2017年秋八年级数学上册 13.2 命题与证明(4)练习题
- 格式:doc
- 大小:77.50 KB
- 文档页数:2
沪科版数学八年级上册13.2《命题与证明》教学设计4一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的重点内容,本节内容是在学生已经掌握了命题与定理的基础上进行进一步的深入学习。
本节课的主要内容是让学生了解证明的方法和步骤,学会如何正确地进行数学证明。
教材通过具体的例子引导学生理解证明的过程,并通过练习让学生掌握证明的方法。
二. 学情分析学生在学习本节内容之前,已经学习了命题与定理的基本概念,对命题和定理有了初步的理解。
但是,学生在证明方面还缺乏系统的训练,证明的方法和步骤还不够清晰。
因此,在教学过程中,需要教师引导学生理解证明的过程,并通过大量的练习让学生掌握证明的方法。
三. 教学目标1.让学生理解证明的概念和方法,掌握证明的基本步骤。
2.培养学生进行数学证明的能力,提高学生的逻辑思维能力。
3.通过数学证明的学习,培养学生的耐心和细致,提高学生的学习兴趣。
四. 教学重难点1.教学重点:让学生理解证明的概念和方法,掌握证明的基本步骤。
2.教学难点:如何引导学生理解证明的过程,如何让学生掌握证明的方法。
五. 教学方法1.采用问题驱动的教学方法,通过具体的例子引导学生理解证明的过程。
2.使用小组合作学习的方法,让学生在合作中学习,提高学生的学习效果。
3.通过大量的练习,让学生在实践中掌握证明的方法。
六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。
2.准备相关的教学工具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)教师通过提问的方式引导学生回顾命题与定理的基本概念,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT或黑板,呈现本节课的主要内容,让学生了解本节课的学习目标。
3.操练(10分钟)教师通过具体的例子,引导学生理解证明的过程,让学生掌握证明的基本步骤。
4.巩固(10分钟)教师布置一些练习题,让学生在练习中巩固所学的内容,提高学生的证明能力。
5.拓展(10分钟)教师通过一些综合性的练习题,让学生在练习中提高自己的逻辑思维能力,提高学生的学习兴趣。
初二数学命题的证明同步练习题及答案初二数学命题的证明同步练习题及答案证明同步练习题及答案如下24.2命题与证明第1题. 已知四个命题:(1)如果一个数的相反数等于它本身,则这个数是0;(2)一个数的倒数等于它本身,则这个数是1;(3)一个数的算术平方根等于它本身,则这个数是1或0;(4)如果一个数的绝对值等于它本身,则这个数是正数.其中真命题有( )A.1个B.2个C.3个D.4个答案:B第2题. 判断下列命题的真假.①大于锐角的角是钝角;②如果一个实数有算术平方根,那么它的算术平方根是整数;③如果,那么点是线段的中点.答案:①②③假命题.第3题. 下列命题称为公理的是( )A.垂线段最短B.同角的补角相等C.邻角的平分线互相垂直D.内错角相等两直线平行答案:A答案:B第9题. 举反例说明一个角的余角大于这个角是假命题,错误的是( )A.设这个角是,它的余角是,B.设这个角是,它的余角是,C.设这个角是,它的余角是,D.设这个角是,它的余角是,答案:C第10题. 下列语句中,不是命题的句子是( )A.过一点作已知直线的垂线B.两点确定一条直线C.钝角大于D.凡平角都相等答案:A第11题. 命题有两条边和一个角对应相等的两个三角形全等的题设是,结论是,它是命题.答案:如果两个三角形中有两条边和一个角对应相等;这两个三角形全等;假.第12题. 把命题不相等的角不是对顶角改为如果那么的形式为 .答案:如果两个角不相等,那么这两个角不是对顶角.第13题. 如图,, .求证: .答案:因为, .所以 .即 .又,所以 .第14题. 已知:如图,,,,,求证: .答案:因为,,所以,所以,因为,所以,所以,因为,所以 .第15题. 如图,,且,那么图中与相等的角(不包括 )的个数是( )A.2B.4C.5D.6答案:C第16题. 如图,在中,,在上取一点,使,是的中点,是的中点,延长交的延长线于,求证: .答案:连结,取中点,连结,,为中点,为中点,为中点,, . ,,上文即是证明同步练习题及答案。
沪科版数学八年级上册13.2《命题与证明》教学设计4一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的内容,本节课的主要内容是让学生理解命题的概念,掌握证明的方法和技巧。
教材通过引入生活中的实例,让学生体会命题的意义,进而引导学生学习证明的基本方法。
教材内容由浅入深,循序渐进,有利于学生掌握。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力,对数学概念有一定的理解。
但是,对于证明这一概念,学生可能较为陌生,需要通过具体的实例来引导学生理解和掌握。
此外,学生在学习过程中可能存在对证明方法的不理解,需要教师耐心引导和讲解。
三. 教学目标1.让学生理解命题的概念,能正确写出题设和结论。
2.让学生掌握证明的方法和技巧,能运用所学的证明方法解决实际问题。
3.培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
四. 教学重难点1.重点:命题的概念,证明的方法和技巧。
2.难点:证明方法的灵活运用,对复杂命题的证明。
五. 教学方法1.采用实例导入法,通过生活中的实例引导学生理解命题的意义。
2.采用问题驱动法,引导学生思考和探索证明的方法。
3.采用分组合作法,让学生在合作中交流和分享证明的方法和经验。
4.采用讲解法,教师对重点和难点进行讲解和解答。
六. 教学准备1.准备相关的生活实例,用于导入和讲解。
2.准备一些证明题目,用于巩固和拓展。
3.准备PPT,用于展示和讲解。
七. 教学过程1.导入(5分钟)通过一个生活实例,如“如果一个人是男生,那么他一定有喉结”,让学生理解命题的概念,引导学生写出题设和结论。
2.呈现(10分钟)呈现一些简单的命题,如“勾股定理”和“平行线的性质”,让学生尝试证明。
教师在旁边指导,解答学生的疑问。
3.操练(10分钟)学生分组合作,每组选择一个命题进行证明。
教师巡回指导,检查学生的证明过程,纠正错误。
4.巩固(10分钟)教师选取一些学生的证明题目,进行讲解和分析,让学生理解和掌握证明的方法和技巧。
沪科版八年级上册数学13章三角形命题与证明(4)(含答案)课堂练习1.如图,∠ACD=120°,∠B20°,则∠A的度数是()A.1200B.900C.1000D.3002.一个三角形有一外角是88°,这个三角形是( )A.锐角三角形B.直角三角形C.纯角三角形D.无法确定3.把一把直尺与一块三角尺如图放置,若∠1=45°,则∠2的度数为( )A.1150B.120°C.1350D.145°4.如图,AB∥CD,∠A=50°,∠C=30°,则∠AEC的度数为( )A.200B.50°C.800D.100°5.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )A.500B.600C.70°D.8006.如图,在△ABC中,∠A=630,直线MN∥BC,且分别与AB、AC相交于点D、E.若∠AEN=1330,则∠B的度数为_________.7.如图,∠ACD是△ABC的一个外角,∠ACD=4∠ACB,∠A=2∠ACB,求∠B的度数.8.将一副三角尺按如图所示的方式摆放在一起,则∠1的度数是( )A.55°B.65°C.75°D.85°9.如图,AB∥CD,∠A=70°,∠C=40°,则∠E的度数为( )A.300B.40°C.60°D.70°10.如图,直线a∥b,一块含60°角的直角三角尺ABC(∠A=60°)按如图所示的方式放置.若∠1=55°,则∠2的度数为( )A.105°B.110°C.115°D.120°11.如图,AB∥DE,∠ABC=70°,∠CDE=140°则∠BCD的度数为( )A.20°B.30°C.40°D.70°12.将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是____________.13.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=________________°.14.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F=_________.15.如图,CE是△ABC的外角∠ACD的平分线,一CE交BA的延长线于点 E.求证:∠BAC>∠B.16.如图,AB∥CD,DE、BF交于点E.试探究∠3与∠1、∠2之间的数量关系,并证明你的结论.答案1.C2.C3.C4.C5.A6.70°7.∵∠ACD是△ABC的一个外角,∠ACD=∠A+∠B.∵∠ACD=4∠ACB,∠A=2∠ACB4∠ACB=2∠ACB+∠B.∴∠B=2∠ACB.∵∠A+∠B+∠ACB=180°∴5∠ACB=180°.…∠ACB=36°.∴∠B=2∠ACB=72°8.C 9.A 10.C 11.B12.7513.7014.9.515.∵∠BAC是△ACE的外角∴∠BAC>∠ACE.∵∠ECD是△BCE的外角∴∠ECD>∠B.∵CE平分∠ACD∴∠ACE=∠ECD∴∠BAC>∠B16.∠1+∠2=180°+∠3连接BD.∵∠3是△BDE的外角,∠3=∠BDE+∠DBE.∵AB∥CD∴∠ABD+∠CDB=180°∠1+∠2=∠ABD+∠CDB+∠BDE+∠DBE=180°+∠3。
初中数学命题与证明专题训练50题含参考答案一、单选题1.下列命题是假命题...的是( ). A .同一平面内,两直线不相交就平行B .对顶角相等C .互为邻补角的两角和为180°D .相等的两个角一定是对顶角2.下列命题正确的是( )A .所有的实数都可用数轴上的点表示B .直线外一点到这条直线的垂线段叫做点到直线的距离C D .如果一个数有立方根,那么这个数也一定有平方根3.定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是ABC 的外角,求证:ACD A B ∠=∠+∠.证法1:如图.∠180A B ACB ∠+∠+∠=︒(三角形内角和定理)又∠180ACD ACB ∠+∠=︒(平角定义)∠ACD ACB A B ACB ∠+∠=∠+∠+∠(等量代换)∠ACD A B ∠=∠+∠(等式性质)证法2:如图,∠76A ∠=︒,59B ∠=︒,且135ACD ∠=︒(量角器测量所得)又∠1357659︒=︒+︒(计算所得)∠ACD A B ∠=∠+∠(等量代换)下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C 2D .证法2只要测量够一百个三角形进行验证,就能证明该定理4.下列命题中,假命题是( )A .如果两条直线都与第三条直线平行,那么这两条直线也互相平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线被第三条直线所截,同旁内角互补D .两点的所有连线中,线段最短5.下列命题为真命题的是( )A .内错角相等,两直线平行B C .1的平方根是1D .一般而言,一组数据的方差越大,这组数据就越稳定6.下列命题是真命题的是( )A .若a b >,则11a b ->-B .若22ac bc >,则a b >C .若225x kx ++是一个完全平方公式,则k 的值等于10D .将点()2,3A -向上平移3个单位长度后得到的点的坐标为()1,37.能说明命题“若x 2≥9,则x ≥3”为假命题的一个反例可以是( )A .x =4B .x =2C .x =﹣4D .x =﹣2 8.下列命题是真命题的是( )A .内错角互补,两直线平行B .三角形的外角大于任意一个不相邻的内角C .三角形的两边之和小于第三边D .三角形的三条高一定在三角形内部 9.下面四个命题:∠若=1x -,则31x =-;∠面积相等的两个三角形全等;∠相等的角是对顶角;∠若24x =,则2x =.是真命题的有( )A .4个B .3个C .2个D .1个 10.下列语句:∠过一点有且只有一条直线与已知直线平行;∠数轴上的点和实数是一一对应的;∠同位角相等;∠同一平面内,过一点有且只有一条直线与已知直线垂直;其中( )是真命题.A ∠∠B ∠∠C ∠∠D ∠∠11.下列命题正确的是( )A .平行四边形的对角线互相垂直平分B .矩形的对角线互相垂直平分C .菱形的对角线互相平分且相等D .平行四边形是中心对称图形12.下列命题,假命题是( )A .如果两个三角形全等,那么这两个三角形的面积相等B .等腰三角形两腰上的高相等C .三角形的一个外角大于与它不相邻的任何一个内角D .已知ABC ,求作A B C ''',使A B C ABC ''≌的依据是三角形全等的性质定理 13.下面命题中是真命题的有( )∠相等的角是对顶角∠直角三角形两锐角互余∠三角形内角和等于180°∠两直线平行内错角相等A .1个B .2个C .3个D .4个14.下列命题是真命题的是( )A .两直线平行,同位角相等B .相似三角形的面积比等于相似比C .菱形的对角线相等D .相等的两个角是对顶角15.下列命题正确的是( )A .相等的角是对顶角;B .a 、b 、c 是直线,若a //b ,b //c ,则a //c ;C .同位角相等;D .a 、b 、c 是直线,若a ∠b ,b ∠c ,则a ∠c .16.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等17.已知下列命题:∠对角线互相垂直的四边形是菱形;∠若x a =,则()20x a b x ab -++=;∠两个位似图形一定是相似图形;∠若22x x =,则2x =;其中原命题是真命题逆命题是假命题的有( )A .1个B .2个C .3个D .4个18.下列说法:∠同位角相等;∠对顶角相等;∠等角的补角相等;∠两直线平行,同旁内角相等,正确的个数有( )A .1 个B .2 个C .3 个D .4 个19.可以用来证明命题“若20.01a >,则0.1a >”是假命题的反例( )A .可以是a =-0.2,不可以是 a =2B .可以是a =2,不可以是 a =-0.2C .可以是a =-0.2,也可以是 a =2D .既不可以是a =-0.2,也不可以是 a=220.下列命题中,属于真命题的是( )A .三点确定一个圆B .圆内接四边形对角互余C .若22a b =,则a b =D a b =二、填空题21.命题“对顶角相等”的题设是________,结论是________,它是________命题.(填“真”或“假”)22.命题“互余的角不相等”的逆命题是_____.23.命题“若a b =,那么a b =”是一个____________命题(填真、假),写出它的逆命题:____________.24.举反例说明命题“对于任意实数x ,221x x +-的值总是正数”是假命题,你举的反例是x =__________(写出一个x 的值即可).25.把下列命题改写成“如果……,那么……”的形式:(1)内错角相等,两直线平行._________.(2)同角的补角相等._____.26.下列说法中,真命题有______.(填入序号即可)∠和为180°且有一条公共边的两个角是邻补角; ∠过一点有且只有一条直线与已知直线垂直;∠同位角相等;∠经过直线外一点,有且只有一条直线与这条直线平行; ∠两点之间,直线最短。
沪科版八年级数学上册 13.2 命题与证明专题一 三角形中的计算与证明题1.已知△ABC 的高为AD ,∠BAD =70º,∠CAD =20º,求∠BAC 的度数。
2.如图,已知AB ∥DE ,试求证:∠A +∠ACD +∠D =3600(你有几种证法?)3.在研究三角形内角和等于180°的证明方法时,小明和小虎分别给出了下列证法. 小明:在△ABC 中,延长BC 到D ,∴∠ACD =∠A +∠B (三角形一个外角等于和它不相邻的两个内角的和).又∵∠ACD +∠ACB =180°(平角定义), ∴∠A +∠B +∠ACB =180°(等式的性质).小虎:在△ABC 中,作CD ⊥AB (如图9), ∵CD ⊥AB (已知),∴∠ADC =∠BDC =90°(直角定义).∴∠A +∠ACD =90°,∠B +∠BCD =90°(直角三角形两锐角互余). ∴∠A +∠ACD +∠B +∠BCD =180°(等式的性质). ∴∠A +∠B +∠ACB =180°.请你判断上述两名同学的证法是否正确,如果不正确,写出一种你认为较简单的证明三角形内角和定理的方法,与同伴交流.专题二 证明中的探究题4.(1)如图①∠1+∠2与∠B +∠C 有什么关系?为什么?(2)把图①△ABC 沿DE 折叠,得到图②,填空:∠1+∠2_______∠B +∠C (填“>”A B CD“<”“=”),当∠A =40°时,∠B +∠C +∠1+∠2=______.(3)如图③,是由图①的△ABC 沿DE 折叠得到的,如果∠A =30°,则x +y =360°-(∠B +∠C +∠1+∠2)=360°- = ,猜想∠BDA+∠CEA 与∠A 的关系为 .5.如图,已知AB CD ∥,探究123∠,∠,∠之间的关系,并写出证明过程.【知识要点】1.判断一件事情的语句叫命题,命题都由题设和结论两部分构成,分为真命题和假命题,都可以改写成“如果……那么……”的形式,任何一个命题都有逆命题.2.三角形内角和等于180°,可利用平行线的有关知识证明.三角形三个外角的和等于360°,每个外角等于和其不相邻的两个内角的和,因此三角形的外角大于和它不相邻的任一个内角.【温馨提示】1.命题有逆命题,但定理不一定有逆定理.2.要说明一个命题不成立,只要举出一个反例即可,反例满足命题的题设,但不满足结论.3.“三角形的一个外角大于与它不相邻的任何一个内角”不能说成“三角形的一个外角大于一个内角”.4.在证明一个命题的正确性时,每步都要有根据,根据可以是公理、定义、已知条件或已经证明的定理等.【方法技巧】1.要会判断一个语句是否为命题,需注意两点:(1)命题必须是一个完整的语句,通常是陈述句(包括肯定句和否定句);(2)必须对某件事情做出肯定或否定的判断.两者缺一不可.2.在证明或计算三角形的角度大小关系时,要注意“三角形三个内角的和等于180°”这一隐含条件,合理地构造方程或方程组,以便正确求解.y°x°AD CB E12AD CB E12A DCBE图① 图② 图③3.要证明角的不等关系时,经常用三角形的外角性质来证明,在证明时,如果直接证明有难度,可连接两点,或延长某边,构造三角形,使求证的大角(或它的一部分)处于某个三角形的外角的位置上,小角处在内角的位置上,再结合不等式的性质证明.参考答案1.(1)当高AD 在△ABC 的内部时,因为∠BAD =70º,∠CAD =20º,所以∠BAC =∠BAD +∠CAD =70º+20º=90º;(2)当高AD 在△ABC 的外部时,因为∠BAD =70º,∠CAD =20º,所以∠BAC =∠BAD -∠CAD =70º-20º=50º.综合(1)、(2)可知∠BAC 的度数为90º或50º.2.证法一:如图1,过点C 作CF ∥AB 。
八年级数学命题与证明专项练习13.2命题与证明(重点练)1.写出一个能说明命题“若,则”是假命题的反例____.||||a b >a b >2.有观察下列等式:①,②,③……若字母223124-=⨯225328-=⨯2275212-=⨯n 表示为正整数,请把你观察到的规律用含n 的式子表示出来:_________.3.一个黑暗的房间里有3盏关着的电灯,每次都按下其中的2个开关,最后_____将3盏电灯都开亮.(填“能”或“不能”)4.要证明命题“若a 2>b 2,则a>b”是假命题可以举的反例是________.5.本学期,我们做过“抢30”的游戏,如果将游戏规则中“不可以连说三个数,谁先抢到30谁就获胜”,改为“每次可以连说三个数,谁先抢到33谁就获胜”,那么采取适当策略,其结果_________者胜.6.如图,现有以下3个论断:;;//BD EC D C ∠=∠.A F ∠=∠(1)请以其中两个为条件,另一个为结论组成命题,你能组成哪几个命题?(2)你组成的命题是真命题还是假命题?请你选择一个真命题加以证明.7.如图,四边形四边的中点分别为、、、.度量四边形的边和ABCD E F G H EFGH 角,你会发现什么结论?你得出的结论正确吗?再画一个与四边形不一样的四边ABCD形,这个结论成立吗?并用一句话来概括这个结论.1、写出命题“如果a =b ,那么3a =3b”的逆命题______.2、用一组a ,b 的值说明命题“若>1,则a >b ”是错误的,这组值可以是a =_____,b a b=_____.3、将命题“过一点有且只有一条直线与已知直线垂直”改写“如果……那么……”的形式__________________.4、“互补的两个角一定是一个锐角一个钝角”是_________命题,可举出反例:___________________________5、如图,AB ∥CD ,∠A =45°,且 OC =OE ,求∠C 的度数.6、写出下列命题的逆命题,并判断这对命题的真假.(1)三边对应相等的两个三角形全等;(2)若a =b ,则a 2=b 2;(3)若∠α+∠β=180°,则∠α与∠β至少有一个是钝角.7、下列句子中哪些是命题?(1)动物需要水;(2)玫瑰花是动物;(3)美丽的天空;(4)相等的角是对顶角;(5)负数都小于0;(6)你的作业做完了吗?1、命题“如果a>b,那么ac>bc”的逆命题是_____.2、“等角的余角相等”改写成“如果________,那么_______.”3、命题“两直线平行,内错角相等”的题设是________.4、指出命题“同角的补角相等”的条件和结论.5.三个同学在玩“我是大侦探”游戏,小张、小王、小李三人中有一个是卧底.小张说:“我就是卧底.”小王说:“我不是卧底.”小李说:“小张不是卧底.”他们三人中只有一人说的是真话,那么谁是真正的卧底?6.写出下列命题的逆命题,并判断这对命题的真假.(1)三边对应相等的两个三角形全等;(2)若a=b,则a2=b2;(3)若∠α+∠β=180°,则∠α与∠β至少有一个是钝角.7.写出下列命题的逆命题,并判断这对命题的真假.(1)三边对应相等的两个三角形全等;(2)若a=b,则a2=b2;(3)若∠α+∠β=180°,则∠α与∠β至少有一个是钝角.8.判断下列命题是真命题还是假命题,并说明理由.(1)一个钝角与一个锐角的差是锐角;(2)若∠AOB=2∠AOC,则OC是∠AOB的平分线;(3)若a,b是奇数,则ab是奇数.9.将下列命题改写成“如果……那么……”的形式,并指出它们的题设和结论,判断其真假.(1)有理数一定是自然数;(2)负数之和仍为负数;(3)平行于同一条直线的两条直线平行.1、已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a﹣7|+(b﹣1)2=0,c 为奇数,则c=_____.2、如图,已知点O 为内任意一点,证明:ABC .AB AC BC OA OB OC ++>++3、如图,的周长为12,,的平分线相ABC ABC ∠ACB ∠交于点O ,于点D ,且,则OD BC ^2OD =ABC S =________.4、如图所示,BD 是△ABC 的中线,AD=2, AB+BC = 5,求△ABC 的周长.5、如图,在中,,AD 为BC 边上的中线.ABC AB AC >(1)____________(填“>”“<”或“=”);ABD S ACD S (2)若的周长比的周长多4,且,求AB ,AC 的长;ABD △ACD △14AB AC +=(3)的周长为27,,BC 边上的中线,的周长为19,求ABC 9AB =6AD =ACD △AC 的长.1、要将三根木棒首尾顺次连接围成一个三角形,其中两根木棒长分别为5cm 和7cm ,要选择第3根木棒,且第3根木棒的长取偶数时,则有____种情况可以选取.2、如图,在中,已知点、、分别为、、ABC ∆D E F BC AD 的中点,且,则________CE 24cm ABC S ∆=BEF S ∆=2cm3、在三角形ABC 中,,,,D ,90C ∠=︒8AC =6BC =E ,F 分别是AB ,BC ,CA 的中点,G 是重心,则GD =______.4、三角形三条边上的中线交于一点,这个点叫三角形的重心.如图是G 的重心.求证:.ABC 3AD GD =5、如图,中,垂足为平分ABC ,AD BC ⊥D AE ,,求的度数.7015BAC C DAE ∠∠=︒∠=︒,,B Ð6、(1)如图,,分别交、于点F 、G ,连接,,//AB CD EF AB CD EC 50EFB ∠=︒,求的度数.GC GE =E ∠第13章 三角形中的边角关系、命题与证明 单元检测(2)一、填空题(每题7分,共21分)1.命题“如果两个实数相等,那么它们的平方相等”的逆命题是_____,成立吗_____.2.如图,在△ABC 中,∠A =m°,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1,∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2…∠A 2 017BC 和∠A 2 017CD 的平分线交于点A 2 018,则∠A 2 018=_____度.3.一个三角形的三边长分别是3,1-2m ,8,且m 为整数,则这个三角形的周长等于__.二、解答题(共79分)4.已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C,B重合),点E为射线CA上一点,∠ADE=∠AED,设∠BAD=α,∠CDE=β.(1)如图(1),①若∠BAC=42°,∠DAE=30°,则α=________,β=________.②若∠BAC=54°,∠DAE=36°,则α=________,β=________.③写出α与β的数量关系,并说明理由;(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的数量关系.5.如图,在△ABC中,AB=AC,DE⊥AB,DF⊥AC,BG⊥AC,垂足分别为点E,F,G.试说明:DE+DF=BG.6.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.7.如图,在△ABC 中,∠ADB =100°,∠C =80°,∠BAD =∠12DAC ,BE 平分∠ABC ,求∠BED 的度数.8.如图,已知在△ABC 中,∠B 与∠C 的平分线交于点P.(1)当∠A=70°时,求∠BPC 的度数;(2)当∠A=112°时,求∠BPC 的度数;(3)当∠A=时,求∠BPC 的度数.9.已知:如图,∠C=∠1,∠2和∠D 互余,BE ⊥FD 于点G .试说明:AB ∥CD .10.已知△ABC 中,∠ACB=90°,CD 为AB 边上的高,BE 平分∠ABC ,分别交CD 、AC 于点F 、E ,求证:∠CFE=∠CEF .。
A B C D 13.2命题与证明(4)1、在△ABC 中, ∠A =40°,∠B =∠C ,则∠C = 。
2、一个三角形三个内角度数的比是2∶3∶4,那么这个三角形是 三角形。
3、在△ABC 中, ∠A -∠B =36°,∠C =2∠B ,则∠A = ,∠B = ,∠C = 。
4、如图,AD 平分∠BAC ,其中∠B =50°,∠ADC =80°,求∠BAC 、∠C 的度数。
5、如图,已知∠B =40°,∠C =59°,∠DEC =47°,求∠F 的度数。
6. 在△ABC 中,已知∠A =21∠B =31∠C ,请你判断三角形的形状。
7. 在△A BC 中,已知∠A =2∠B =3∠C ,请你判断三角形的形状。
8如图,已知DF ⊥AB 于点F ,且∠A =45°,∠D =30°,求∠ACB 的度数。
B D CA B D C2 B D E CAB D E C9. 一个零件的形状如图,按规定∠A =90°,∠B 和∠C 应分别是 32°和21°,检验工人量得∠BDC =149°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
10. 如图,在△ABC 中,∠1=∠2,∠3=∠4,∠BAC =54°,求∠DAC 的度数。
11、如图,已知△ABC 中,已知∠B =65°,∠C =45°,AD 是BC 边上的高,AE 是∠BAC 的平分线,求∠DAE 的度数。
B D C2 4 31A。
章节测试题1.【题文】已知以下基本事实:①对顶角相等;②一条直线截两条平行线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④经过直线外一点,有且只有一条直线平行于已知直线.(1)在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有____(填入序号即可);(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”,已知:如图,_____________________________.求证:________.证明:____________________.【答案】详见解析.【分析】(1)利用图示:根据平行线的性质,证明“两直线平行,内错角相等”的过程解答;(2)根据“两直线a∥b,判定同位角∠1=∠3”,然后由对顶角∠3=∠2及等量代换证得∠1=∠2.【解答】解:(1)①②;(2)已知:a∥b,直线a、b被直线c所截.求证:∠1=∠2.证明:∵a∥b,∴∠1=∠3.∵∠3 =∠2,∴∠1 =∠2.2.【题文】如图,在△ABC中,∠B≠∠C.求证:AB≠AC.【答案】见解析【分析】首先假设AB=AC,从而得出与已知条件矛盾,从而得出答案.【解答】解:假设AB=AC,则∠B=∠C,∴与已知矛盾,∴AB≠AC.3.【题文】如图所示,D、E分别为△ABC的边AB、AC上点,•BE与CD相交于点O.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下作结论,写一个正确的命题:命题的条件是_______和_______,命题的结论是_______和________(均填序号)(2)证明你写的命题.【答案】(1)条件①、③结论②、④,(2)证明见解析【分析】(1)选①③作为题设时,可证明②④正确;(2)用ASA证明△ABE≌△ACD可得BE=CD,在△OBC,证∠OBC=∠OCB可得OB=OC.【解答】解:(1)∵∠A=∠A,AB=AC,∠ABE=∠ACD,∴△ABE≌△ACD,∴BE=CD.故④正确.∵AB=AC,∴∠ABC=∠ACB.∵∠ABE=∠ACD,∴∠OBC=∠OCB,∴OB=OC,故②正确.4.【题文】下列语句哪些是命题?对于命题,请先将它改写为“如果……那么……”的形式,再找出命题的条件和结论,并指出是真命题还是假命题,并说明为什么是假命题.(1)小亮今年上八年级,明年一定上九年级;(2)作一条线段的垂直平分线;(3)互为倒数的两个数的积为1;(4)内错角相等;(5)不等式的两边同时乘以一个数,不等号的方向改变.【答案】(2)不是命题,(1)(3)(4)(5)都是命题,(3)是真命题.【分析】命题是具有判断语句的陈述句,任何一个命题都可以改写成,”如果…那么…”的形式, 如果后面为题设,那么后面为结论,正确的命题称为真命题,错误的命题称为假命题.【解答】 (2)不是命题,(1)(3)(4)(5)都是命题,(1)如果小亮今年上八年级,那么明年一定上九年级,条件是小亮今年上八年级,结论是明年一定上九年级,有可能留级,所以是假命题,(3)如果两个数互为倒数,那么它们的积为1,条件是,两个数互为倒数,结论是它们的积为1,是真命题,(4)如果两个角是内错角,那么它们相等,条件是两个角是内错角,结论是它们相等,因为两直线不一定平行,所以是假命题,(5)如果不等式的两边同时乘以一个数,那么不等号的方向改变,条件是不等式的两边同时乘以一个数,结论是不等号的方向改变,只有乘以的是负数才改变,乘以正数不改变,所以是假命题.方法总结:本题考查了命题,真命题的概念,解决本题的关键是要熟练掌握命题和真命题的概念.5.【题文】写出下列命题的条件与结论.(1)两条直线平行,同位角相等;(2)同角或等角的补角相等;(3)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.【答案】答案见解析.【分析】(1),(2)把命题改写为”如果…那么…”的形式,则如果后面的为题设,那么后面的为结论,(3)如果后面为题设,那么后面为结论.【解答】(1)条件:两条直线平行,结论:同位角相等(2)条件:同角或等角的补角,结论:相等(3)条件:两条直线被第三条直线所截,内错角相等,结论:两条直线平行.6.【答题】下列说法正确的是( )A. 两个周长相等的长方形全等B. 两个周长相等的三角形全等C. 两个面积相等的长方形全等D. 两个周长相等的圆全等【答案】D【分析】能够完全重合的两个图形叫做全等形,D、两个周长相等的圆的半径必然相等,半径相等则两圆重合,故全等.【解答】A.长方形周长相等,但面积、长、宽不一定相等,错;B.三角形周长相等,但不一定对应边完全相等,错;C.长方形面积相等,但长、宽不一定相等,错;D.圆的周长相等,就可知道半径相等,两圆可完全重合,正确。
专题 命题、逆命题、证明1. 下列说法中,正确的是( )A.每一个命题都有逆命题B.假命题的逆命题一定是假命题C.每个定理都有逆定理D.假命题没有逆命题2. 写出下列命题的逆命题,并判断真假.(1)如果x y =,那么22x y =;(2)如果一个三角形有一个角是钝角,那么它的另外两个角是锐角;(3)三角形的一条中线平分三角形的面积;(4)如果一个整数的个位数字是5,那么这个整数能被5整除.3. 写出下列定理的逆命题,并判断真假,是假命题的举例说明.(1)互为邻补角的两个角的和为180°;(2)对顶角相等;(3)平行于同一条直线的两条直线平行.4. 证明:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.参考答案1.A 解析:假命题的逆命题不一定是假命题,定理不一定有逆定理,假命题也有逆命题.B 、C 、D 都错.2. 解:(1)逆命题是:如果22x y =,那么x y =.是假命题.(2)逆命题是:如果一个三角形有两个角是锐角,那么它的另外一个角是钝角.是假命题.(3)逆命题是:将三角形的面积分成相等的两部分的线是三角形的一条中线.是假命题.(4)逆命题是:如果一个整数能被5整除,那么这个整数的个位数字是5.是假命题.3.解:(1)逆命题是:如果两个角的和为180°,那么它们互为邻补角.是假命题,例如:∠1+∠2=180°,但∠1和∠2不一定是邻补角.(2)逆命题是:如果两个角相等,那么它们是对顶角.是假命题,例如:如图,∠AOC=∠BOC,但∠AOC和∠BOC不是对顶角.(3)逆命题是:如果两条直线平行,那么这两条直线平行于同一条直线.是假命题,例如:如图,a∥b,但是a⊥c,b⊥c.4.解:如图,已知AB∥CD,直线EF交AB,CD分别于点G,H,∠BGH与∠DHG 是一组同旁内角,PG平分∠BGH,PH平分∠DHG,求证:PG⊥PH.证明:∵AB∥CD,∴∠BGH+∠DHG=180°.∵PG平分∠BGH,PH平分∠DHG,∴∠PGH=1 2∠BGH,∠PHG=12∠DHG,∴∠PGH+∠PHG=12(∠BGH+∠DHG)=90°,∴∠GPH=90°,即PG⊥PH.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x +12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x +15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m +1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y =(5-m 2)x 和关于x 的一元二次方程(m +1)x 2+mx +1=0中m 的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m 的值是 .12.(甘孜州中考)若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是 . .◆类型三 一元二次方程与二次根式的综合13.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m >52B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 . 考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x21+x22=52,∴(x1+x2)2-2x1·x2=25,∴(1-2k)2-2(k2+3)=25,∴k2-2k-15=0,∴k1=5,k2=-3,∵k<-11 4,∴k=-3, ∴把k=-3代入原方程得到x2-7x+12=0,解得x1=3,x2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x2-2x-m=0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m<0,∴m<-1,∴m+1<1-1,即m+1<0,m-1<-1-1,即m-1<-2,∴一次函数y=(m+1)x+m-1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k≠013.B 14.k≥1。
第2课时命题的证明知识要点基础练知识点1基本事实与定理1.“两点之间,线段最短”是(B)A.定义B.基本事实C.定理D.只是命题2.下列叙述错误的是(B)A.所有的命题都有条件和结论B.所有的命题都是定理C.所有的定理都是命题D.所有的公理都是真命题知识点2推理与证明3.下列推理中,错误的是(D)A.∵AB=CD,CD=EF,∴AB=EFB.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥cD.∵AB⊥EF,EF⊥CD,∴AB⊥CD4.如图所示,OA⊥OC,OB⊥OD,证明∠AOB=∠COD的理论依据是(C)A.垂直的定义B.同角的补角相等C.同角的余角相等D.角平分线的定义5.如图,已知∠EDC=∠A,∠1=∠3,求证:BD平分∠ABC.证明:∵∠EDC=∠A(已知),∴DC∥AB(同位角相等,两直线平行).∴∠2=∠3(两直线平行,内错角相等).又∠1=∠3(已知),∴∠1=∠2(等量代换),∴BD平分∠ABC(角平分线的定义).综合能力提升练6.在证明过程中,对已学过的基本事实、定义、定理以及题设,可用来作为推理的依据的是(D)A.基本事实、题设与定义B.定义、定理与基本事实C.基本事实、定理与假设推理D.基本事实、定理、定义与题设7.如图,已知∠1=∠2,有以下结论:①∠3=∠4;②AB∥CD;③AD∥BC,则(B)A.三个都正确B.只有一个正确C.三个都不正确D.有两个正确8.(1)已知:如图,AB∥CD,∠A=∠C,求证:BC∥AD.证明:∵AB∥CD(已知),∴∠ABE=∠ C (两直线平行,同位角相等).∵∠A=∠C(已知),∴∠ABE=∠A (等量代换).∴BC∥AD(内错角相等,两直线平行).(2)请写出问题(1)的逆命题并判断它是真命题还是假命题,真命题请写出证明过程,假命题举出反例.(2)解:(1)的逆命题为:已知:如图,BC∥AD,∠A=∠C,求证:AB∥CD.(它为真命题)证明:∵BC∥AD(已知),∴∠ABE=∠A(两直线平行,内错角相等).∵∠A=∠C(已知),∴∠ABE=∠C(等量代换).∴AB∥CD(同位角相等,两直线平行).拓展探究突破练9.已知:如图,∠BAE+∠AED=180°,∠1=∠2,求证:∠M=∠N.证明:∵∠BAE+∠AED=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠BAE=∠AEC(两直线平行,内错角相等),又∵∠1=∠2(已知),∴∠BAE-∠1=∠AEC-∠2(等式的性质),即∠MAE=∠NEA,∴AM∥NE(内错角相等,两直线平行),∴∠M=∠N(两直线平行,内错角相等).。
2017年秋八年级数学上册13.2 命题与证明(2)练习题(无答案)(新版)沪科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年秋八年级数学上册13.2 命题与证明(2)练习题(无答案)(新版)沪科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年秋八年级数学上册13.2 命题与证明(2)练习题(无答案)(新版)沪科版的全部内容。
13.2命题与证明(2)1. 如图DH // EG // BC,DC // EF,与1A. 2B. 3C. 4 D。
5AD HEB F CG12. “如果两个角的两边互为反向延长线,那么这两个角是对顶角”是()A. 假命题B。
真命题 C. 定义D。
3。
“同角或等角的补角相等”是( )。
A。
定义 B. 公理 C. 定理 D. 假命题4. 两个角的两边分别平行,那么这两个角()A。
相等B。
互补 C. 互余 D. 相等或互补5。
用推理的方法判断为正确的命题叫做( )A. 定义B. 定理C.公理D。
真命题6. 画图,并写出已知,求证。
(不写证明)(1)同角的余角相等;(2)内错角相等两直线平行(3)平行于同一直线的两直线平行7. 如图,已知D C ∠=∠∠=∠,21,求证:A F ∠=∠。
FEDAB C128. 如图,AB // CD ,MP // AB , MN 平分AMD ∠,︒=∠35A ,︒=∠40D ,求NMP ∠的度数。
9。
已知,如图DE // BF ,BE // DF ,(2)CDF EBA ∠=∠。
命题与证明八年级上册一、选择题。
1. 下列语句不是命题的是()- A. 两点之间,线段最短。
- B. 不平行的两条直线有一个交点。
- C. x与y的和等于0吗?- D. 对顶角不相等。
- 解析:命题是可以判断真假的陈述句。
A选项是一个真命题,它陈述了一个几何事实;B选项是一个命题,可判断真假;D选项是一个假命题,但也是命题。
而C选项是一个疑问句,不是命题。
所以答案是C。
2. 命题“垂直于同一条直线的两条直线互相平行”的题设是()- A. 垂直。
- B. 两条直线。
- C. 同一条直线。
- D. 两条直线垂直于同一条直线。
- 解析:命题由题设和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
对于“垂直于同一条直线的两条直线互相平行”,题设是“两条直线垂直于同一条直线”,结论是“这两条直线互相平行”。
所以答案是D。
3. 下列命题中,是真命题的是()- A. 同位角相等。
- B. 相等的角是对顶角。
- C. 邻补角一定互补。
- D. 有且只有一条直线与已知直线垂直。
- 解析:A选项,只有两直线平行时同位角才相等,所以A是假命题;B选项,相等的角不一定是对顶角,B是假命题;C选项,邻补角的和是180°,一定互补,C是真命题;D选项,在空间中,过一点有无数条直线与已知直线垂直,在平面内有且只有一条直线与已知直线垂直,这里没有明确是平面还是空间,D是假命题。
所以答案是C。
4. 对于命题“如果∠1 + ∠2 = 90°,那么∠1≠∠2”,能说明它是假命题的反例是()- A. ∠1 = 50°,∠2 = 40°.- B. ∠1 = 50°,∠2 = 50°.- C. ∠1 =∠2 = 45°.- D. ∠1 = 40°,∠2 = 40°.- 解析:要说明一个命题是假命题,只需举一个反例,即满足命题的题设但不满足结论的例子。
一、判断题1、判断下列语句是不是命题(1)延长线段AB ()(2)两条直线相交,只有一交点()(3)画线段AB的中点()(4)若||=2,则=2 ()(5)角平分线是一条射线()二、选择题[||]2下列语句不是命题的是()A、两点之间,线段最短B、不平行的两条直线有一个交点、与y的和等于0吗?D、对顶角不相等。
3下列命题中真命题是()A、两个锐角之和为钝角B、两个锐角之和为锐角、钝角大于它的补角D、锐角小于它的余角4命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。
其中假命题有()A、1个B、2个、3个D、4个三、解答题5、分别指出下列各命题的题设和结论。
(1)如果a∥b,b∥c,那么a∥c;(2)同旁内角互补,两直线平行。
6、分别把下列命题写成“如果……,那么……”的形式。
(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等。
7、如图已知直线a 、b 被直线c 所截在括号内为下面各小题的推理填上适当的根据(1)∵a∥b∴∠1=∠3(_________________); (2)∵∠1=∠3∴a∥b(_________________); (3)∵a∥b∴∠1=∠2(__________________);(4) ∵a∥b∴∠1+∠4=180º (_____________________) (5)∵∠1=∠2∴a∥b(__________________); (6)∵∠1+∠4=180º∴a∥b(_______________)8、已知:如图AB⊥B,B⊥D 且∠1=∠2,求证:BE∥F 证明:∵AB⊥B,B⊥D(已知)∴ = =90°( ) ∵∠1=∠2(已知)∴ = (等式性质) ∴BE∥F( )9、已知:如图,A⊥B,垂足为,∠BD 是∠B 的余角。
ab 123c4C A BDE F1 2 C证明:∵A⊥B(已知) ∴∠AB=90°( ) ∴∠BD是∠AD 的余角∵∠BD 是∠B 的余角(已知)∴∠AD=∠B( )10、已知,如图,BE 、AFE 是直线,AB∥D,∠1=∠2,∠3=∠4。
自我小测1.如图13–1–7所示,下面证明正确的是( )A.因为AB∥CD,所以∠1=∠3 B.因为∠2=∠4,所以AB∥CDC.因为AE∥CF,所以∠2=∠4 D.因为∠1=∠4,所以AE∥CD2.(山东日照中考)如图13–1–8所示,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为( ) A.70°B.80°C.90°D.100°图13–1–7 图13–1–8 图13–1–93.如图13–1–9所示.①∵∠1=∠2(已知),∴∥ ( ).②∵∠3=∠4(已知),∴∥ ( ).③∵ + =180°,∴AB∥CD.4.请你写出下列命题的逆命题.并判断真假性,若是假命题,请举出一个反例.(1)如果a能被4整除,那么a一定是偶数;(2)若|a|=|b|,则a=b.5.如图13–1–10所示,在△ABC中,D,E,F分别为AB,AC,BC上的点,且DE∥BC,EF∥AB.求证:∠ADE=∠EFC.图13–1–10参考答案1.B 解析:本题必须找到平行线与角之间的关系,∠2与∠4是由直线AC截直线AB和CD得到的同位角,根据同位角相等,两直线平行可知B正确.2.B 解析:设AB与EC交于点F,∵AB∥CD,∴∠EFB=∠C.∵∠C=125°,∴∠EFB=125°.又∵∠EFB=∠A+∠E,∠A=45°,∴∠E=125°-45°=80°.3.①AD BC 内错角相等,两直线平行②AB CD 内错角相等,两直线平行③∠ABC∠BCD(或∠BAD∠ADC)4.解:(1)如果a是偶数,那么a能被4整除.假命题.反例:如a=2是偶数,但2不能被4整除.(2)若a=b,则a=b.真命题.5.证明:∵DE∥BC(已知),∴∠ADE=∠B(两直线平行.同位角相等).又∵EF∥AB(已知),∴∠EFC=∠B(两直线平行,同位角相等).∴∠ADE=∠EFC(等量代换).易错专题:求二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的取值范围求最值 1.函数y =-(x +1)2+5的最大值为________.2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法12】( )A .3B .2C .1D .-13.函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值. ◆类型二 限定自变量的取值范围求最值4.在二次函数y =x 2-2x -3中,当0≤x ≤3时,y 的最大值和最小值分别是【方法12】( )A .0,-4B .0,-3C .-3,-4D .0,05.已知0≤x ≤32,则函数y =x 2+x +1( )A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值6.已知二次函数y =-2x 2-4x +1,当-5≤x ≤0时,它的最大值与最小值分别是( )A .1,-29B .3,-29C .3,1D .1,-37.已知0≤x ≤12,那么函数y =-2x 2+8x -6的最大值是________.◆类型三 限定自变量的取值范围求函数值的范围8.从y =2x 2-3的图像上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤19.(贵阳中考)已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <310.二次函数y =x 2-x +m(m 为常数)的图像如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m11.二次函数y=2x2-6x+1,当0≤x≤5时,y的取值范围是______________.◆类型四已知函数的最值,求自变量的取值范围或待定系数的值12.当二次函数y=x2+4x+9取最小值时,x的值为( )A.-2 B.1 C.2 D.913.已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为( )A.3 B.-1 C.4 D.4或-114.已知y=-x2+(a-3)x+1是关于x的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是( )A.a=9 B.a=5 C.a≤9 D.a≤515.已知a≥4,当1≤x≤3时,函数y=2x2-3ax+4的最小值是-23,则a=________.16.若二次函数y=x2+ax+5的图像关于直线x=-2对称,已知当m≤x≤0时,y有最大值5,最小值1,则m的取值范围是_____________.参考答案与解析 1.5 2.C3.解:∵y =x (2-3x )=-3⎝ ⎛⎭⎪⎫x 2-23x =-3⎝ ⎛⎭⎪⎫x -132+13,∴该抛物线的顶点坐标是⎝ ⎛⎭⎪⎫13,13.∵-3<0,∴该抛物线的开口方向向下,∴当x =13时,该函数有最大值,最大值是13.4.A 5.C6.B 解析:首先看自变量的取值范围-5≤x ≤0是否包含了顶点的横坐标.由于y =-2x 2-4x +1=-2(x +1)2+3,其图像的顶点坐标为(-1,3),所以在-5≤x ≤0范围内,当x =-1时,y 取最大值,最大值为3;当x =-5时,y 取最小值,最小值为y =-2×(-5)2-4×(-5)+1=-29.故选B.7.-2.5 解析:∵y =-2x 2+8x -6=-2(x -2)2+2,∴该抛物线的对称轴是直线x =2,当x <2,y随x 的增大而增大.又∵0≤x ≤12,∴当x =12时,y 取最大值,y 最大=-2×⎝ ⎛⎭⎪⎫12-22+2=-2.5.8.C9.B 解析:当x =2时,y =-4+4+3=3.∵y =-x 2+2x +3=-(x -1)2+4,∴当x >1时,y 随x 的增大而减小,∴当x ≥2时,y 的取值范围是y ≤3.故选B.10.C 解析:当x =a 时,y <0,则a 的范围是x 1<a <x 2,又对称轴是直线x =12,所以a -1<0.当x <12时,y 随x 的增大而减小,当x =0时函数值是m .因此当x =a -1<0时,函数值y 一定大于m . 11.-72≤y ≤21 解析:二次函数y =2x 2-6x +1的图像的对称轴为直线x =32.在0≤x ≤5范围内,当x=32时,y 取最小值,y 最小=-72;当x =5时,y 取最大值,y 最大=21.所以当0≤x ≤5时,y 的取值范围是-72≤y ≤21.12.A13.C 解析:∵二次函数y =ax 2+4x +a -1有最小值2,∴a >0,y 最小值=4ac -b 24a =4a (a -1)-424a=2,整理得a 2-3a -4=0,解得a =-1或4.∵a >0,∴a =4.故选C.14.D 解析:第一种情况:当二次函数的对称轴不在1≤x ≤5内时,∵在1≤x ≤5时,y 在x =1时取得最大值,∴对称轴一定在1≤x ≤5的左边,∴对称轴直线x =a -32<1,即a <5;第二种情况:当对称轴在1≤x ≤5内时,∵-1<0,∴对称轴一定是在顶点处取得最大值,即对称轴为直线x =1,∴a -32=1,即a =5.综上所述,a≤5.故选D.15.5 解析:抛物线的对称轴为直线x=3a4.∵a≥4,∴x=3a4≥3.∵抛物线开口向上,在对称轴的左侧,y随x的增大而减小,∴当1≤x≤3时,函数取最小值-23时,x=3.把x=3代入y=2x2-3ax+4中,得18-9a+4=-23,解得a=5.16.-4≤m≤-2 解析:∵二次函数图像关于直线x=-2对称,∴-a2×1=-2,∴a=4,∴y=x2+4x +5=(x+2)2+1.当y=1时,x=-2;当y=5时,x=0或-4.∵当m≤x≤0时,y有最大值5,最小值1,∴-4≤m≤-2.。
2019-2020学年度沪科版初中数学八年级上册第13章三角形中的边角关系、命题与证明13.2 命题与证明拔高训练八十九第1题【单选题】小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?( )A、只使用苹果B、只使用芭乐C、使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D、使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【答案】:【解析】:第2题【单选题】羊羊运动会上,懒羊羊参加了越野比赛.选手的号码从1号开始连续编排,领号码时,懒羊羊有些迟到,工作人员警告它:“除你之外,其他选手的号码之和是180.你能推断出你的号码是多少吗?否则不让比赛!”懒羊羊的号码为( )A、30B、20C、15D、10【答案】:【解析】:第3题【单选题】下列语句中,属于命题的是( )A、直线AB和CD垂直吗B、过线段AB的中点C画AB的垂线C、同旁内角不互补,两直线不平行D、连结A,B两点【答案】:【解析】:第4题【单选题】下列命题中,为假命题的是( )A、对顶角相等B、如果a∥b,b∥c,那么a∥cC、三角形的一个外角大于任何一个内角D、在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交【答案】:【解析】:第5题【单选题】七年级(1)班的四位同学参加数学知识竞赛活动,分别获得第一、二、三、四名,大家猜测谁得第几名时,明明说:“甲得第一,乙得第二”;文文说:“甲得第二,丁得第四”;凡凡说:“丙得第二,丁得第三”.名次公布后,他们每人只猜对一半,那么甲、乙、丙、丁的名次顺序为( )A、甲、乙、丙、丁B、甲、丙、乙、丁C、甲、丁、乙、丙D、甲、丙、丁、乙【答案】:【解析】:第6题【单选题】下列说法正确的是( )A、真命题的逆命题都是真命题B、在同圆或等圆中,同弦或等弦所对的圆周角相等C、等腰三角形的高线、中线、角平分线互相重合D、对角线相等且互相平分的四边形是矩形【答案】:【解析】:第7题【单选题】1、2、3、4四位同学参加60米赛跑的决赛,赛前四位同学对结果各做了如下猜测1说:我会得第一名2说:1、3都不会取得第一名3说:1或2会得第一名4说:2会得第一名结果两名同学说对了.由此,可以判断是( )夺得这次决赛第一名.A、1B、2C、3D、4【答案】:【解析】:第8题【单选题】下列命题正确的个数有( )①相等的圆周角所对的弧相等;②圆的两条平行弦所夹的弧相等;③三点确定一个圆;④在同圆或等圆中,同弦或等弦所对的圆周角相等或互补.A、1B、2C、3D、4【答案】:【解析】:第9题【单选题】下列命题中正确的是( )A、三点确定一个圆B、在同圆中,同弧所对的圆周角相等C、平分弦的直线垂直于弦D、相等的圆心角所对的弧相等【答案】:【解析】:第10题【单选题】判断下列语句,①一根拉紧的细线就是直线;②点A一定在直线AB上;③过三点可以画三条直线;④ 两点之间,线段最短。
B 13.2命题与证明(4)
1、在△ABC 中, ∠A =40°,∠B =∠C,则∠C = 。
2、一个三角形三个内角度数的比是2∶3∶4,那么这个三角形是 三角形。
3、在△ABC 中, ∠A -∠B =36°,∠C =2∠B,则∠A = ,∠B = ,∠C = 。
4、如图,AD 平分∠BAC,其中∠B =50°,∠ADC =80°,求∠BAC 、∠C 的度数。
5、如图,已知∠B =40°,∠C =59°,∠DEC
=47°,求∠F 的度数。
6. 在△ABC 中,已知∠A =2
1∠B =31∠C,请你判断三角形的形状。
7. 在△A BC 中,已知∠A =2∠B =3∠C,请你判断三角形的形状。
8如图,已知DF ⊥AB 于点F,且∠A =45°,∠D =30°,求∠ACB 的度数。
9. 一个零件的形状如图,按规定∠A =90°,∠B 和∠C B D C
A B D C
21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
10.如图,在△ABC中,∠1=∠2,∠3=∠4,∠BAC=54°,求∠DAC的度数。
A
1
24 3
B D C
11、如图,已知△ABC中,已知∠B=65°,∠C=45°,AD是BC边上的高,
AE是∠BAC的平分线,求∠DAE的度数。
B D E C。