代入(x +2)2+y 2=4,得(x +3)2+y 2=1(x ≠-4),所以点M 的轨迹是以(-3,0)为圆心,以1为半径的圆(除去点A (-4,0)),则点M 到直线3x +4y -6=0的距离的最小值为|-3×3-6|5-1=2.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图,Q (0,-3)是圆Q 的圆心,圆Q 过坐标原点O ,点L ,S 均在x 轴上,圆L 与圆S 的半径都等于2,圆S 、圆L 均与圆Q 外切.已知直线l 过点O .若直线l 截圆L 、圆S 、圆Q 所得弦长均等于d ,则d =________.答案 125解析 由题意圆L 与圆S 关于原点对称,设S (a ,0),a >0,则a 2+32=2+3,解得a =4,即S (4,0),所以L (-4,0).由题意知直线l 的斜率存在,设直线l 的方程为y =kx (k ≠0),则三个圆心到该直线的距离分别为:d 1=|-4k |1+k 2,d 2=|4k |1+k 2,d 3=|3|1+k2,则d 2=4(4-d 12)=4(4-d 22)=4(9-d 32),即有4-(-4k 1+k 2)2 =4-(4k 1+k 2)2 =9-(31+k 2)2,解得k 2=421.则d 2=4(4-16×4211+421)=14425,即d =125.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知直线l 经过直线2x +y -5=0与x -2y =0的交点.(1)若点A (5,0)到直线l 的距离为3,求直线l 的方程;(2)求点A (5,0)到直线l 的距离的最大值.解析 (1)由{2x +y -5=0,x -2y =0得{x =2,y =1,所以交点坐标为(2,1).当直线l 的斜率存在时,设l 的方程为y -1=k (x -2),即kx -y +1-2k =0,则点A 到直线l 的距离为|5k +1-2k |k 2+1=3,解得k =43,所以l 的方程为4x -3y -5=0;当直线l 的斜率不存在时,直线l 的方程为x =2,符合题意.故直线l 的方程为4x -3y -5=0或x =2.(2)设直线2x +y -5=0与x -2y =0的交点为P ,由(1)可知P (2,1),过点P 任意作直线l (如图所示),设d 为点A 到直线l 的距离,则d ≤|PA |(当l ⊥PA 时,等号成立),由两点间的距离公式可知|PA |=10.即所求的距离的最大值为10.18.(12分)已知①经过直线l 1:x -2y =0与直线l 2:2x +y -1=0的交点;②圆心在直线2x-y =0上;③被y 轴截得弦长|CD |=22.从上面这三个条件中任选一个,补充在下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问:是否存在满足条件的圆Q ,使得点A (-2,-1),B (1,-1)均在圆上?思路分析 由点A (-2,-1),B (1,-1)均在圆上,可知圆心在线段AB 的垂直平分线x =-12上,设圆心坐标为(-12,b ),半径为r ,若选①,求出直线l 1和l 2的交点为(25,15),再利用两点之间的距离公式求出半径,即可求得圆的方程;若选②,由已知圆心(-12,-1),再利用两点之间的距离公式求出半径,即可求得圆的方程;若选③,由弦长|CD |=22,可得半径及圆心,即可求出圆的方程.解析 因为点A (-2,-1),B (1,-1)均在圆上,所以圆心在线段AB 的垂直平分线上,又线段AB 的垂直平分线所在直线方程为x =-2+12=-12,则可设圆心坐标为(-12,b ),圆的半径为r ,若选①,存在圆Q ,使得点A (-2,-1),B (1,-1)均在圆上.由{x -2y =0,2x +y -1=0,解得{x =25,y =15.即直线l 1和l 2的交点为(25,15),则圆Q 过点(25,15),所以r 2=(-12-25)2 +(b -15)2=(-12-1)2+(b +1)2,解得b =-1,则r 2=94.即存在圆Q ,且圆Q 的方程为(x +12)2+(y +1)2=94.若选②,存在圆Q ,使得点A (-2,-1),B (1,-1)均在圆上.由圆心在直线2x -y =0上可得2×(-12)-b =0,则b =-1,所以r 2=(-12-1)2 +(-1+1)2=94,即存在圆Q ,且圆Q 的方程为(x +12)2+(y +1)2=94.若选③,存在圆Q ,使得点A (-2,-1),B (1,-1)均在圆上.若圆被y 轴截得弦长|CD |=22,根据圆的性质可得,r 2=(12)2+(|CD |2)2 =94,由r 2=(-12-1)2 +(b +1)2=94,解得b =-1.即存在圆Q ,且圆Q 的方程为(x +12)2+(y +1)2=94.19.(12分)求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆的方程.解析 因为圆C 1可化为(x -6)2+(y -1)2=50,所以C 1的坐标为(6,1),半径r 1=52,同理可得C 2的坐标为(-6,-8),半径r 2=55.所以C 1,C 2所在的直线方程为3x -4y -14=0.又因为公共弦所在直线的方程为4x +3y -2=0,由{3x -4y -14=0,4x +3y -2=0,得{x =2,y =-2,即所求圆的圆心为C (2,-2),半径r =(52)2-|C 1C |2=5.所以圆的方程为(x -2)2+(y +2)2=25.20.(12分)已知圆心为C 的圆经过点A (0,2)和B (1,1),且圆心C 在直线l :x +y +5=0上.(1)求圆C 的标准方程;(2)若P (x ,y )是圆C 上的动点,求3x -4y 的最大值与最小值.解析 (1)线段AB 的中点为(12,32),又k AB =-1,所以线段AB 的垂直平分线方程为y -32=1×(x -12),即x -y +1=0.由{x -y +1=0,x +y +5=0解得{x =-3,y =-2,所以圆心C (-3,-2).圆C 的半径r =|AC |=(0+3)2+(2+2)2=5,故圆C 的标准方程为(x +3)2+(y +2)2=25.(2)令z =3x -4y ,即3x -4y -z =0.当直线3x -4y -z =0与圆C 相切于点P 时,z 取得最值,圆心C (-3,-2)到直线3x -4y -z =0的距离d =|-9+8-z |32+(-4)2=5,解得z =-26或z =24.故3x -4y 的最大值为24,最小值为-26.21.(12分)为更好地了解鲸的生活习性,某动物保护组织在某头鲸身上安装了电子监测设备,从海岸线放归点O 处把它放归大海,并沿海岸线由西到东不停地对其进行跟踪观测.在放归点O 的正东方向有一观测站C ,可以对鲸的生活习性进行详细观测.已知OC =15 km ,观测站C 的观测半径为5 km.现以点O 为坐标原点,以由西向东的海岸线所在直线为x 轴建立平面直角坐标系,如图所示,测得鲸的行进路线近似满足曲线y =k x (k >0).(1)若测得鲸的行进路线上一点A (1,1),求k 的值;(2)在(1)问的条件下,则:①当鲸运动到何处时,开始进入观测站C 的观测区域内?(计算结果精确到0.1)②当鲸运动到何处时,离观测站C 最近(观测最便利)?(计算结果精确到0.1)(参考数据:41≈6.4,11.3≈3.4,58≈7.6)解析 (1)将A (1,1)代入y =k x ,可得k =1.(2)①以C 为圆心,5为半径的圆的方程为(x -15)2+y 2=25,由{y =x ,(x -15)2+y 2=25,得x 2-29x +200=0,∴x =29±412,∴x 1≈11.3,x 2≈17.7,∴当鲸运动到点(11.3,11.3)即(11.3,3.4)处时,开始进入观测站C 的观测区域内.②鲸与点C 的距离为:d =(x -15)2+y 2=(x -15)2+x=x 2-29x +225=(x -292)2+225-(292)2,∴当x =292时d 最小.故当鲸运动到点(292,582)即(14.5,3.8)处时,鲸离观测站C 最近.22.(12分)已知圆C :x 2+(y -4)2=4,直线l :(3m +1)x +(1-m )y -4=0.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时m 的值及最短弦长;(3)如图,已知点M (-3,4),在直线MC 上(C 为圆心),存在一定点N (异于点M ),满足对于圆C 上任一点P ,都有|PM ||PN |为一常数,试求所有满足条件的点N 的坐标及该常数.解析 (1)依题意,得m (3x -y )+(x +y -4)=0,令{3x -y =0,x +y -4=0,解得{x =1,y =3,∴直线l 过定点A (1,3).(2)当AC ⊥l 时,所截得的弦长最短.由题知C (0,4),圆C 的半径r =2,∴k AC =4-30-1=-1,∴k l =1,∴3m +1m -1=1,∴m =-1.∵圆心C 到直线l 的距离为d =|AC |=2,∴最短弦长为2r 2-d 2=22.(3)由题意知直线MC 的方程为y =4.设定点N (t ,4)(t ≠-3),P (x ,y ),|PM ||PN |=λ(λ>0),则|PM |2=λ2|PN |2,∴(x +3)2+(y -4)2=λ2(x -t )2+λ2(y -4)2,∴(x +3)2+4-x 2=λ2(x -t )2+λ2(4-x 2),整理得(6+2tλ2)x -(λ2t 2+4λ2-13)=0,此式对任意的x ∈[-2,2]恒成立,∴{6+2t λ2=0,λ2t 2+4λ2-13=0,∴{t=-43,λ=32或{t =-43,λ=-32(舍去)或{t =-3,λ=±1(舍去).综上,满足条件的点N 的坐标为(-43,4),且|PM ||PN |为常数32.1.已知A (-2,1),B (1,2),点C 为直线x -3y =0上的动点,则|AC |+|BC |的最小值为( )A .22B .23C .25D .27答案 C解析 设点A (-2,1)关于直线x -3y =0的对称点为D (a ,b ),则{b -1a +2=-3,a -22-3×b +12=0,解得{a =-1,b =-2,所以D (-1,-2),所以|AC |+|BC |=|DC |+|BC |,当B ,D ,C 共线时,|AC |+|BC |取最小值,最小值为|DB |=(1+1)2+(2+2)2=25.2.圆心在曲线y =3x(x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -3)2+(y -3)2=9B .(x -3)2+(y -1)2=(165)2C .(x -1)2+(y -3)2=(185)2D .(x -2)2+(y -32)2=9答案 D解析 设圆心为(a ,b ),半径为r ,则满足条件的圆面积最小即r 最小,r =|3a +4b +3|32+42=|3a +4b +3|5≥23a ×4b +35,因为圆心(a ,b )在y =3x (x >0)上,所以b =3a ,即ab =3,所以r min =212×3+35=3,当且仅当3a =4b ,即a =2,b =32时取等号,所以此时圆的方程为(x-2)2+(y -32)2=9.3.已知直线l 经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线l 的一个方向向量ν=(-3,2),则直线l 的方程为( )A .-3x +2y +1=0 B .3x -2y +1=0C .2x +3y -5=0 D .2x -3y +1=0答案 C解析 方法一:由{x +y =2,2x -y =1,得{x =1,y =1,由题意,知直线l 的斜率k =-23,所以直线l 的方程为y -1=-23(x -1),即2x +3y -5=0.故选C.方法二:由题意设直线l :x +y -2+λ(2x -y -1)=0(λ∈R ),即(1+2λ)x +(1-λ)y -2-λ=0,又直线l 的一个方向向量ν=(-3,2),所以3(1+2λ)=2(1-λ),解得λ=-18,所以直线l的方程为2x +3y -5=0.故选C.4.已知圆C 1:(x +a )2+(y -2)2=1与圆C 2:(x -b )2+(y -2)2=4外切,a ,b 为正实数,则ab 的最大值为( )A .23 B.94C.32D.62答案 B解析 因为圆C 1:(x +a )2+(y -2)2=1的圆心为C 1(-a ,2),半径r 1=1,圆C 2:(x -b )2+(y -2)2=4的圆心为C 2(b ,2),半径r 2=2,所以|C 1C 2|=(-a -b )2+(2-2)2=|a +b |=1+2,所以a 2+b 2+2ab =9,所以(a -b )2+4ab =9,所以ab =94-(a -b )24≤94,即当a =b 时,ab 取得最大值,最大值为94.5.若过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,则实数k 的取值范围是( )A .(0,5) B .(-5,0)C .(0,13) D .(0,5)答案 A解析 圆C 的方程x 2+4x +y 2-5=0可化为(x +2)2+y 2=9,则圆C 与x 轴正半轴交于点A (1,0),与y 轴正半轴交于点B (0,5),如图所示,因为过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,所以k MA <k <k MB ,所以0<k <5.6.已知在平面直角坐标系中,△ABC 的三个顶点分别是A (0,3),B (3,3),C (2,0),若直线x =a 将△ABC 分割成面积相等的两部分,则实数a 的值是( )A.3 B .1+22C .1+33D .2-22答案 A解析 如图所示,易知直线AB 的方程是y =3,直线AC 的方程是x2+y3=1,即3x +2y -6=0,且直线x =a 只与边AB ,AC 相交.设直线x =a 与AB 交于点D ,与AC 交于点E ,则点D ,E 的坐标分别为(a ,3),(a ,6-3a2),从而|DE |=3-6-3a 2=32a ,S △ADE =12|AD ||DE |=12a ×32a =34a 2①.又S △ABC =12×3×3=92,所以S △ADE =12S △ABC=94②,由①②得34a 2=94,解得a =3或a =-3(舍去).故选A.7.【多选题】已知两圆方程为x 2+y 2=16与(x -4)2+(y +3)2=r 2(r >0),则下列说法正确的是( )A .若两圆外切,则r =1B .若两圆公共弦所在的直线方程为8x -6y -37=0,则r =2C .若两圆在交点处的切线互相垂直,则r =3D .若两圆有三条公切线,则r =2答案 ABC解析 由圆的方程可知,两圆圆心分别为(0,0),(4,-3),半径分别为4,r ,所以圆心距为5,若两圆外切,则4+r =5,即r =1,故A 正确;此时两圆有三条公切线,故D 错误;当两圆相交时,两圆公共弦所在的直线方程可由两圆方程相减得到,所以公共弦所在的直线方程为8x -6y -41+r 2=0,所以-41+r 2=-37,解得r =2,故B 正确;因为两圆在交点处的切线互相垂直,则一个圆的切线必过另一个圆的圆心,所以两圆圆心距与两圆半径必构成一个直角三角形,故52=42+r 2,解得r =3,故C 正确.8.【多选题】已知△ABC 的三个顶点坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为( )A .x 2+y 2=1 B .x 2+y 2=37C .x 2+y 2=4 D .x 2+y 2=165答案 AB解析 过点A ,C 的直线方程为y +13+1=x -6-2-6,化为一般式为x +2y -4=0,过点A ,B 的直线方程为x =-2,过点B ,C 的直线方程为y =-1,所以原点O 到直线x +2y -4=0的距离d AC =455,原点O 到直线x =-2的距离d AB =2,原点O 到直线y =-1的距离d BC =1,所以d AB >d AC >d BC ,又|OA |=(-2)2+32=13,|OB |=(-2)2+(-1)2=5,且|OC |=62+(-1)2=37.结合图形可知,若以原点为圆心的圆与△ABC 有唯一公共点,则公共点为(0,-1)或(6,-1),所以圆的半径为1或37.故选AB.9.已知过点P (4,1)的直线l 与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,当△AOB 的面积最小时,直线l 的方程为________.答案 x +4y -8=0解析 设直线l :x a +y b =1(a >0,b >0),因为直线l 过点P (4,1),所以4a +1b =1≥24a ×1b =4ab,所以ab ≥16,当且仅当a =8,b =2时等号成立.所以当a =8,b =2时,△AOB 的面积S =12ab 取得最小值,此时直线l 的方程为x 8+y2=1,即x +4y -8=0.10.曲线y =1+9-x 2与直线y =k (x -3)+5有两个交点,则实数k 的取值范围是________.答案 (724,23]解析 由题可知,y =1+9-x 2,即x 2+(y -1)2=9(y ≥1),其图象如图所示:又直线y =k (x -3)+5即kx -y -3k +5=0过定点A (3,5).当直线与半圆相切时,则|-1-3k +5|k 2+1=3,解得k =724.当直线过点B (-3,1)时,k =5-13-(-3)=23.所以k ∈(724,23].11.在平面直角坐标系Oxy 中,已知点A (-1,0),B (5,0).若圆M :(x -4)2+(y -m )2=4上存在唯一的点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为________.答案 ±21解析 根据题意,设点P 的坐标为(a ,b ),则直线PA 的方程为y =b a +1(x +1),其在y 轴上的截距为b a +1,直线PB 的方程为y =b a -5(x -5),其在y 轴上的截距为-5ba -5.若点P 满足使直线PA ,PB 在y 轴上的截距之积为5,则有ba +1×(-5ba -5)=5,变形可得b 2+(a -2)2=9,则点P 在圆(x -2)2+y 2=9上.若圆M :(x -4)2+(y -m )2=4上存在唯一的点P 满足题意,则圆M 与圆(x -2)2+y 2=9有且只有一个公共点,即两圆内切或外切.又两圆的圆心距为(4-2)2+m 2≥2,所以两圆外切,所以4+m 2=25,解得m =±21.12.已知圆C 的圆心在直线l :x +y +1=0上且经过点A (-1,2),B (1,0).(1)求圆C 的方程;(2)若过点D (0,3)的直线l 1被圆C 截得的弦长为23,求直线l 1的方程.解析 (1)由题意得,圆心C 一定在线段AB 的垂直平分线上,k AB =0-21-(-1)=-1,线段AB 中点为(0,1),所以直线AB 的垂直平分线为x -y +1=0.所以直线l :x +y +1=0与x -y +1=0的交点即为圆心C ,即C 的坐标为(-1,0),半径r =|CA |=2.所以圆C 的方程为(x +1)2+y 2=4.(2)当直线l 1斜率不存在时,方程为x =0,此时圆心到l 1距离为1,截得的弦长为23,满足题意;当直线l 1斜率存在时,设为k ,则l 1:kx -y +3=0,圆心(-1,0)到l 1的距离d =|-k +3|k 2+1=4-(232)2=1,所以k =43,则直线l 1的方程为4x -3y +9=0.综上,直线l 1的方程为x =0或4x -3y +9=0.13.如图,在平面直角坐标系Oxy 中,过点P (0,1)且互相垂直的两条直线分别与圆O :x 2+y 2=4交于点A ,B ,与圆M :(x -2)2+(y -1)2=1交于点C ,D .(1)若|AB |=372,求CD 的长;(2)若线段CD 的中点为E ,求△ABE 面积的取值范围.解析 (1)直线AB 的斜率显然存在,设为k ,则直线AB 的方程为y =kx +1.因为(|AB |2)2 +(1k 2+1)2=4,所以|AB |=24k 2+3k 2+1,由24k 2+3k 2+1=372,得k 2=15,因为直线CD 的方程为y =-1kx +1,所以(|CD |2)2=1-(-2k+1-11+(-1k)2)2,所以|CD |=21-4k 2+1=21-415+1=3.(2)当直线AB 的斜率不存在时,△ABE 的面积S =12×4×2=4;当直线AB 的斜率存在时,设其斜率为k ,则直线AB 的方程为y =kx +1,显然k ≠0,则直线CD 的方程为y =-1kx +1,由|-1k·2-1+1|(-1k )2+1<1,得k 2>3,因为(|AB |2)2+(1k 2+1)2=4,所以|AB |=24k 2+3k 2+1,易知E 到直线AB 的距离即M 到AB 的距离,设为d ,则d =|2k -1+1|k 2+1=|2k |k 2+1,所以△ABE 的面积S =12|AB |·d =2(4k 2+3)k 2(k 2+1)2,令k 2+1=t >4,则S =2(4t -1)(t -1)t 2=21t 2-5t +4=2(1t -52)2-94,易知1t ∈(0,14),所以S∈(352,4).综上,△ABE面积的取值范围为(352,4].14.已知圆C:x2+y2+2x-4y+m=0与y轴相切,O为坐标原点,动点P在圆外,过P作圆C的切线,切点为M.(1)求圆C的圆心坐标及半径;(2)求满足|PM|=2|PO|的点P的轨迹方程.解析 (1)圆C:x2+y2+2x-4y+m=0可化为(x+1)2+(y-2)2=5-m,所以圆C的圆心坐标为(-1,2).又圆C与y轴相切,所以5-m=1,即m=4,故圆C的半径为1.(2)设P(x,y),则|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-1,|PO|2=x2+y2.由于|PM|=2|PO|,则(x+1)2+(y-2)2-1=4(x2+y2),整理得点P的轨迹方程为(x-13)2+(y+23)2=179.15.已知圆M:x2+(y-4)2=4,点P是直线l:x-2y=0上的一动点,过点P作圆M的切线PA,PB,切点分别为A,B.(1)当切线PA的长度为23时,求点P的坐标;(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若过定点,求出所有定点的坐标;若不过定点,请说明理由.(3)求线段AB长度的最小值.解析 由题意知,圆M的半径r=2,M(0,4),设P(2b,b).(1)∵PA是圆M的一条切线,∴∠MAP=90°,∴|MP|=(0-2b)2+(4-b)2=|AM|2+|AP|2=22+(23)2=4,解得b=0或8 5,∴点P的坐标为(0,0)或(165,85).(2)圆N过定点(0,4),(85,45).理由如下:∵∠MAP=90°,∴经过A,P,M三点的圆N 以MP为直径,其方程为(x-b)2+(y-b+42)2=4b2+(b-4)24,即(2x+y-4)b-(x2+y2-4y)=0.由{2x+y-4=0,x2+y2-4y=0,解得{x=0,y=4或{x=85,y=45.∴圆N过定点(0,4),(85,45).(3)由(2)得圆N的方程为(x-b)2+(y-b+42)2=4b2+(b-4)24,即x2+y2-2bx-(b+4)y+4b=0,①又圆M:x2+(y-4)2=4,即x2+y2-8y+12=0,②②-①,得圆M与圆N的相交弦AB所在直线的方程为2bx+(b-4)y+12-4b=0,∴点M到直线AB的距离d=45b2-8b+16,∴|AB|=24-d2=41-45b2-8b+16=41-45(b-45)2+645,∴当b=45时,|AB|有最小值,为11.。
新课程高中数学训练题组(数学 2 必修)第四章 圆与方程[基础训练 A 组]一、选择题1.圆(x + 2)2 + y 2 = 5 关于原点 P (0, 0) 对称的圆的方程为 ()A . (x - 2)2 + y 2 = 5B . x 2 + ( y - 2)2 = 5C . (x + 2)2 + ( y + 2)2 = 5D . x 2 + ( y + 2)2 = 52.若 P (2, - 1) 为圆(x - 1)2 + y 2 = 25 的弦 AB 的中点,则直线 AB 的方程是()A. x - y - 3 = 0B. 2x + y - 3 = 0C. x + y - 1 = 0D. 2x - y - 5 = 03. 圆 x 2 + y 2 - 2x - 2 y + 1 = 0 上的点到直线 x - y = 2 的距离最大值是()A. 2B. 1 +C. 1 +2D .1 + 24. 将直线 2x - y += 0 ,沿 x 轴向左平移1个单位,所得直线与圆 x 2 + y 2 + 2x - 4 y = 0 相切,则实数的值为( )A. -3或7B. -2或8C. 0或10D. 1或115. 在坐标平面内,与点 A (1, 2) 距离为1,且与点 B (3,1)距离为 2 的直线共有( )A .1条B . 2 条C . 3 条D . 4 条6.圆 x 2 + y 2 - 4x = 0 在点 P (1, 3) 处的切线方程为( )A.x + 3y - 2 = 0B.x + 3y - 4 = 0C.x - 3y + 4 = 0D .x - 3y + 2 = 0二、填空题1. 若经过点 P (-1, 0) 的直线与圆 x 2+ y 2 + 4x - 2 y + 3 = 0 相切,则此直线在 y 轴上的截222a 2 +b 2 - 2a - 2b + 2 7 距是.2. 由动点 P 向圆 x 2 + y 2 = 1引两条切线 PA , PB ,切点分别为 A , B , ∠APB = 600 ,则动点P 的轨迹方程为。
, , : , , ,选择性必修第二章直线与圆的方程测试题时间:120 分钟满分:145 分命卷人:卢焕邓审核人:一、选择题(每小题 5 分,共 10 小题 50 分)1、过点且平行于直线的直线方程为( ) C. D.7、已知点,点是圆上的动点,点 是圆上的动点,则的最大值是()A.B.C. D.8、已知动点 是圆内一点,直线围成的四边形的面积 为 ,则下列说法正确的是( )A.B. C. D.4、两平行直线,分别过点,,它们分别绕 ,旋转, 但始终保持平行,则, 之间的距离的取值范围是()A.B.C.D.5、已知倾斜角为的直线与直线垂直,则( )A.B.C. D.6、直线与直线平行,则( ) A.B.且 A. B.C. D.9、圆 关于直线对称的圆是( )A.B. C.D.10、 过点作直线(不同时为零)的 垂线,垂足为 ,已知点,则当变化时,的取值范围是( ) A.B.C.D.二、填空题(每小题 5 分,共 7 小题 35 分)A.2、已知圆B.C.的圆心坐标为,则 D.( )A.3、若圆 :称,则由点 B.C.关于直线向圆所作的切线长的最小值是( )D.对11、已知是圆上的动点,是圆上的动点,则的取值范围为 . 三、解答题(每小题 12 分,共 5 小题 60 分)18、已知的顶点 ,边上的高为.求:边上的中线12、已知直线与圆相交于标为,则直线 的方程为.两点,且线段的中点坐 (1) 中线的方程;(2) 高所在直线的方程及高的长. 19、下列方程是否表示圆,若表示圆,写出圆心坐标和半径长.(1);(2) ;13、经过直线与的交点,且平行于直线的直线方程是.14、圆 上的点到直线的最近距离为(3);(4) .20、在平面直角坐标系中, 曲线与坐标轴的交点都在圆上.(1) 求圆 的方程;,最远距离为 .15、过点的直线 与圆交于两点,当 (2) 若圆与直线交于21、已知直线 经过点 ,斜率为 ;两点,且,求 的值.最小时,直线的方程为,此时.16、已知直线,若直线 与直线垂直,则的值为 ;动直线 被圆截得 的最短弦长为.17、已知半径为 5 的动圆的圆心在直线上.若动圆过点,求圆的方程,(1) 若的纵截距是横截距的两倍,求直线的方程; (2) 若,一条光线从点出发,遇到直线反射,反射光线遇到轴再次反射回点,求光线所经过的路程.22、已知圆:与圆: ,试判断两圆的位置关系,并求两圆公切线的方程. 存在正实数,使得动圆中满足与圆相外切的圆有且仅有一个.,,,,,,,选择性必修第二章直线与圆的方程测试题答案解析第 1 题答案D第 1 题解析由题意可设所求直线方程为,∵直线过点,代入可得,解得,∴所求直线,故选:D.第 2 题答案D第 2 题解析由圆的标准方程可知圆心为,即. 故选D.第 3 题答案C第 3 题解析第 4 题答案C第 4 题解析 当时,与的最大距离为,因为两直线平行,则两直线距离不为,故选C .第 5 题答案D第 5 题解析 因为直线 与直线垂直,所以 .将圆 的方程化为标准方程为: ,圆心为, 又为直线倾斜角,解得.圆关于直线对称,所以圆心位于该直线上,将圆心坐标代入,即点在直线上.过为,过点作圆的切线,切点设为,则切线长最短,此时,所以根据勾股定理,得.第 6 题答案B第 6 题解析 与直线平行的直线可设为,而直线,所以值为 ,的最小值为的最大值为.第 7 题答案B第 7 题解析第 10 题解析且直线,整理为:,从而可得直线过定点,如图,或者与之一重合,,故点在以为直径的圆上运动,设该圆的圆心为,则线段满足的范围为圆的圆心 ,半径,圆的圆心,半径 ,,所以:的取值范围是.则的最大,则第 8 题答案A第 8 题解析由已知 ,四条直线围成的面积 ,故选 A.第 9 题答案B第 9 题解析 圆心关于直线的对称点为,半径不变,∴所求圆的方程为.第 10 题答案A第 11 题答案第 11 题解析 易知,所以,即.第 12 题答案第 12 题解析因为圆圆心坐标为,又点坐标为,所以直线的斜率为;又因为是圆的一条弦, 为的中点,所以,故,即直线的斜率为, 因此,直线的方程为,即.第 13 题答案第 13 题解析联立方程组可知与的交点,为,设所求直线为,则,.第 14 题答案第 14 题解析圆的方程可化为,,半径.圆心到直线的距离,所以所求的最近距离为,最远距离为.第 15 题答案第 15 题解析圆的圆心为,当最小时,和垂直,∴直线的斜率等于,∴直线的方程为,即,,∴,∴,即.第 16 题答案或第 16 题解析由题意得,∴或.圆,动直,当时,截得的弦长最短,为第 18 题答案(1)见解答;(2)见解答 .第 18 题解析(1)设点的坐标为,因为点是线段中点,所以, ,即点的坐标为,由两点式得所在直线方程为即,所以中线的方程为: .第 17 题答案或第 17 题解析(2)直线的斜率为: ,因为,所以,所以所在直线方程是即.直线的方程为: ,因为就是点到直线的距离,(1)依题意,可设动圆的方程为,其中圆心.又∵动圆过点,∴.解方程组可得或故所求圆的方程为或.(2)圆的圆心到直线的距离.当满足时,即时,动圆中有且仅有 1 个圆与圆外切. 所以由点到直线的距离公式.第 19 题答案(1)不表示圆(2)不表示圆(3)不表示圆(4)表示圆,圆心坐标为,半径第 19 题解析, ∵ 的纵截距是横截距的两倍,∴,解得或,∴直线的方程为或(1)中与的系数不同,故原方程不表示圆. (2)中含有项,故原方程不表示圆. (3)∵,∴原方程不表示圆.(4)∵,∴方程表示圆,圆心坐标为,半径. (1)或;(2).第 21 题解析(1)由题意得.,(2)第 20 题解析(1)曲线与坐标轴的交点为,设圆的,则,.(2)由,得为等腰直角三角形, . 第 21 题答案即或;(2)当时,直线的方程为,设点关于的对称点为,则,, , 直线的方程为,即第 20 题答案令,得,(1)令,得,解得,∴点的坐标为,∴关于轴的对称点为,光线所经过的路程为.第 22 题答案外切,,,第 22 题解析由:与圆:可知,∴圆与圆外切有条公切线.如图,设两圆的外公切线与轴相交于,由相似三角形易,即,解得,故知.∴外公切线的斜率,故两程为,,,即,.。
高中数学必修2 第1页 共4页高中数学必修2 第 2 页 共 4页林口林业局中学 班级 姓名……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线……………………必修二数学测试(二)(直线方程与圆的方程)(全卷三个大题,共20个小题;满分100分,考试时间90分) 题号 一 二 三 总分 得分一、选择题(每小题3分,共36分)1.若方程x 2+y 2-x +y +m =0表示圆,则实数m 的取值范围为( )A .m <12B .m <0C .m >12D .m ≤122.已知空间两点P 1(-1,3,5),P 2(2,4,-3),则|P 1P 2|等于 ( ) A.74 B .310 C.14 D.53 3.直线l :x -y =1与圆C :x 2+y 2-4x =0的位置关系是 ( ) A .相离 B .相切 C .相交 D .无法确定4.当点P 在圆x 2+y 2=1上变动时,它与定点Q (3,0)连线段PQ 中点的 轨迹方程是 ( ) A .(x +3)2+y 2=4 B .(x -3)2+y 2=1 C .(2x -3)2+4y 2=1 D .(2x +3)2+4y 2=15.直线l 过点(-4,0),且与圆(x +1)2+(y -2)2=25交于A ,B 两点, 如果|AB |=8,那么直线l 的方程为 ( ) A .5x +12y +20=0 B .5x -12y +20=0或x +4=0 C .5x -12y +20=0 D .5x +12y +20=0或x +4=0 6.在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相 交于A ,B 两点,则弦AB 的长等于 ( )A .3 3B .23 C. 3 D .1 7.直线mx -y +2m +1=0经过一定点,则该定点的坐标为 ( ) A .(-2,1) B .(2,1)C .(1,-2)D .(1,2) 8.与直线y =-2x +3平行,且与直线y =3x +4交于x 轴上的同一点 的直线方程是 ( ) A .y =-2x +4 B .y =12x +4 C .y =-2x -83 D .y =12x -839.已知等腰直角三角形ABC 的斜边所在的直线是3x -y +2=0,直角 顶点是C (3,-2),则两条直角边AC ,BC 的方程是 ( ) A .3x -y +5=0,x +2y -7=0 B .2x +y -4=0,x -2y -7=0 C .2x -y +4=0,2x +y -7=0 D .3x -2y -2=0,2x -y +2=0 10.若不论k 为何值,直线y =k (x -2)+b 与曲线x 2+y 2=9总有公共点,则b 的取值范围是 ( ) A .)5,5(- B .]5,5[- C .(-2,2) D .[-2,2] 11.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为( )A. 4)1()3(22=-++y x B.4)3()1(22=-++y x C. 4)3()1(22=++-y x D.4)1()3(22=++-y x 12.过点)1,2(且与两坐标轴都相切的圆的方程为 ( ) A .1)1()1(22=-+-y x B .1)1()1(22=-+-y x 或25)5()5(22=-+-y x C .25)5()5(22=-++y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x高中数学必修2 第3页 共4页 高中数学必修2 第 4 页 共 4页……………………………答……………………………………………………题…………………………………………线………………………二、填空题:(每小题4分,共16分)13.平行直线l1:x -y +1=0与l2:3x -3y +1=0的距离等于________。
南京市高一数学单元过关检测题
(苏教版·必修2·解析几何初步)
(满分100分,检测时间100分钟)
一.
选择题
1. 如果直线0=++C By Ax 的倾斜角为ο45,则有关系式
A.B A = B.0=+B A C.1=AB D.以上均不可能
2. 直线122=-b
y a x
在y 轴上的截距是
A. b
B. 2b
C. 2b -
D. b ± 3. 下列命题中正确的是
A .平行的两条直线的斜率一定相等 B.平行的两条直线的倾斜角一定相等 C . 垂直的两直线的斜率之积为-1 D.斜率相等的两条直线一定平行
4. 圆2)3()2(22=++-y x 的圆心和半径分别是
A .)3,2(-,1
B .)3,2(-,3
C .)3,2(-,2
D .)3,2(-,2 5. 如果直线l 上的一点A 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,
又回到直线l 上,则l 的斜率是
A .3
B .
13 C .-3 16. 结晶体的基本单位称为晶胞,如图是食盐晶胞的
示意图。
其中实点 建立空间直角坐标系O —xyz 原子所在位置的坐标是
A .(12,1
2,1) B .(0,0,1) C .(1,12,1) D .(1,12,1
2
)
7. 已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为
3
1
,则m ,n 的值分别为
A.4和3
B.-4和3
C.- 4和-3
D.4和-3 8. 已知点P (0,-1),点Q 在直线x-y+1=0上,若直线PQ 垂直于直线x+2y-5=0,则点Q
的坐标是 A .(-2,1) B .(2,1) C .(2,3) D .(-2,-1) 9. 已知三角形ABC 的顶点A (2,2,0),B (0,2,0),C(0,1,4),则三角形ABC 是
A .直角三角形;
B .锐角三角形;
C .钝角三角形;
D .等腰三角形; 10. 平行于直线2x-y+1=0且与圆x 2+y 2=5相切的直线的方程是
A .2x -y+5=0
B .2x -y -5=0
C .2x +y+5=0或2x +y -5=0
D .2x -y+5=0或2x -y -5=0 二.填空题
11. 如图,直线12,l l 的斜率分别为k 1、k 2,则k 1、k 2的大小关系是; .
12. 如果直线l 与直线x+y -1=0关于y 轴对称,则直线l 的方程是 . 13. 已知两点A (1,-1)、B (3,3),点C (5,a )在直线AB 上,则实数a 的值是 .
14. 直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是 .
15.
直线0323=-+y x 截圆422=+y x 所得的劣弧所对的圆心角为 .
16. 连接平面上两点111(,)P x y 、222(,)P x y 的线段12P P 的中点M 的坐标为
1212
(
,)22
x x y y ++,那么,已知空间中两点1111(,,)P x y z 、2222(,,)P x y z ,线段12P P 的中点M 的坐标为 .
三.解答题
17. 已知一条直线经过两条直线0432:1=--y x l 和0113:2=-+y x l 的交点,并且垂直于
这个交点和原点的连线,求此直线方程。
18. 已知点A (1,4),B (6,2),试问在直线x-3y+3=0上是否存在点C ,使得三角形ABC
的面积等于14?若存在,求出C 点坐标;若不存在,说明理由。
19. 一个圆切直线0106:1=--y x l 于点)1,4(-P ,且圆心在直线035:2=-y x l 上,求该圆
的方程。
20. 氟利昂是一种重要的化工产品,它在空调制造业有着巨大的市场价值.已知它的市场需
求量y 1(吨)、市场供应量y 2(吨)与市场价格x (万元/吨)分别近似地满足下列关系:
y 1=-x+70, y 2=2x -20
当y 1=y 2时的市场价格称为市场平衡价格.此时的需求量称为平衡需求量. (1) 求平衡价格和平衡需求量;
(2) 科学研究表明,氟利昂是地球大气层产生臭氧空洞的罪魁祸首,《京都议定书》
要求缔约国逐年减少其使用量.某政府从宏观调控出发,决定对每吨征税3万元,求新的市场平衡价格和平衡需求量.
21. 已知圆C :x 2+y 2-2x+4y -4=0,是否存在斜率为1的直线m ,使以m 被圆C 截得的弦
AB 为直径的圆过原点?若存在,求出直线m 的方程;若不存在,说明理由。
南京市高一数学单元过关检测题
(苏教版·必修2·解析几何初步)
参考答案
一.选择题
二.填空题 11.k 1>k 2 12.X -y+1=0 13.7.
14.[2,0)(0,2]-⋃ 15.60°. 16.122212
(
,,)222
x x y y z z +++ 三.解答题
17.设交点为P ,由方程组23403110
x y x y --=⎧⎨+-=⎩解得P (5,2).故2
5OP k =.设所求直线的斜率
为k ,由于它与直线OP 垂直,则15
2
OP k k =-
=-,所以所求直线的方程为5
2(5)2
y x -=--,即52290x y +-=.
18.=,直线AB 的方程为
26
4216
y x --=
--,即25220x y +-=, 假设在直线x-3y+3=0上是否存在点C ,使得三角形ABC 的面积等于14,设C 的坐标为
(,)m n ,则一方面有m-3n+3=0①,另一方面点C 到直线AB 的距离为
d =
,
由于三角形ABC 的面积等于14,则
1114
22AB d ⋅⋅==,|2522|28m n +-=,即2550m n +=②或256m n +=-③.联立①②解得135
11
m =
,56
11
n =
;联立①③解得3m =-,0n =. 综上,在直线x-3y+3=0上存在点C 13556
(
,)1111或(3,0)-,使得三角形ABC 的面积等于14. 19.过点)1,4(-P 且与直线0106:1=--y x l 垂直的直线的方程设为60x y C ++=,点P
的坐标代入得23C =-,即6230x y +-=.
设所求圆的圆心为为(,)M a b ,由于所求圆切直线0106:1=--y x l 于点)1,4(-P ,则满足
6230a b +-=①;又由题设圆心M 在直线035:2=-y x l 上,则530a b -=②.联立①②
解得3a =,5b =.即圆心M (3,5),因此半径r
=求圆的方程为2
2
(3)(5)37x y -+-=.
20.(1)由12y y =得70220x x -+=-,∴30x =,此时1240y y ==,平衡价格为30万元/吨,平衡需求量为40吨.
(2)设新的平衡价格为t 万元/吨,则170y t =-+,22(3)20226y t t =--=-,由12y y =得70226t t -+=-,∴32t =,此时12y y ==38,即新的平衡价格为32万元/吨,平衡需求量为38吨.
21.设这样的直线存在,其方程为y x b =+,它与圆C 的交点设为A 11(,)x y 、B 22(,)x y ,
则由222440x y x y y x b ⎧+-+-=⎨=+⎩得2222(1)440x b x b b ++++-=(*),
∴12212(1)442
x x b b b x x +=-+⎧⎪⎨+-⋅=⎪⎩.∴1212()()y y x b x b =++=21212()x x b x x b +++. 由O A ⊥OB 得12120x x y y +=,∴2
12122()0x x b x x b +++=,
即22
44(1)0b b b b b +--++=,2
340b b +-=,∴1b =或4b =-.
容易验证1b =或4b =-时方程(*)有实根.故存在这样的直线,有两条,其方程是
1y x =+或4y x =-。