第3章 一阶动态电路分析
- 格式:ppt
- 大小:1.40 MB
- 文档页数:61
一阶动态电路分析在一阶动态电路分析中,通常需要考虑以下几个步骤:1.确定电路拓扑结构:首先需要确定电路中的元件和它们的连接方式,以建立电路的拓扑结构。
2.建立电路微分方程:根据电路中的元件和连接方式,可以通过基尔霍夫定律、欧姆定律等来建立电路的微分方程。
对于电容和电感元件,可以利用其电压和电流的关系(即电压-电流特性)得到微分方程。
- 对于电容元件,根据电容的定义(Q=C*dV/dt),可以得到微分方程:C*dV/dt = I,其中C为电容值,V为电容的电压,t为时间,I为电流。
- 对于电感元件,根据电感的定义(V=L*di/dt),可以得到微分方程:L*di/dt = V,其中L为电感值,i为电感的电流,t为时间,V为电压。
3.求解微分方程:根据所建立的微分方程,可以通过分离变量、积分等方法对方程进行求解。
求解过程中需要考虑初始条件,即在其中一时刻电容的电压或电感的电流的初始值。
4.分析电路响应:根据微分方程的解,可以得到电路中电容的电压或电感的电流随时间的变化曲线。
根据这些曲线可以分析电路的稳定状态、暂态响应和频率响应。
在分析电路响应时,可以根据不同的输入信号类型进行分类,常见的输入信号包括:-直流输入:当输入信号为直流信号时,可以将微分方程简化为代数方程进行求解。
此时电路响应主要包括稳态响应和过渡过程。
-正弦输入:当输入信号为正弦信号时,可以利用拉普拉斯变换将微分方程转换为代数方程。
通过求解代数方程和对频率的分析,可以得到电路的频率响应。
-脉冲输入:当输入信号为脉冲信号时,可以将微分方程进行离散化,转化为差分方程进行求解。
此时电路响应主要包括脉冲响应和响应序列的叠加。
总结来说,一阶动态电路分析是通过建立微分方程,求解微分方程,分析电路响应的一种方法。
通过这种方法,可以了解电路的稳定状态、暂态响应和频率响应等特性。
同时,对于不同类型的输入信号,还可以通过不同的数学工具和方法进行求解和分析。
这种分析方法可以广泛应用于电子电路、控制系统等领域的研究和应用中。
一阶动态电路分析电子教案一.教学目标:1.理解一阶动态电路的基本概念和特点;2.掌握一阶动态电路的分析方法;3.能够利用拉普拉斯变换对一阶动态电路进行分析和求解。
二.教学准备:1.教材:电路分析教材;2.工具:计算机、投影仪、演示电路板;3.实验器材:电阻、电容、电压源等。
三.教学过程:1.引入教师通过演示动态电路的实验现象,激发学生对动态电路的兴趣,引入一阶动态电路的教学内容。
2.概念解释教师通过投影仪展示一阶动态电路的基本概念和特点的PPT,解释其中的关键概念,并与学生进行互动讨论。
强调一阶动态电路是由一个电容和一个电阻组成的,具有记忆效应。
3.电压与电流关系讲解教师通过演示实验电路板对电压和电流关系的测量,讲解电流和电压的时间变化规律。
同时,引入拉普拉斯变换的概念,解释在动态电路分析中运用拉普拉斯变换的重要性。
4.一阶电路分析方法详解(1)电流法分析:教师通过投影仪展示电流法分析的步骤和计算公式的PPT,讲解电流法分析的原理和步骤。
引导学生在实际问题中运用电流法进行一阶动态电路的分析。
(2)电压法分析:教师通过投影仪展示电压法分析的步骤和计算公式的PPT,讲解电压法分析的原理和步骤。
通过实例演示,引导学生理解电压法进行一阶动态电路的分析。
5.拉普拉斯变换的应用(1)教师通过投影仪展示拉普拉斯变换的定义和性质的PPT,引导学生理解拉普拉斯变换的基本概念。
(2)教师通过投影仪展示拉普拉斯变换在电路分析中的应用的PPT,讲解如何利用拉普拉斯变换对一阶动态电路进行分析和求解。
6.综合应用实例教师提供综合应用实例,引导学生通过综合运用电流法、电压法和拉普拉斯变换的知识,解决实际问题。
7.实验操作教师指导学生进行一阶动态电路的实验操作。
学生可以通过实验验证理论推导的结论,进一步巩固所学的知识。
四.小结与反思:通过本节课的学习,学生将掌握一阶动态电路的基本概念和特点,掌握一阶动态电路的分析方法,能够利用拉普拉斯变换对一阶动态电路进行分析和求解。
一阶动态电路的三要素法一阶动态电路是指电路中只有一个电感或一个电容元件的电路,在分析这种电路时可以使用三要素法。
三要素法是一种基本的电路分析方法,它利用电路中三个基本元件(电源、电感、电容)的电压或电流关系来描述电路中的动态行为。
在使用三要素法时,需要使用线性微分方程来描述电路中的电压和电流关系。
在使用三要素法时,需要按照以下步骤进行分析:1.画出电路图,并确定电路中的电压和电流的参考方向。
2.根据电路图和电压和电流的参考方向,写出电路中的基尔霍夫电流定律和基尔霍夫电压定律等式。
3.根据电路元件的特性方程,写出电感或电容元件的电流和电压之间的关系。
4.将基尔霍夫定律和元件特性方程联立,并进行求解,得到电路中的电流和电压随时间变化的函数关系。
5.根据所求得的电流和电压随时间变化的函数关系,来分析电路的动态行为。
在使用三要素法进行电路分析时,首先需要根据电路图和电压、电流的参考方向写出基尔霍夫定律方程,例如,在一个带有电感元件和电源的串联电路中,可以根据基尔霍夫电压定律写出方程:\[V_L-V_s=0\]其中\(V_L\)是电感元件的电压,\(V_s\)是电源的电压。
接下来,根据电感元件的特性方程写出电感元件的电流和电压之间的关系,例如:\[V_L = L \frac{di_L}{dt}\]其中\(L\)是电感元件的感值,\(di_L\)是电感元件的电流微分,\(dt\)是时间微分。
将基尔霍夫定律方程和元件特性方程联立,并进行求解,可以得到电路中的电流和电压随时间变化的函数关系。
例如,可以得到电感元件的电流随时间变化的函数关系:\[i_L(t) = \frac{V_s}{L} \cdot t + i_L(0)\]其中,\(i_L(0)\)是初始时刻电感元件的电流。
最后,根据所求得的电流和电压随时间变化的函数关系,来分析电路的动态行为。
例如,在一个带有电感元件和电源的串联电路中,可以根据电压随时间变化的函数关系来分析电路中电压的变化情况。
一阶动态电路分析例题分析任务一 动态电路的基本概念[例3-1] 如图所示,V U S 10=,Ω=k R 2,开关K 闭合前,电容不带电,求开关K 闭合后,电容上的电压和电流的初始值。
解:(1)由换路前的稳态电路求得电容两端电压)0(-C u 。
由于换路前电路中电容不带电,所以电容两端的电压为零,即0)0(=-C u(2) 根据换路定律求出)0(+C u 。
0)0()0(==-+C C u u(3)根据换路后的电路列电路方程,求出其它物理量的初态。
V U U u U u S S C S R 100)0()0(==-=-=++得 mA kR u i R C 5210)0()0(===++ [例3-2] 如图所示,已知V U S 12=,Ω=K R 21,Ω=K R 42,mF C 1=,开关动作前电路已处于稳态,0=t 时开关闭合。
求:(1)开关闭合后,各元件电压和电流的初始值,(2)电路重新达到稳态后,电容上电压和电流的稳态值。
解:(1)+=0t 时的初始值○1由换路前的稳态电路求得电容电压的)0(-C u 。
由于换路前开关断开,若电容两端存在电压,电容与电阻2R 形成放电回路,使电容电压下降,所以电路稳态时,电容两端电压为零,即0)0(=-C u○2根据换路定律求出)0(+C u 。
0)0()0(==-+C C u u○3根据换路后电路图,求出其它物理量的初态。
+-S USRCCu 0=t R u C i例 3-1图++ ++-S UC Cu 1R u 2RCi 1R+-+ -2R u+ -1i2i 例3-2换路后电路图+-S UKC Cu 0=t 1R u 2RCi 1R例3-2图+-+ -V u u C R 0)0()0(2==++V U U u U u S S C S R 120)0()0(1==-=-=++mA k R u i R 6212)0()0(111===++ mA kR u i R 040)0()0(222===++mA i i i C 606)0()0()0(21=-=-=+++(2)换路后,∞=t 时的稳态值直流电路中,电路稳态时,电容相当于开路,电路如图所示,所以0)(=∞C i A 。
第3章电路的暂态分析【教学提示】暂态过程是电路的一种特殊过程,持续时间一般极为短暂,但在实际工作中却极为重要。
本章介绍了电路暂态过程分析的有关概念和定律,重点分析了RC和RL一阶线性电路的暂态过程,由RC电路的暂态过程归纳出了一阶电路暂态分析的三要素法。
最后讨论了RC的实际应用电路——积分和微分电路。
【教学要求】了解一阶电路的暂态、稳态、激励、响应等的基本概念理解电路的换路定律和时间常数的物理意义了解用经典法分析RC电路、RL电路的方法掌握一阶电路暂态分析的三要素法了解微分电路和积分电路的构成及其必须具备的条件3.1暂态分析的基本概念暂态分析的有关概念是分析暂态过程的基础,理解这些概念能更好地理解电路的暂态过程。
1.稳态在前面几章的讨论中,电路中的电压或电流,都是某一稳定值或某一稳定的时间函数,这种状态称为电路的稳定状态,简称稳态(steady state)。
2.换路当电路中的工作条件发生变化时,如电路在接通、断开、改接、元件参数等发生突变时,都会引起电路工作状态的改变,就有可能过渡到另一种稳定状态。
把上述引起电路工作状态发生变化的情况称为电路的换路(switching circuit)。
3.暂态换路后,电路由原来的稳定状态转变到另一个稳定状态。
这种转换不是瞬间完成的,而是有一个过渡过程,电路在过渡过程中所处的状态称为暂态(transient state)。
4.激励激励(excitation)又称输入,是指从电源输入的信号。
激励按类型不同可以分为直流激励、阶跃信号激励、冲击信号激励以及正弦激励。
5.响应电路在在内部储能或者外部激励的作用下,产生的电压和电流统称为响应。
按照产生响应原因的不同,响应又可以分为:(1)零输入响应(zero input response):零输入响应就是电路在无外部激励时,只是由内部储能元件中初始储能而引起的响应。
(2)零状态响应(zero state response):零状态响应就是电路换路时储能元件在初始储能为零C = C L = L C L C L C L的情况下,由外部激励所引起的响应。
姓名:王硕一、实验目的1、研究一阶动态电路的零输入响应、零状态响应及完全响应的特点和规律。
掌握测量一阶电路时间常数的方法。
2、理解积分和微分电路的概念,掌握积分、微分电路的设计和条件。
3、用multisim 仿真软件设计电路参数,并观察输入输出波形。
二、实验原理1、零输入响应和零状态响应波形的观察及时间常数τ的测量。
当电路无外加激励,仅有动态元件初始储能释放所引起的响应——零输入响应;当电路中动态元件的初始储能为零,仅有外加激励作用所产生的响应——零状态响应;在外加激励和动态元件的初始储能共同作用下,电路产生的响应——完全响应。
以一阶RC 动态电路为例,观察电路的零输入和零状态响应波形,其仿真电路如图1(a )所示。
(a ) (b )图1 一阶RC 动态电路方波信号作为电路的激励加在输入端,只要方波信号的周期足够长,在方波作用期间或方波间隙期间,电路的暂态响应过程基本结束(τ52/≥T )。
故方波的正脉宽引起零状态响应,方波的负脉宽引起零输入响应,方波激励下的)(t u i 和)(t u o 的波形如图1(b )所示。
在)2/0(T t ,∈的零状态响应过程中,由于T <<τ,故在2/T t =时,电路已经达到稳定状态,即电容电压S o U t u =)(。
由零状态响应方程可知,当2/)(S o U t u =时,计算可得τ69.01=t 。
如能读出1t 的值,则能测出该电路的时间常数τ。
2、RC 积分电路由RC 组成的积分电路如图2(a )所示,激励)(t u i 为方波信号如图2(b )所示,输出电压)(t u o 取自电容两端。
该电路的时间常数2T RC >>=τ(工程上称10倍以上关系为远远大于或远远小于关系。
),故电容的充放电速度缓慢,在方波的下一个下降沿(或上升沿)到来时,充放电均未达到稳态,输出波形如图2(c )所示,为近似三角波,三角波的峰值E <<'E 。