黑龙江省哈尔滨市重点高中2020届高三第二次模拟考试数学(理)答案
- 格式:doc
- 大小:586.50 KB
- 文档页数:4
2020年东北三省四市教研联合体高考模拟试卷(二)数学(文科)第Ⅰ卷(选择题共60分)本试卷共4页。
考试结束后。
将答题卡交回。
注意事项:1.答题前,考生先将自己的娃名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出。
确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}42≤∈=x Z x A ,{}24<<-=x x B .则A∩B=A .{}22<≤-=x xB B .{}24≤<-=x x B C .{}2,1,0,1,2-- D .{}1,0,1,2--2.已知复数z 满足i z i -=+1)1(2,则z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.已知向量a ,b 满足a =(2,1).b =(1,y ).且a ⊥b .则|a +2b | = A .5 B .25 C .5 D .44.为了从甲乙两人中选一人参加校篮球队,教练将二人最近6次篮球比赛的得分数进行统计.如右图.甲乙两人的平均得分分别是乙甲、x x .则下列说法正确的是A .乙甲x x >,乙比甲稳定.应选乙参加校篮球队B .乙甲x x >.甲比乙稳定,应选甲参加校篮球队C .乙甲x x <.甲比乙稳定,应选甲参加校篮球队D .乙甲x x <.乙比甲稳定,应选乙参加校篮球队5.等比数列{}n a 中.5a 与7a 是函数34)(2+-=x x x f 的两个零点.则93a a ⋅等于A .3-B .4-C .3D .46.大学生积极响应“大学生志愿服务西部计划”.某高校学生小刘、小李、小孟、分别去西部某地一中、二中、三中3所学校中的一所学校支教,每校分配一名大学生,他们三人支教的学科分别是数学,语文,英语,且每学科一名大学生.现知道:(1)教语文的没有分配到一中,(2)教语文的不是小孟,(3)教英语的没有分配到三中,(4)小刘分配到一中.(5)小盂没有分配到二中,据此判断.数学学科支教的是谁?分到哪所学校?A .小刘三中B .小李一中C .小盂三中D .小刘二中 7.设b a ,是两条直线βα,是两个平面.则b a ⊥的一个充分条件是A .α⊥a ,β∥b ,βα⊥; C .α⊥a ,β⊥b ,βα∥B .α⊂a ,β⊥b ,βα∥ D .α⊂a ,β∥b ,βα⊥8.已知函数f (x )是定义在R 上的奇函数.在(0.+∞)上是增函数.且0)4(=-f .则使得0)(>x xf 成立的x 的取值范围是A .(4-,4)B .(4-,0)Y (0,4)C .(0,4)Y (4,∞+)D .(∞-,4-)Y (4,∞+) 9.已知直线2-=y 与函数)3sin(2)(πω-=x x f ,(其中w>0)的相邻两交点间的距离为π.则函数)(x f 的单调递增区间为 A .Z k k k ∈+-],65,6[ππππ B .Z k k k ∈+-],65,12[ππππ C .Z k k k ∈+-],611,65[ππππ D .Z k k k ∈+-],1211,65[ππππ 10.若函数⎩⎨⎧≤-->=0,20,log )(2x a x x x f x有且只有一个零点.则a 的取值范围是A .(∞-,1-)Y (0,∞+)B .(∞-,1-)Y [0,∞+)C .[1-,0)D . [0,∞+)11.已知与椭圆121822=+y x 焦点相同的双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F ,.离心率为34=e .若双曲线的左支上有一点M 到右焦点2F 的距离为12.N 为2MF 的中点,O 为坐标原点.则|NO|等于A .4B . 3C .2D .32 12.众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”.整个图形是一个圆形.其中黑色阴影区域在y 轴右侧部分的边界为一个半圆,给出以下命题:①在太极图中随机取一点,此点取自黑色阴影部分的概率是21②当23-=a 时,直线a ax y 2+=与白色部分有公共点; ③黑色阴影部分(包括黑白交界处)中一点(x ,y ).则x+y 的最大值为2; ④设点P (b ,2-),点Q 在此太极图上,使得∠OPQ=45°.b 的范围是[-2.2].其中所有正确结论的序号是A .①①B .①③C .②④D .①②第II 卷(非选择题共90分)本卷包括必考题和选考题两部分,第13~21题为必考题,每个试题考生都必须作答,第22~23题为选考题考生根据要求作答。
考点36 基本不等式1.(山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校级联合考试理)若x ,y ,z 是正数,且3412x y z ==,(),1x yn n z+∈+,n N ∈,则n 的值是 A .3 B .4 C .5 D .6【答案】B 【解析】令3412x y z k ===,得3log x k =,4log y k =,12log z k =,则111x y z +=,得1x y xy z +=,所以()22x y x y x y z xy y x++==++,注意到432y x x =>,即2y x >,且y x <,所以112y x >>,设y t x =,则1924,2x y t z t +⎛⎫=++∈ ⎪⎝⎭.所以4n =.故选B.2.(河南省百校联盟2019届高三考前仿真试卷理)已知,A B 为抛物线22(0)x py p =>上的两个动点,以AB 为直径的圆C 经过抛物线的焦点F ,且面积为2π,若过圆心C 作该抛物线准线l 的垂线CD ,垂足为D ,则||CD 的最大值为( )A .2 BC D .12【答案】A 【解析】根据题意,222AB ππ⎛⎫= ⎪⎝⎭,∴AB =设||||AF a BF b ==,,过点A 作AQ l ⊥于Q ,过点B 作BP l ⊥于P , 由抛物线定义,得AF AQ BF BP ==,,在梯形ABPQ 中, ∴2CD AQ BP a b =+=+, 由勾股定理得,228a b =+,∵2222282244a b a b ab CD ab ++++⎛⎫==== ⎪⎝⎭2222424ab a b +++=…, 所以2CD ≤(当且仅当a b =时,等号成立).3.(甘肃省兰州市第一中学2019届高三6月最后高考冲刺模拟理)已知非零向量a ,b 的夹角为60,且满足22a b -=,则a b ⋅的最大值为( )A .12B .1C .2D .3【答案】B 【解析】因为非零向量a ,b 的夹角为60,且满足22a b -=, 所以2222444a ba b a b -=+-⋅=,即2244cos 604a b a b +-=,即22424a b a b +-=, 又因为2244a ba b +≥,当且仅当2a b =时,取等号;所以222424a b a b a b ≤+-=,即2a b ≤; 因此,1cos6012a b a b a b ⋅==≤. 即a b ⋅的最大值为1. 故选B4.(安徽省江淮十校2019届高三年级5月考前最后一卷数学理)已知函数()ln(1)f x x =-,若f (a )=f (b ),则a+2b 的取值范围为( )A .(4,+∞)B .[3)++∞C .[6,+∞)D .(4,3+【答案】B 【解析】∵函数f (x )=|ln (x ﹣1)|,f (a )=f (b ),且x >1,不妨设a b <,则12a b <<<. ∴﹣ln (a ﹣1)=ln (b ﹣1),∴11a -=b ﹣1,∴b =11a -+1,∴a+2b =a+222133311a a a +=-+++=+--…,当且仅当a 取等号,∴a+2b的取值范围是[3)++∞ 故选:B .5.(陕西省2019年高三第三次教学质量检测理)若正数,m n 满足21m n +=,则11m n+的最小值为 A.3+B.3 C.2+ D .3【答案】A 【解析】由题意,因为21m n +=,则11112()(2)333n m m n m n m n m n +=+⋅+=++≥+=+, 当且仅当2n mm n =,即n =时等号成立, 所以11m n+的最小值为3+ A.6.(天津市南开区2019届高三下学期模拟考试理)已知x ,y均为正实数,且272x y xy +=,则x+3y的最小值为_____________ 【答案】2; 【解析】 x ,y 均为正实数,22172x y xy y x +=+=+,)12113233)7722y xx y x y y x x y ⎛⎫+=++=++⎪⎝⎭17 2.72≥+==时等号成立.故答案为:2.7.(天津市河北区2019届高三一模数学理)若lg lg 0a b +=,则21a b+的最小值是_____________. 【答案】【解析】∵lga+lgb =lgab =0, ∴ab =1,且a >0,b >0,则21a b +≥=当且仅当21a b =且ab =1时即a =b 2=取得最小值故答案为8.(江西省临川一中2019届高三年级考前模拟考试理)如图,点D 在ABC ∆的边AC 上,且3CD AD =,BD =,cos2ABC ∠=,则3AB BC +的最大值为________.【答案】5【解析】因为cos24ABC ∠=,所以221cos 2cos121244ABC ABC ⎛∠∠=-=-= ⎝⎭因为3CD AD =,所以3uu u r uu u rCD DA =即()3uu u r uu u r uu r uu u r BD BC BA BD -=-,整理得到3144uu u r uu r uu u r BD BA BC =+,两边平方后有22291316168uu u r uu r uu u r uu r uu u rBD BA BC BA BC =++⋅,所以22913216168u u r u u u r u u r u u u r BA BC BA BC =++⋅即2291312||||161684u u r u u ur u u r u u u r BA BC BA BC =++⋅⨯,整理得到2233292u u r u u u r u u r u u u r BA BC BA BC =++⋅,设,uu r uu u r c BA a BC ==,所以()22239329322c a ac c a ac =++=+-,因为2933332222ac a c a c ⨯⨯+⎛⎫=≤⨯ ⎪⎝⎭,所以()()()()2222935323333288c a ac c a c a c a =+-≥+-+=+,35c a +≤=,当且仅当a =,15c =时等号成立,故填5. 9.(江苏省镇江市2019届高三考前模拟三模)若x ,y 均为正实数,则221(2)x y x y+++的最小值为_______.【解析】()()2222211122x ty t y x y x y xy y ++-+++=≥++()01t <<12=,即15t =时()2212x y x y +++=10.(宁夏石嘴山市第三中学2019届高三四模考试理)点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为_____. 【答案】1 【解析】曲线C 可整理为:()22225x y -+= 则曲线C 表示圆心为()2,0,半径为5的圆()()2222+121215066222t x y x y a x y a =+---=++---设d =d 表示圆上的点到()6,6-的距离则max 515d ==2max 15222t a b ∴=--=,整理得:14a b ++=()111111*********b a a b a b a b a b +⎛⎫⎛⎫∴+=+++=⨯+++ ⎪ ⎪+++⎝⎭⎝⎭又121b a a b ++≥=+(当且仅当11b a a b +=+,即1a =,2b =时取等号) 1114114a b ∴+≥⨯=+,即111a b ++的最小值为1 本题正确结果:111.(内蒙古2019届高三高考一模试卷数学理)设x ,y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为______.【答案】256【解析】不等式表示的平面区域如图所示阴影部分,当直线0,0()ax by z a b +=>>过直线20x y -+=与直线360x y --=的交点(4,6)时, 目标函数(0,0)z ax by a b =+>>取得最大12, 即4612a b +=,即236a b +=, 而2323236a b a b a b +⎛⎫+=+= ⎪⎝⎭1313252666b a a b ⎛⎫++≥+= ⎪⎝⎭.故答案为:256. 12.(四川省棠湖中学2019届高三高考适应性考试理)ABC ∆的内角,,A B C 所对的边,,a b c 成等比数列,则cos B 的最小值为_____. 【答案】12【解析】因为,,a b c 成等比数列,所以2b ac =22222cos 22a c b a c acB ac ac+-+-==, 由基本不等式可以得到2221222a c ac ac ac ac ac +--≥=,当且仅当a c =时等号成立,故cos B 的最小值为12. 13.(山东省威海市2019届高三二模考试理)直三棱柱111ABC A B C -中,190,2BC A A A ︒∠==,设其外接球的球心为O ,已知三棱锥O ABC -的体积为1,则球O 表面积的最小值为__________. 【答案】16π. 【解析】如图,在Rt ABC ∆中,设,AB c BC a ==,则AC =分别取11,AC A C 的中点12,O O ,则12,O O 分别为111Rt A B C ∆和Rt ABC ∆外接圆的圆心, 连12,O O ,取12O O 的中点O ,则O 为三棱柱外接球的球心. 连OA ,则OA 为外接球的半径,设半径为R .∵三棱锥O ABC -的体积为1,即1()1132O ABC acV -=⨯⨯=, ∴6ac =.在2Rt OO C ∆中,可得22222212()()11224O O AC a c R +=+=+=+, ∴222244(1)4(1)1644a c acS R ππππ+==+≥+=球表,当且仅当a c =时等号成立,∴O 球表面积的最小值为16π. 故答案为:16π.14.(山东省烟台市2019届高三5月适应性练习二数学(理)在V ABC 中,角A 的平分线交BC 于点D ,22BD CD ==,则V ABC 面积最大值为_________. 【答案】3 【解析】在V ABC 中,角A 的平分线交BC 于点D ,22BD CD ==,如下图所示:则1CD =,由三角形内角平分线定理可知:2AB BDAC CD==,设,2AC x BAC α=∠=,则2,0,2AB x πα⎛⎫=∈ ⎪⎝⎭,由余弦定理可得:2223422cos 2x x x x α=+-⋅⋅⋅,即22954cos 2x x α=-,可得2954cos 2x α=-,V ABC 面积为219sin 22sin 2sin 2254cos 2S x x x αααα=⋅⋅⋅==-22222tan 918tan 181tan 311tan 19tan 9tan 54tan 1tan S αααααααα⋅+⇒====-++-⋅+…,当且仅当31tan =α时,等号成立,故V ABC 面积最大值为3.15.(江西省新八校2019届高三第二次联考)在锐角三角形ABC ∆中,角,,A B C 的对边分别为,,a b c ,若3sin c b A =,则tan tan tanC A B ++的最小值是_______.【答案】12 【解析】由正弦定理可得:sin 3sin sin C B A =得:()sin sin cos cos sin 3sin sin A B A B A B B A +=+=sin cos cos sin 3sin sin cos cos cos cos A B A B B AA B A B+∴=,即tan tan 3tan tan A B A B +=又()tan tan tan tan tan tan tan tan tan A B C A B C A B A B ++==-+22tan tan 3tan tan tan tan 1tan tan 1tan tan A B A BA B A B A B+-=-=-- 令tan tan A B t =,得:()()()22231613333tan tan tan 3161111t t t t A B C t t t t t -+-+-++====-++----ABC ∆为锐角三角形 ()tan tan tan tan 01tan tan A BC A B A B+∴-=+=<-得:tan tan 1A B >,即1t > 10t ∴->()3tan tan tan 3166121A B C t t ∴++=-++≥=- 当且仅当()3311t t -=-,即tan tan 2t A B ==时取等号 ()min tan tan tan 12A B C ∴++=本题正确结果:1216.(河北省保定市2019年高三第二次模拟考试理)若正数,a b 满足3ab a b ++=,则+a b 的最小值为__________. 【答案】2 【解析】因为,a b 2a b+≤成立. 所以()24a b ab +≤所以()()234a b ab a b a b =++++≤+即:()()21240b a a b +-+≥+ 解得:2a b +≥或6a b +≤-(舍去) 当3a bab a b =⎧⎨++=⎩时,等号成立,即:1a b ==时,等号成立.所以+a b 的最小值为217.(湖南湖北八市十二校(湖南师范大学附属中学、衡阳八中等理)2019届高三第二次调研联考)在菱形中,为边的中点,,则菱形面积的最大值是______.【答案】12 【解析】以对角线的交点为原点,建立如图所示的平面直角坐标系,在菱形ABCD 中,设,,,则,,,, 又E 为CD 边的中点,则,,,,由基本不等式有,,,当且仅当时取“”,即,菱形ABCD 的面积为,即菱形面积的最大值为12.故答案为:12.18.(四川省乐山市高中2019届高三第三次调查研究考试)已知正实数满足,则的最小值为_______.【答案】【解析】∵正实数满足,∴(2a+b),当且仅当时取等号.∴的最小值为故答案为.19.(山东省泰安市2019届高三第二轮复习质量检测理)如图,在中,为上一点,且满足,若的面积为,则的最小值为______.【答案】【解析】因为的面积为,所以,因此,因为,所以因此,当且仅当时取等号即,的最小值为.20.(陕西省汉中市2019届高三全真模拟考试数学理)已知函数()f x x a x b =++-. (1)当1a =,1b =时,求不等式()4f x ≤的解集; (2)若0a >,0b >,()f x 的最小值为2,求12a b+的最小值.【答案】(1){}22x x -≤≤;(2)32+ 【解析】(1)当1a =,1b =时,()114f x x x =++-≤,得124x x ≤-⎧⎨-≤⎩或1124x -<<⎧⎨≤⎩或124x x ≥⎧⎨≤⎩,解得:22x -≤≤,∴不等式()4f x ≤的解集为{}22x x -≤≤.(2)()()()f x x a x b x a x b a b =++-≥+--=+, ∴2a b +=,∴()121121213332222b a a b a b a b a b ⎛⎛⎫⎛⎫+=⨯++=++≥+=+ ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当2a =,4b =-.∴12a b +的最小值为3221.(江西省临川一中2019届高三年级考前模拟考试理)已知函数()211f x x x =--+. (1)解不等式()4f x ≤;(2)记函数()31y f x x =++的最小值m ,正实数a ,b 满足3m a b +=,求证:341log 2a b ⎛⎫+≥ ⎪⎝⎭. 【答案】(1)[]2,6-;(2)证明见解析. 【解析】(1)()4f x ≤等价于12114x x x ≤-⎧⎨-+++≤⎩ 或1122114x x x ⎧-<<⎪⎨⎪-+--≤⎩或122114x x x ⎧≥⎪⎨⎪---≤⎩, 故21x -≤≤-或112x -<<或162x ≤≤, 综上()4f x ≤解集为[]2,6-.(2)()()31212221223f x x x x x x ++=-++≥--+= 当且仅当()()21220x x -+≤取等号,∴3m =,1a b +=, ∴()41414559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当21,33a b ==时等号成立,∴3341log log 92a b ⎛⎫+≥= ⎪⎝⎭.22.(广东省潮州市2019届高三第二次模拟考试数学理)已知()221f x x x =-++. (1)求不等式()6f x <的解集;(2)设m 、n 、p 为正实数,且()3m n p f ++=,求证:12mn np pm ++≤. 【答案】(1) ()1,3- (2)见证明 【解析】(1)①2x ≥时,()24133f x x x x =-++=-, 由()6f x <,∴336x -<,∴3x <,即23x ≤<,②12x -<<时,()4215f x x x x =-++=-,由()6f x <,∴56x -<,∴1x >-,即12x -<<, ③1x ≤-时,()42133f x x x x =---=-,由()6f x <,∴336x -<,∴1x >-,可知无解, 综上,不等式()6f x <的解集为()1,3-; (2)∵()221f x x x =-++,∴()36f =,∴()36m n p f ++==,且,,m n p 为正实数∴()222222236m n p m n p mn mp np ++=+++++=, ∵222m n mn +≥,222m p mp +≥,222n p np +≥, ∴222m n p mn mp np ++≥++,∴()()2222222363m n p m n p mn mp np mn mp np ++=+++++=≥++ 又,,m n p 为正实数,∴可以解得12mn np pm ++≤.23.(宁夏石嘴山市第三中学2019届高三四模考试数学理)选修4-5不等式选讲 已知关于x 的不等式20x m x -+≤的解集为{|2}x x ≤-,其中0m >. (1)求m 的值;(2)若正数a ,b ,c 满足a b c m ++=,求证:2222b c aa b c++≥.【答案】(1)2m =(2)见证明 【解析】(1)由题意知:20x m x -+≤即20x m x m x ≥⎧⎨-+≤⎩或20x mm x x ≤⎧⎨-+≤⎩化简得:3x mm x >⎧⎪⎨≤⎪⎩或x m x m ≤⎧⎨≤-⎩ 0m > ∴不等式组的解集为{}x x m ≤- 2m ∴-=-,解得:2m =(2)由(1)可知,2a b c ++=由基本不等式有:22b a b a +≥,22c b c b +≥,22a c a c +≥三式相加可得:222222b c a a b c b c a a b c +++++≥++222b c a a b c a b c ∴++≥++,即:2222b c a a b c++≥24.(吉林省长春市北京师范大学长春市附属中学2019届高三第四次模拟考试理)已知()()0f x x a a =->. (1)若函数()()()2F x f x f x =+的最小值为3,求实数a 的值;(2)若2a =时,函数()()()g x f x f x =--的最大值为k ,且()230,0m n k m n +=>>.求123m n+的最小值.【答案】(1)6(2)2 【解析】(1)0a >,2aa ∴<,∴函数()()3222232x a x aa F x x a x a x x a a a x x ⎧⎪->⎪⎪⎛⎫=-+-=≤≤⎨ ⎪⎝⎭⎪⎪⎛⎫-<⎪ ⎪⎝⎭⎩∴当2a x =时,函数()F x 的最小值为322a aF ⎛⎫== ⎪⎝⎭,6a ∴=.(2)当2a =时,()22g x x x =--+, ()()22224x x x x --+≤--+=,4k∴=,所以234m n +=因为()12112134123442343434n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 所以当343n m m n =,即2n =1m =时,123m n +最小值为2。
2025届黑龙江省哈尔滨市哈尔滨师范大学附属中学高三二诊模拟考试语文试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
1、阅读下面的文字,完成各题。
剪纸王孙博元旦的午后,枫城风雪交加。
北面文化中心大堂内挤满了人,温暖如春。
这里正在举办加拿大青少年剪纸大赛,参赛者有100多人,分成大、中、小学三个组别。
大学组压轴上阵,共有30多个选手。
随着主持人宣布比赛题目为“年年有余”后,大家争分夺秒地忙碌起来。
20分钟左右,牛犇第一个交卷。
作品质量和所用时间,都大大出乎评委所料。
牛犇正在读大学二年级,是滑铁卢大学计算机软件专业的高材生。
其他选手都在规定的半个小时才交卷,还有几个根本没能完工。
最终,五个评委一致决定给牛犇打100分。
评委会吴主席走上台,向大家宣布“牛犇同学以满分夺得大学组冠军,获奖金5000 加元。
这也是我们大赛举办三年来,第一个人获得满分,再次恭喜牛犇同学!”吴主席双手举起牛犇的剪纸给大家看,作品是全圆形的窗花图案,男女胖娃各抱鲤鱼跳龙门,喜气洋洋中带着积极向上的精神。
吴主席评说:“牛犇同学的作品紧扣‘年年有余’的主题,但又富有创意,融入鲤跃龙门的元素。
构图新颖,刀工流畅,疏密有致,阴阳相间……”台下一位参赛者突然举手,吴主席马上停住嘴,示意他发言。
吉林省重点高中2025届高三下学期一模考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设不等式组00x y x +≥⎧⎪⎨≤⎪⎩表示的平面区域为Ω,若从圆C :224x y +=的内部随机选取一点P ,则P 取自Ω的概率为( ) A .524B .724C .1124D .17242.已知非零向量,a b 满足a b λ=,若,a b 夹角的余弦值为1930,且()()23a b a b -⊥+,则实数λ的值为( )A .49-B .23C .32或49-D .323.已知集合{2,0,1,3}A =-,{B x x =<<,则集合A B 子集的个数为( )A .4B .8C .16D .324.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.221a b +=是sin cos 1a b θθ+≤恒成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.设实数x 、y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .2B .24C .16D .147.已知等差数列{}n a 的前13项和为52,则68(2)a a +-=( )A .256B .-256C .32D .-328.已知ABC 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=( )A .1B .2-C .12D .12-9.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .10.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加、、A B C 三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有( ) A .24 B .36 C .48D .6411.已知,都是偶函数,且在上单调递增,设函数,若,则( )A .且B .且C .且D .且12.如果直线1ax by +=与圆22:1C x y +=相交,则点(),M a b 与圆C 的位置关系是( ) A .点M 在圆C 上 B .点M 在圆C 外 C .点M 在圆C 内D .上述三种情况都有可能二、填空题:本题共4小题,每小题5分,共20分。
考点51 双曲线1.(天津市河西区2018-2019学年高三第二学期总复习质量调查二)数学试题理)已知抛物线22(0)y px p =>与双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线在x 轴上方的一个交点,若直线AF,则双曲线的离心率为( )ABCD【答案】B 【解析】因为抛物线22(0)y px p =>与双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,所以2p c =,由224y px cx ==,22221x y a b-=得2222222()4()0c a x a cx a c a ----=解得12()(),a c a a c a x x c a c a +--==-+,所以(),A a c a x c a+=- 不妨设c,0F(),则222343()()A A AF A A A A y y k cx x c x c x c ==⇒=⇒=---, 因此222222()()43()4()3(2)a c a a c a cc ca c a a ac c c a c a++=-∴-=+---,2224324(1)3(12),31661630e e e e e e e e ∴-=+--+++=,222(341)(43)013e e e e e e +∴----=>∴=或2e =, 因为点A 在x 轴上方,所以2()20,112A a c a x c e e e e c a+=>∴+-<>∴<<-因此23e +=,选B. 2.(陕西省西北工业大学附属中学2019届高三考前模拟练习数学理)已知双曲线22:14y x C m -=(0)m >的0y ±=,则双曲线C 的离心率为( )A .2B .3C D .2【答案】B 【解析】已知双曲线C y 0±=,且0m >=,得12m =.4c ==,所以双曲线C 的离心率为c e a ===故选:B3.(天津市河北区2019届高三一模数学理)在平面直角坐标系中,经过点P ,渐近线方程为y =的双曲线的标准方程为( )A .22142-=x yB .221714x y -=C .22136x y -=D .221147y x -=【答案】B 【解析】∵双曲线的渐近线方程为y =∴设所求双曲线的标准方程为222x y -=k .又(在双曲线上,则k=16-2=14,即双曲线的方程为222x y 14-=,∴双曲线的标准方程为22x y 1714-=故选:B4.(天津市红桥区2019届高三一模数学理)双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别|为1F 、2F ,点P 在C 上,且123PF PF b +=,1294PF PF ab ⋅=,则双曲线的离心率为( )A .43B .53C D【答案】B 【解析】解:由双曲线的定义得:|PF 1|﹣|PF 2|=2a ,(不妨设该点在右支上) 又|PF 1|+|PF 2|=3b ,所以()()1211233222PF a b PF b a =+=-,,两式相乘得()22199444b a ab -=.结合c 2=a 2+b 2得53c a =. 故e 53=. 故选:B .5.(天津市部分区2019届高三联考一模数学理)已知离心率为53的双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是12,F F ,若点P 是抛物线212y x =的准线与C 的渐近线的一个交点,且满足12PF PF ⊥,则双曲线的方程是( )A .221169x y -=B .22134x y -=C .221916x y -=D .22143x y -=【答案】C 【解析】对于A ,221169x y -=的离心率为54e =,不合题意;对于B ,22134x y -=的离心率为3e =,不合题意;对于D ,22143x y -=的离心率为e =,不合题意;对于C ,221916x y -=的离心率为53e =,符合题意.故选C.6.(2017届四川省成都市石室中学高三二诊模拟考试数学理)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,,A B 是圆222()4x c y c ++=与C 位于x 轴上方的两个交点,且12//F A F B ,则双曲线C 的离心率为( )A B C D 【答案】C 【解析】连接12,BF AF ,由双曲线的定义可得:212AF AF a -=, 122BF BF a -=,由112BF AF c ==,可得2222,22AF a c BF c a =+=-,在12AF F ∆中,可得()2222212244222cos 2?2?22c c a c c ac a AF F c cc +-+--∠==,在12BF F ∆中,可得()()222214224cos 2?2?222c c a c c aBF F c c a c+---∠==-,由12//F A F B ,可得2112BF F AF F π∠+∠=,即有2112cos cos 0BF F AF F ∠+∠=,可得22222c ac a c --+02c ac -=,化为22230c ac a --=,得22310e e --=,解得e =34+ ,负值舍去,故选C. 7.(2017届辽宁省沈阳市省示范协作校高三第一次模拟考试数学理)设1F 和2F 为双曲线22221(0,0)x y a b a b -=>>的两个焦点,若12(0,2)F F b ,是正三角形的三个顶点,则双曲线的渐近线方程是( )A .3y x =± B .y = C .7y x =±D .3y x =±【答案】B 【解析】22243c b c =⇒=,即223bb a a=⇒=B 。
2020届四省名校高三第二次大联考理科数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.考试结束后,请将本试卷和答题卡一并交回。
满分150分,考试用时120分钟。
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合{})2ln(+==x y x A ,{}13<=x x B ,则=B A A.{}02<<-x x B.{}02<≤-x x C.{}12<<-x x D.{}12<≤-x x 2.对于平面内两个非零向量a 和b ,0:>⋅b a p ,a q :和b 的夹角为锐角,则p 是q 的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入x n ,的值分别为2,4,则输出v 的值为A.24B.25C.49D.504.已知等差数列{}n a 的前n 项和为n S ,且1032=+a a ,305=S ,则数列{}n a 的公差为A.1B.2C.3D.45.42)2(xx -展开式中含5x 的项的系数为A.8B.8-C.4D.4-6.正三棱柱(底面为正三角形的直棱柱)111C B A ABC -中,AB AA =1,M 为棱1CC 的中点,则异面直线C A 1与BM 所成的角为A.6π B.4πC.3π D.2π7.2019年成都世界警察与消防员运动会期间,需安排甲、乙、丙、丁四名志愿者去CB A ,,三个场馆参与服务工作,要求每个场馆至少一人,则甲乙被安排到同一个场馆的概率为A.121 B.81C.61D.418.已知函数)sin(31)cos(33)(θθ+-+=x x x f )2|(|πθ<是偶函数,则θ的值为A.3π B.3π-C.6π D.6π-9.在ABC ∆中,点D 在BC 边上,且DB CD 3=,点M 在AD 边上,AM AD 3=,若AC AB CM μλ+=,则=+μλA.32- B.32C.67 D.67-10.抛物线)0(:2>=a ax y C 的焦点F 是双曲线12222=-x y 的一个焦点,过F 且倾斜角为︒60的直线l 交C 于B A ,,则=||AB A.2334+ B.234+C.316D.1611.下列选项中,函数1sin 2)(2+-=x x x x f 的部分图象可能是A. B.C. D.12.设点)0,1(A ,)0,4(B ,动点P 满足||||2PB PA =,设点P 的轨迹为1C ,圆2C :4)3(3(22=-++y x ,1C 与2C 交于点N M ,,Q 为直线2OC 上一点(O 为坐标原点),则=⋅MQ MN A.4 B.32C.2 D.3二、填空题(本大题共4小题,每小题5分,共20分)13.设复数|43|1i ii z +-+=,则=z _______.14.在正项等比数列{}n a 中,1011010=a ,则=++++2019321lg lg lg lg a a a a _______.15.如图,三棱锥ABC P -中,平面⊥PAC 平面ABC ,BC SB ⊥,2==BC AB ,3==PC PA ,则三棱锥ABC P -的外接球的表面积为_______.16.已知函数⎪⎩⎪⎨⎧>+≤+--=1,21ln 1,272)(2x x x x x x f 若关于x 的方程kx x f =)(恰有4个不相等的实数根,则实数k 的取值范围是_______.三、解答题(共70分。
专题11空间向量与立体几何解答题考纲解读三年高考分析1.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.空间向量的计算和角度的求解是考查的重点,解题时常用到空间直角坐标系的建立、点和向量坐标的计算与应用,考查学生的数学抽象能力、数学建模能力、数学运算能力、直观想象能力,题型以选择填空题和解答题为主,中等难度.1、主要考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,题型主要以选择题和填空题的形式出现,解题要求有较强的空间想象能力和逻辑推理能力.2、空间向量是高考中的必考内容,涉及用向量法计算空间异面直线所成角、直线和平面所成角、二面角及空间距离等内容,考查热点是空间角的求解.题型以解答题为主,要求有较强的运算能力,广泛应用函数与方程的思想、转化与化归思想.1.【2019年天津理科17】如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE =BC=2.(Ⅰ)求证:BF∥平面ADE;(Ⅱ)求直线CE与平面BDE所成角的正弦值;(Ⅲ)若二面角E﹣BD﹣F的余弦值为,求线段CF的长.2.【2019年新课标3理科19】图1是由矩形ADEB、Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B﹣CG﹣A的大小.3.【2019年全国新课标2理科17】如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B﹣EC﹣C1的正弦值.4.【2019年新课标1理科18】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.5.【2019年北京理科16】如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,AD⊥CD,AD∥BC,P A=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且.(Ⅰ)求证:CD⊥平面P AD;(Ⅱ)求二面角F﹣AE﹣P的余弦值;(Ⅲ)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.6.【2019年江苏16】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.7.【2019年浙江19】如图,已知三棱柱ABC﹣A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(Ⅰ)证明:EF⊥BC;(Ⅱ)求直线EF与平面A1BC所成角的余弦值.8.【2018年江苏15】在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.9.【2018年江苏25】如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC 的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.10.【2018年新课标1理科18】如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.11.【2018年新课标2理科20】如图,在三棱锥P﹣ABC中,AB=BC=2,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M﹣P A﹣C为30°,求PC与平面P AM所成角的正弦值.12.【2018年新课标3理科19】如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.13.【2018年浙江19】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC =120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.14.【2018年上海17】已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.15.【2018年北京理科16】如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC,AC=AA1=2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B﹣CD﹣C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.16.【2018年天津理科17】如图,AD∥BC且AD=2BC,AD⊥CD,EG∥AD且EG=AD,CD∥FG 且CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.(Ⅰ)若M为CF的中点,N为EG的中点,求证:MN∥平面CDE;(Ⅱ)求二面角E﹣BC﹣F的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.17.【2017年江苏15】如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.18.【2017年江苏18】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.19.【2017年江苏25】如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.20.【2017年新课标1理科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.21.【2017年新课标2理科19】如图,四棱锥P﹣ABCD中,侧面P AD为等边三角形且垂直于底面ABCD,AB=BC AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面P AB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.22.【2017年新课标3理科19】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D ﹣AE﹣C的余弦值.23.【2017年浙江19】如图,已知四棱锥P﹣ABCD,△P AD是以AD为斜边的等腰直角三角形,BC ∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面P AB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.24.【2017年上海17】如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.25.【2017年北京理科16】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面P AD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,P A=PD,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.26.【2017年天津理科17】如图,在三棱锥P﹣ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱P A上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.1.【陕西省西北工业大学附属中学2019届高三考前模拟】如图,在多面体ABCDEF中,四边形ABCD 是菱形,3ABC π∠=,四边形ABEF 是直角梯形,2FAB π∠=,AF BE P ,22AF AB BE ===.(Ⅰ)证明:CE P 平面ADF .(Ⅱ)若平面ABCD ⊥平面ABEF ,H 为DF 的中点,求平面ACH 与平面ABEF 所成锐二面角的余弦值.2.【山东省淄博市部分学校2019届高三5月阶段性检测】已知正方形的边长为4,,E F 分别为,AD BC 的中点,以EF 为棱将正方形ABCD 折成如图所示的60o 的二面角,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF ,由,,A D E 三点所确定平面的交点为O ,试确定点O 的位置,并证明直线//OD 平面EMC ;(2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60o ;若存在,求此时二面角M EC F --的余弦值,若不存在,说明理由.3.【陕西省汉中市2019届高三全真模拟】如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,//EF AB ,90BAF ∠=︒,2AD =,1AB AF ==,点P 在线段DF 上.(1)求证:AF ⊥平面ABCD ;(2)若二面角D AP C --的余弦值为63,求PF 的长度. 4.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】如图,三棱柱111ABC A B C -中,平面11ACC A ⊥平面ABC ,12AA AC CB ==,90ACB ∠=︒.(1)求证:平面11AB C ⊥平面11A B C ;(2)若1A A 与平面ABC 所成的线面角为60︒,求二面角11C AB C --的余弦值.5.【辽宁省葫芦岛市普通高中2019届高三第二次模拟】如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且//AD BC ,ABD ∆是边长为1的等边三角形,M 为线段BD 中点,3BC =.(1)求证:AF BD ⊥;(2)求直线MF 与平面CDE 所成角的正弦值;(3)线段BD 上是否存在点N ,使得直线//CE 平面AFN ?若存在,求BNBD的值;若不存在,请说明理由.6.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校级联合】如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中45BAE GAD ∠=∠=︒,22AB AD ==,60BAD ∠=︒.(1)求证:平面BDG ⊥平面ADG ; (2)求直线GB 与平面AEFG 所成角的正弦值.7.【内蒙古呼伦贝尔市2019届高三模拟统一考试(一)】如图,在直三棱柱111ABC A B C -中,D 、E 、F 、G 分别是BC 、11B C 、1AA 、1CC 中点.且22AB AC ==,14BC AA ==.(1)求证:BC ⊥平面ADE ; (2)求二面角1G EF B --的余弦值.8.【广东省肇庆市2019届高中毕业班第三次统一检测】如图,在三棱柱111ABC A B C -中,侧面11ABB A 是菱形,160BAA ∠=︒,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =.(1)证明:1//CB 面1A EF ;(2)若CA CB ⊥,面CAB ⊥面11ABB A ,求二面角1F A E A --的余弦值. 9.【山东省栖霞市2019届高三高考模拟卷】如图,在三棱锥V ABC -中,,90,2VC AB ABC AB BC ︒<∠===,侧面ACV ⊥底面ABC ,45ACV ︒∠=,D 为线段AB 上一点,且满足AD CV =.(1)若E 为AC 的中点,求证:BE CV ⊥; (2)当DV 最小时,求二面角A BC V --的余弦值.10.【河南省百校联盟2019届高三考前仿真试卷】如图,在几何体1111ACD A B C D -中,四边形1111ADD A CDD C ,为矩形,平面11ADD A ⊥平面11CDD C ,11B A ⊥平面11ADD A ,1111,2AD CD AA A B ====,E 为棱1AA 的中点.(Ⅰ)证明:11B C ⊥平面1CC E ;(Ⅱ)求直线11B C 与平面1B CE 所成角的正弦值.11.【安徽省合肥市2019届高三第三次教学质量检测】已知:在四棱锥P ABCD -中,//AD BC ,12AB BC CD AD ===,G 是PB 的中点,PAD ∆是等边三角形,平面PAD ⊥平面ABCD .(Ⅰ)求证:CD ⊥平面GAC ; (Ⅱ)求二面角P AG C --的余弦值.12.【湖北部分重点中学2020届高三年级新起点考试】如图四棱锥P ABCD -中,底面ABCD 是正方形,,PB BC PD CD ⊥⊥,且PA AB =,E 为PD 中点.(1)求证:PA ⊥平面ABCD ; (2)求二面角A BE C --的正弦值.13.【江西省鹰潭市2019届高三第一次模拟】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AB AD ⊥,AC CD ⊥,60ABC ∠=︒,PA AB BC ==,E 是PC 的中点.(1)求PB 和平面PAD 所成的角的大小. (2)求二面角A PD C --的正弦值.14.【山东省实验中学等四校2019届高三联合考试】如图在直角ABC ∆中,B 为直角,2AB BC =,E ,F 分别为AB ,AC 的中点,将AEF ∆沿EF 折起,使点A 到达点D 的位置,连接BD ,CD ,M 为CD 的中点.(Ⅰ)证明:MF ⊥面BCD ;(Ⅱ)若DE BE ⊥,求二面角E MF C --的余弦值.15.【广东省深圳市高级中学2019届高三适应性考试】已知四棱锥P ABCD -,底面ABCD 为菱形,PD PB =,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且//BD 平面AMHN .(1)证明:MN PC ⊥;(2)当H 为PC 的中点,3PA PC AB ==,PA 与平面ABCD 所成的角为60︒,求AD 与平面AMHN 所成角的正弦值.1.已知三棱锥P ﹣ABC 中,△ABC 为等腰直角三角形,AB =AC =1,,设点E 为P A中点,点D 为AC 中点,点F 为PB 上一点,且PF =2FB . (1)证明:BD ∥平面CEF ;(2)若P A ⊥AC ,求直线CE 与平面PBC 所成角的正弦值.2.如图,在矩形ABCD 中,AB =2,BC =3,点E 是边AD 上的一点,且AE =2ED ,点H 是BE 的中点,将△ABE 沿着BE 折起,使点A 运动到点S 处,且有SC =SD . (1)证明:SH ⊥平面BCDE . (2)求二面角C ﹣SB ﹣E 的余弦值.3.如图,在斜三棱柱ABC ﹣A 1B 1C 1中,侧面A 1ABB 1⊥底面ABC ,侧棱A 1A 与底面ABC 所成角为60°,AA 1=AB =2,底面△ABC 是以∠ABC 为直角的等腰直角三角形,点G 为△ABC 的重心,点E在BC1上,且.(Ⅰ)求证:GE∥平面A1ABB1;(Ⅱ)求平面B1GE与平面ABC所成锐二面角的余弦值.4.已知:在四棱锥P﹣ABCD中,AD∥BC,,G是PB的中点,△P AD是等边三角形,平面P AD⊥平面ABCD.(Ⅰ)求证:CD⊥平面GAC;(Ⅱ)求二面角P﹣AG﹣C的余弦值.5.在三棱锥P﹣ABC中,△ABC是边长为4的等边三角形,平面P AB⊥平面ABC,,点M为棱BC的中点,点N在棱PC上且满足,已知使得异面直线MN与AC所成角的余弦值为的λ有两个不同的值λ1,λ2(λ1<λ2).(1)求λ1,λ2的值;(2)当λ=λ1时,求二面角N﹣AM﹣C的余弦值.。
哈六中2019-2020学年度上学期高三学年第二次调研考试地理试卷一、选择题(每题2分,共60分)火地岛是拉丁美洲最大的岛屿,西部和南部山地为安第斯山脉余脉,东部和北部为平缓低地,覆盖第四纪冰川沉积和火山灰砾,多湖泊和沼泽湿地。
岛上雪线高度仅500-800米,有很多树木,树冠形状奇特,当地称作“醉汉树”,下图为火地岛及其周边区域图。
据此,回答1-3题。
1.关于图示岛屿叙述正确的是①西部沿岸暖流增湿,东部沿岸寒流减湿②山脉大致呈南北向,山脉阻挡,形成西部多雨区和东部雨影区③岛上湖泊多为冰川作用形成④地处太平洋板块与美洲板块碰撞挤压处,多火山地震A.①②B.②③C.①③D.③④2.火地岛上雪线高度仅500-800米的主要因素是A.纬度B.海拔C.海陆位置D.地形3.据图推测“醉汉树”的树冠朝向A.西北B.西南C.东南D.东北某媒体报道:东亚地区沙尘暴的源地主要在中国境内;而我国科学家研究发现,影响中国的沙尘暴三分之二源于国外。
回答4-5题。
4.影响中国沙尘暴的沙源主要位于下列哪个国家境内A.蒙古B.阿富汗C.吉尔吉斯斯坦D.俄罗斯5.当沙尘暴发生时,我国南方地区常伴有泥雨发生,其主要原因是A.含沙气流在南方山地迎风坡上升B.含沙气流与南方暖湿气团相遇后被抬升C.南方雨水把气流中沙粒冲刷下来D.含沙气流与南方暖湿空气混合,暖湿空气沿锋面上升所致一位去巴厘岛的游客在游记中写道:在乌布行走,常能看到随山势修筑的层层稻田,错落有致……走着走着,便会毫无预兆地遭遇一场阵雨,于是便在路旁的亭子里停下来听雨赏雨,看到路边石缝中“吱吱”地冒热气……下图为巴厘岛水系分布图,据此完成6-8题。
6.影响乌布稻田的主导自然条件是A.光照充足B.土壤肥沃C.水热充足D.河网密布7.在乌布遭遇毫无预兆的一场阵雨的成因最有可能是A.对流活动强烈B.台风活动频繁C.西南季风强盛D.东北信风控制8.路边石缝中“吱吱”地冒热气,其主要原因可能是A.纬度低,太阳辐射强,光照足B.沿岸有暖流经过,增温作用明显C.以平原为主,海拔低,气温高D.位于板块交界处,地壳运动活跃芒果是热带水果,四川攀枝花芒果主要种植在海拔1400m左右的河谷坡地,成熟期一般在9-11月,是我国芒果成熟期最晚的地区,该地区的芒果口感好,含糖量高,品质佳。