多组分精馏-精选
- 格式:ppt
- 大小:742.04 KB
- 文档页数:24
第三章多组分精馏⼀、填空题1、仅在塔顶或塔釜出现的组分为()。
2、在多组分精馏过程中,全回流时所需理论板数(),在最⼩回流⽐下所需理论板数()。
3、萃取精馏塔在萃取剂加⼊⼝以上需设()。
4、恒沸精馏过程恒沸剂的加⼊不仅影响原溶液组分( ),同时与原溶液中的⼀个或⼏个组分形成恒沸物,当形成最低温度的恒沸物时恒沸剂从塔()出来。
5、关键组分中,挥发度⼤的组分为();挥发度⼩的组分为()。
6、清晰分隔法的假设为(),()。
7、在多组分精馏过程中,由芬斯克公式计算的最少理论板数决定于两组分的分离要求和(),与进料组成()。
8、萃取精馏是指原溶液加⼊新组分后不形成共沸物且S 沸点(),从()采出。
9、多组分精馏中,关键组分是指()的组分。
10、常⽤吸附剂有(),(),(),()。
⼆、单项选择题1、多组分精馏中,若轻重组分均为⾮分配组分,则恒浓区出现在:( )(A) 精馏段和提馏段中部 (B) 精馏段中部和板下紧靠进料板处(C) 板上仅紧进料板处和提馏段中部 (D) 板上、下紧靠进料板处2、对⼆元均相共沸物,s i P 相差增⼤,最低共沸物向哪个区移动:( )(A) ⾼沸点组分多浓度区 (B) 低沸点组分多浓度区(C) ⾼沸点组分低浓度区 (D) 低沸点组分低浓度区3、在均相恒沸物条件下,活度系数和压⼒关系为:( ) (A) 1221γγ=s s p p (B) 2121γγ=s s p p (C) 1221γγ≥s s p p (D) 2 121γγ≤s s p p4、多组分精馏中,若轻重组分均为分配组分,则恒浓区出现在:( )(A) 精馏段和提馏段中部 (B) 精馏段中部和板下紧靠进料板处(C) 板上仅紧进料板处和提馏段中部 (D) 板上、下紧靠进料板处5、萃取精馏塔内⽓液相流率的分布规律为:( )(A) 从上到下⽓液相流率逐渐增⼤,液相流率远⼤于⽓相流率(B) 从上到下⽓液相流率逐渐减⼩,液相流率远⼤于⽓相流率(C) 从上到下液相流率增⼤,⽓相流率减⼩,液相流率⼩于⽓相流率(D) 不确定6、下列不属于以压⼒差为推动⼒的膜分离技术为:( )(A) 微滤 (B) 超滤 (C) 反渗透 (D) 渗析7、液相进料的萃取精馏过程,应该从何处加萃取剂:( )(A) 精馏段 (B) 提馏段 (C) 精馏段和进料处 (D) 提馏段和进料板8、当萃取塔塔顶产品不合格时,可采⽤下列⽅法来调节:( )(A) 加⼤回流⽐ (B) 加⼤萃取剂⽤量(C) 增加进料量 (D) 减⼩萃取剂⽤量9. 吉利兰关联图,关联了四个物理量之间的关系,下列哪个不是其中之⼀:( )(A) 最少理论板书 (B) 最⼩回流⽐(C) 压⼒ (D) 理论板书三、简答题1、试分析多组分精馏在最⼩回流情况下,恒浓区出现的位置。
第三章 多组分精馏在化工原理课程中,对双组分精馏和单组分吸收等简单传质过程进行过较详尽的讨论。
然而,在化工生产实际中,遇到更多的是含有较多组分或复杂物系的分离与提纯问题。
在设计多组分多级分离问题时,必须用联立或迭代法严格地解数目较多的方程,这就是说必须规定足够多的设计变量,使得未知变量的数目正好等于独立方程数,因此在各种设计的分离过程中,首先就涉及过程条件或独立变量的规定问题。
多组分多级分离问题,由于组分数增多而增加了过程的复杂性。
解这类问题,严格的该用精确的计算机算法,但简捷计算常用于过程设计的初始阶段,是对操作进行粗略分析的常用算法。
§3-1分离系统的变量分析设计分离装置就是要求确定各个物理量的数值,但设计的第一步还不是选择变量的具体数值,而是要知道在设计时所需要指定的独立变量的数目,即设计变量。
一、设计变量1.设计变量⎩⎨⎧-=:可调设计变量固定设计变量a x c v i N N N N N :v N :描述系统所需的独立变量总数。
c N :各独立变量之间可以列出的方程式数和给定的条件,为约束关系数。
要确定i N ,需正确确定v N 和c N ,一般采用郭慕孙发表在AIchE J (美国化学工程师学会),1956(2):240-248的方法,该法的特点是简单、方便,不易出错,因而一直沿用至今。
郭氏法的基本原则是将一个装置分解为若干进行简单过程的单元,由每一单元的独立变量数e v N 和约束数e c N 求出每一单元的设计变量数e i N ,然后再由单元的设计变量数计算出装置的设计变量数E i N 。
在设计变量i N 中,又被分为固定设计变量x N 和可调设计变量a N ,x N 是指确定进料物流的那些变量(进料组成和流量)以及系统的压力,这些变量常常是由单元在整个装置中的地位,或装置在整个流程中的地位所决定,也就是说,实际上不要由设计者来指定,而a N 才是真正要由设计者来确定的,因此郭氏法的目的是确定正确的a N 值。
化工原理多组分精馏简介多组分精馏是一种常见的化工分离技术,广泛应用于石油、化工、药品等行业中。
本文将介绍多组分精馏的基本原理、设备和操作、影响因素,以及应用案例等内容。
基本原理多组分精馏是通过不同组分的挥发性差异实现分离的一种方法。
在一个精馏塔中,原料液体进入塔顶,经过加热后蒸发,蒸汽上升并与冷却剂进行接触,冷却后变为液体,得到精馏液。
根据不同的沸点,各组分在塔内得到部分蒸发和凝结,最后在塔顶和塔底得到不同组分的纯化产品。
设备和操作多组分精馏通常由以下设备组成:1.精馏塔:用于将混合物分离成多个组分的关键设备。
塔内通常有填料或板式反应器,以增加传质效果。
2.热交换器:用于加热和冷却原料和冷却剂。
3.冷凝器:用于将蒸汽冷却成液体,以获取精馏液。
4.回流器:用于控制精馏液的回流或提供塔顶的回流液。
在操作多组分精馏塔时,需要注意以下几点:1.控制塔顶温度:通过调节加热和冷却剂的流量,控制塔顶温度,确保所需组分能够得到纯化。
2.控制回流比:回流比是回流液与塔顶出口流量的比值。
通过调节回流比,可以改变塔内的传质效果,影响分离效果。
3.利用塔内温度梯度:塔内温度从塔底到塔顶逐渐增加,利用温度差异来实现组分的分离。
影响因素多组分精馏的效果受到多个因素的影响,以下是几个重要的影响因素:1.组分挥发性差异:组分之间的沸点差异越大,精馏效果越好。
2.塔设计:塔的高度、填料或板式的选择,对传质效果和分离效果有直接影响。
3.温度梯度:塔内温度梯度越大,分离效果越好。
4.回流比:适当的回流比可以改善传质效果,提高精馏效果。
5.操作参数:加热剂和冷却剂的流量、操作压力等参数的调节,会直接影响精馏过程的效果。
应用案例多组分精馏在化工领域有着广泛的应用。
以下是几个常见的应用案例:1.石油炼油:通过多组分精馏,将原油中的各种烃类分离出来,得到汽油、柴油、煤油等产品。
2.药品制造:制药工业中,多组分精馏被用于纯化药物原料,去除杂质,提高药品的纯度和品质。
普通多组分精馏的原理普通多组分精馏是一种常用的物理分离技术,用于将多种组分按照其沸点的差异进行分离和纯化。
其基本原理是利用不同组分的沸点差异,通过加热液体混合物,使其中一个或多个组分蒸发,然后再将蒸汽冷凝,得到纯净的组分。
普通多组分精馏过程中涉及到一系列的操作和装置,其中最基本的装置是精馏塔。
精馏塔通常由一个高度较高的塔筒和一系列水平安装的塔板组成,塔板上设有大量密布的塔板孔和下料孔。
液体混合物通过上部喷淋塔板进入塔筒内,然后在塔板孔的作用下形成多个液滴。
从塔顶向下流动的反流液体与从塔底向上流动的精馏液体相接触,通过蒸汽-液体平衡,发生质量传递和传热过程。
在普通多组分精馏中,通常会选择一种组分作为轻组分,其沸点较低,而将其他组分作为重组分,其沸点较高。
加热后,轻组分蒸发,并被吸附到塔顶的冷凝器中,冷凝成液体,被称为顶产品。
剩余的液体在精馏塔内逐渐升温,重组分逐渐蒸发,与轻组分的冷凝液发生交替相接触,通过多次汽液平衡,使得各组分逐渐富集。
普通多组分精馏的效率受到一系列因素的影响。
首先是加热方式,通常可以选择直接加热或间接加热。
直接加热是通过将加热介质直接接触到精馏塔内,实现对液体的加热,优点是传热效率高,但缺点是介质可能会与组分发生反应。
间接加热是通过介质流经换热器,间接传递热量给液体,优点是可控性好,但传热效率较低。
其次是塔板设计和操作参数的选择。
塔板设计要考虑到液滴的传递和分离,以及液体和气体的接触效率。
操作参数包括物料负荷、回流比、塔板孔的尺寸等,这些参数对精馏的效率和分离效果有着重要影响。
最后是冷凝器的设计。
冷凝器通过将蒸汽冷却并凝结,改变气体和液体之间的相态,从而实现组分的分离。
冷凝器的设计应考虑到冷却介质的选择、冷凝速率以及顶部温度等因素。
普通多组分精馏是一种常见的分离技术,在石油化工、化学工程等领域具有广泛应用。
根据不同的需求,可以选择不同的操作策略和装置设计,以实现高效的分离和纯化。