上交流体力学 lesson16
- 格式:pdf
- 大小:378.55 KB
- 文档页数:24
第一章流体力学基本概念1.1 连续介质假说推导流体力学基本方程的两条途径统计方法把流体看作由运动的分子组成,认为宏观现象起源于分子运动,运用力学定律和概率论预测流体的宏观性质。
对于偏离平衡态不远的流体可推导出质量、动量和能量方程,给出输运系数(μ,κ)的表达式。
对于单原子气体已有成熟理论,对多原子气体和液体理论尚不完整。
连续介质方法把流体看作连续介质,而忽略分子的存在,假设场变量(速度、密度、压强等)在连续介质的每一点都有唯一确定的值,连续介质遵守质量、动量和能量守恒定律。
从而推导出场变量的微分方程组。
流体力学采用连续介质的方法1.1 连续介质假说连续介质方法失效场合火箭穿越大气层边缘,此时微观特征尺度接近宏观特征尺度;研究激波结构,此时宏观特征尺度接近微观特征尺度。
1.1 连续介质假说流体质点由确定流体分子组成的流体团,流体由流体质点连续无间隙地组成,流体质点的体积在微观上充分大,在宏观上充分小。
流体质点是流体力学研究的最小单元。
当讨论流体速度、密度等变量时,实际上是指流体质点的速度和密度。
(,,,)u u x y z t =r r (,,,)x y z t ρρ=r r 欧拉参考系当采用欧拉参考系时,定义了空间的场。
着眼于空间点,在空间的每一点上描述流体运动随时间的变化。
独立变量x , y , z , t1.2 欧拉和拉格朗日参考系000(,,,)r r x y z t =r r 拉格朗日参考系着眼于流体质点,描述每个流体质点自始至终的运动,即它的位置随时间变化,式中x 0, y 0, z 0 是 t =t 0 时刻流体质点空间位置的坐标。
独立变量x 0, y 0, z 0, t 。
x, y, z 不再是独立变量,x - x 0 = u ( t - t 0), y - y 0 = v (t - t 0),z - z 0 = w (t - t 0), T =T (x 0, y 0, z 0, t ), ρ=ρ(x 0, y 0, z 0, t )。
流体力学一、流体静力学基础 包括内容三部分:01流体主要物理特性与牛顿内摩擦定律 02流体静压强 03流体总压力01流体主要物理特性与牛顿内摩擦定律 水银的密度13.6g/cm 3重度γ(也成为容重,N/m3),单位体积流体所具有的能量。
=g γρ流体的压缩系数:1=pa d dV V dp dpρρβ-=-(单位:) ,β值越大,流体的压缩性也越大。
压缩系数的倒数成为流体的弹性模量,用表示,21()dpdV V β=-k=单位:pa=N/m流体的体膨胀系数a :1=(:)d dVV a T dT dTρρ--=单位质量力:大小与流体的质量成正比(对于均质流体,质量与体积成正比,故又称为体积力)表面力:作用在流体表面的力,大小与面积成正比,它在隔离体表面呈连续分布,可分为垂直于作用面的压力和平行于作用面的切力。
流体的黏性:流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质叫做黏性。
此内摩擦力成为黏制力。
du d T AA dy dtθμμ== 式中:T 流体的内摩擦力μ为流体的动力黏度,单位Pa s •。
A 为流体与管壁的接触面积dudy为速度梯度,表示速度沿垂直于速度y 轴方向的变化率 d dtθ为角变形速度 气体动力黏度随温度的升高而增加。
液体动力黏度随温度的升高而降低,例如:油。
运动黏度v (单位:2/m s )(相对黏性系数):v μρ=理想流体:假想的无黏性的流体,即理想流体流过任何管道均不会产生能量损失。
[推导过程]:tan()dudt d d dy θθ≈=,即:d dudt dyθ=。
02流体静压强流体净压强的特性:①流体静压强方向与作用面垂直;②各向等值性:静止或相对静止的流体中,任一点的静压强的大小与作用面方向无关,只于该点的位置有关。
帕斯卡定律:0P P gh ρ=+式中:P 为液体内某点的压强0P 为液面气体压强 h 为某点在液面下的深度等压面:流体中压强相等的点所组成的面成为等压面。