- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的实数的所组成的集合.
常用的数集: 全体整数的集合,表示为Z 全体有理数的集合,表示为Q
全体实数的集合,表示为R
全体复数的集合,表示为C
设A,B是两个集合,如果A 的每一元素都是B 的
元素,ቤተ መጻሕፍቲ ባይዱ么就说A是B的子集,记作 A B ,或记 作 B A . 根据这个定义,A是B的的子集当且仅当 对于每一个元素x,如果 x A ,就有 x B .
第一章 基本概念
§1 §2 §3 集 合 映射与变换 代数运算
§4 §5 §6
运算率 同态与同构 等价关系与集合的分类
§1 集 合
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素. 我们常用大写拉丁字母A,B,C,…表示集合,用 小写拉丁字母a,b,c,…表示元素. 如果a是集合A的 元素,就说a属于A,记作 a A ;如果a不是集合A 的元素,就说a不属于A,记作 a A ; 例如,设A是一切偶数所成的集合,那么4∈A, 而 3 . A
A1 A2 An 和 A1 A2 An
. 我们有
, n)
( x A1
A2
A) ( x至少属于某一Ai , i 1, 2,
( x A1
A2
A) ( x属于每一Ai , i 1, 2,
, n)
差运算: 设A,B是两个集合,令 A B {x | x A但x B} 也就是说,A B 是由一切属于A但不属于B 的元素所 组成的,称为A与B 的差.
(2)Hamilton四元数的发现
长期以来人们对于虚数的意义存在不同的看法,后来发现 可以把复数看成二元数(a,b)=a+bi,其中i2= -1。二元数按 (a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进行代 数运算,二元数具有直观的几何意义;与平面上的点一一对应。 这是数学家高斯提出的复数几何理论。二元数理论产生的一个 直接问题是:是否存在三元数?经过长时间探索,力图寻求三 元数的努力失败了。但是爱尔兰数学家W.Hamilton(1805-1865) 于1843年成功地发现了四元数。四元数系与实数系、复数系一 样可以作加减乘除四则运算,但与以前的数系相比,四元数是 一个乘法不交换的数系。从这点来说四元数的发现使人们对于 数系的代数性质的认识提高了一大步。四元数代数也成为抽象 代数研究的一个新的起点,它是近世代数的另一个重要理论来 源。
并运算 设A,B是两个集合 . 由A的一切元素和 B的一切 元素所成的集合叫做A与B的并集(简称并),记作 A B. 如图1所示.
A
A B
( x A B) ( x A或x B) ( x A B) ( x A且x B)
B
交运算 由集合A与B的公共元素所组成的集合叫做A 与B的交集(简称交),记作: A B ,如图2所示.
阿贝尔
加罗华
被誉为天才数学家的伽罗瓦(1811-1832)是近世代数的创始人之一。他深入 研究了一个方程能用根式求解所必须满足的本质条件,他提出的“伽罗瓦域”、 “伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题。伽罗瓦群理 论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透 彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断 几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方 体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代 替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数 学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展 产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构 主义哲学的产生和发展都发生了巨大的影响。
两个集的并与交的概念可以推广到任意n个集合上去, 设 是给定的集合 .由 A1 , A2 ,, A n
A1 , A2 ,, 的一切元素 An
所成的集合叫做
A1 , A2 ,, 的并; An
由 A1 , A2 ,, An的一切公共元素所成的集合叫做
A1 , A2 ,, An 的交. A1 , A2 ,, An 的并和交分别记为:
A是B的子集,记作:
( A B) (x : x A x B)
如果集合A与B的由完全相同的元素组成部分的, 就说A与B 相等,记作:A=B. 即
( A B) (x : x A x B)
以集合A的所有子集为元素的集合,称为A的幂集, 记为P(A).
如果集合A包含无限多个元素,则记为 A =;如 果A包含n个元素,则记为 A =n,此时 P(A) 2n
近世代数理论的三个来源
(1) 代数方程的解
(2) Hamilton四元数的发 (3) Kummer理想数的发现
(1) 代数方程的解 两千多年之前古希腊时代数学家就能够利用开 ax2+bx+c=0 方法解二次方程 。16世纪初欧洲 文艺复兴时期之后,求解高次方程成为欧洲代 数学研究的一个中心问题。1545年意大利数学 家 G.Cardano(1501-1576)在他的著作《大术》 (Ars Magna)中给出了三、四次多项式的求根 公式,此后的将近三个世纪中人们力图发现五 次方程的一般求解方法,但是都失败了。
(3)Kummer理想数的发现
17世纪初法国数学家费马(P.Fermat 1601-1665) 研究整数方程时发现当n≥3时,方程 xn+yn=zn 没有正整数解,费马认为他能够证明这个 定理,但是其后的三百多年中人们研究发现这是一个 非常困难的问题,这一问题被后来的研究者称为费马 问题或费马大定理,此定理直到1995年才被英国数学 家A.Wiles证明。对费马问题的研究在三个半世纪内从 未间断过,欧拉、高斯等著名数学家都对此作出过重 要贡献。但最重大的一个进展是由E.Kummer作出的。
Q C Ø 注意:并没有要求B是A的子集. 例如,
积运算: 设A,B是两个集合,令 A B {(a, b) | a A, b B} 称 A B 为A与B的笛卡儿积(简称为积). 是一切元素 对(a, b )所成的集合,其中第一个位置的元素a取自 A,第二个位置的元素b取自B. 可以定义多个集合的笛卡儿积
诺特, 1882年3月23日生于德国埃尔朗根,1900年入埃朗 根大学,1907年在数学家哥尔丹指导下获博士学位。1916年 后,她开始由古典代数学向抽象代数学过渡。1920年,她已 引入「左模」、「右模」的概念。1921年写出的<<整环的理 想理论>>是交换代数发展的里程碑。建立了交换诺特环理论, 证明了准素分解定理。1926年发表<<代数数域及代数函数域 的理想理论的抽象构造>>,给戴德金环一个公理刻画,指出 素理想因子唯一分解定理的充分必要条件。诺特的这套理论也 就是现代数学中的“环”和“理想”的系统理论,一般认为抽 象代数形式的时间就是1926年,从此代数学研究对象从研究代 数方程根的计算与分布,进入到研究数字、文字和更一般元素 的代数运算规律和各种代数结构,完成了古典代数到抽象代数 的本质的转变。诺特当之无愧地被人们誉为抽象代数的奠基人 之一。
Kummer的想法是:如果上面的方程有正 整数解,假定η是一个n次本原单位根,那么 xn+yn=zn 的等式两边可以作因子分解 zn=(x+y)(x+ηy)…(x+ηn-1y),象整数中的因子分解 一样,如果等式右边的n个因子两两互素,那么 每个因子都应是另外一个“复整数”的n次方幂 ,进行适当的变换之后有可能得到更小的整数 x1,y1,z1使 xn+yn=zn 成立,从而导致矛盾。如果 上面等式右边的n个因子有公因式,那么同除这 个公因式再进行上面同样的讨论。
直到1824年一位年青的挪威数学家 N.Abel (1802-1829) 才证明五次和五次以上的一般代数方程 没有求根公式。但是人们仍然不知道什么条件之下一 个已知的多项式能借助加、减、乘、除有理运算以及 开方的方法求出它的所有根,什么条件之下不能求根。 最终解决这一问题的是一位法国年青数学家 E.Galois(1811—1832),Galois引入了扩域以及群的 概念,并采用了一种全新的理论方法发现了高次代数 方程可解的法则。在Galois之后群与域的理论逐渐成 为现代化数学研究的重要领域,这是近世代数产生的 一个最重要的来源。
Kummer方法的前提是形如a+bη的复整数也象 整数一样具有唯一的素因子分解,其中a与b是通 常整数。并不是对于每个整数n,复整数a+bη都具 有唯一分解性,Kummer把这种复整数的因子分解 称为理想数的分解。 用这种方法 Kummer证明了n≤100时费马大定 理成立,理想数的方法不但能用于费马问题研,实 际上是代数数论的重要研究内容,其后德国数学 家R.Dedekind(1831-1916)把理想数的概念推广为 一般的理想论,使它成为近世代数的一个重要的 研究领域。
, 拟枚 1,2,3,4,5....n..... 拟枚举: 自然数的集合可以记作 举可以用来表示能够排列出来的的集合 , 像 自然数、整数…
描述法:
如果一个集 A 是由一切具有某一性质的元 素所组成的,那么就用记号
A {x | x具有某一性质
来表示.
A {x | 1 x 1, x R } 表示一切大于 -1 且小于 1
近世代数
《近世代数》课程是现代数学的基础,既 是中学代数的继续发展,也是高等代数课程的 继续和发展,同时它又同拓扑学、实变函数与泛 函分析构成现代数学的三大基石,是进入数学 王国的必由之路,是数学与应用数学专业学生 必修的重要基础课。 同学应当具备有初等代数,高等代数的 背景,此外还有初等数论等方面的知识背景。