定理1.5.1 假设一个集合A的代数运算 同时适合结合
律与交换律,那么在 a1a2 an中,元素的次序 可以调换.
例 判定下列有理数集Q上的代数运算 是否适合结合律,
交换律?
(1) a b a b ab (适合结合律和交换律 )
(2) ab(ab)2 (适合交换律,但不适合结合律)
(3) aba (适合结合律,但不适合交换律 )
定义1.9.2 设 是集合 A的代数运算. 若 是 A到 A的 一个同构映射(同态映射),则称 是 A的一个自 同构 (自同态).
小结
同态是把代数运算考虑在内的映射,即是用来
比较两个代数结构的工具.
返回
在代数学中,两个同构的代数结构一般认为是相同的. 22
§1.10 等价关系与集合的分类
定义1.10.1 A设 是集合,D对,.错 一个 AA 到 D 的映射
注: 变换 是 A到A自身的一个映射.
小结
为了比较两个集合,我们引入了单射,满射,一
一映射和变换的概念.
返回
19
§1.8 同态
定义1.8.1 设 , 分别是集合的代数运算, : A A 是一个映
射,若 a,bA,有 (ab ) (a ) (b ),
则称 是 A到 A 的一个同态.
例1 A=Z (整数集), 是普通加法; A ={1,-1}, 是普通乘法.
定义1.2.2 设 1 , 2是A到B的两个映射,若对 aA,
有 1(a)2(a), 则称 1 与 2 是相等的,记作 1 2.
注: 映射相等 构成映射的三要素(值域、定义域、对
应法则)全相同.
例5 设 AB 为正整数集 .
定义 1 : ; a1 1 ( a ) , a ,