直流电机开环调压调速仿真
- 格式:doc
- 大小:1.42 MB
- 文档页数:8
直流调速系统的MATLAB 仿真一、开环直流速系统的仿真开环直流调速系统的电气原理如图1所示。
直流电动机的电枢由三相晶闸管整流电路经平波电抗器L 供电,通过改变触发器移相控制信号c U 调节晶闸管的控制角α,从而改变整流器的输出电压,实现直流电动机的调速。
该系统的仿真模型如图2所示。
图1 开环直流调速系统电气原理图图2 直流开环调速系统的仿真模型为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s 0L =,直流电动机励磁由直流电源直接供电。
触发器(6-Pulse )的控制角(alpha_deg )由移相控制信号c U 决定,移相特性的数学表达式为minc cmax9090U U αα︒-=︒-在本模型中取min 30α=︒,cmax 10V U =,所以c 906U α=-。
在直流电动机的负载转矩输入端L T 用Step 模块设定加载时刻和加载转矩。
仿真算例1 已知一台四极直流电动机额定参数为N 220V U =,N 136A I =,N 1460r /min n =,a 0.2R =Ω,2222.5N m GD =⋅。
励磁电压f 220V U =,励磁电流f 1.5A I =。
采用三相桥式整流电路,设整流器内阻rec 0.3R =Ω。
平波电抗器d 20mH L =。
仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动和起动后加额定负载时的电机转速n 、电磁转矩e T 、电枢电流d i 及电枢电压d u 的变化情况。
N 220V U =仿真步骤:1)绘制系统的仿真模型(图2)。
2)设置模块参数(表1) ① 供电电源电压N rec N 2min 2200.3136130(V)2.34cos 2.34cos30U R I U α++⨯==≈⨯︒② 电动机参数 励磁电阻:f f f 220146.7()1.5U R I ===Ω 励磁电感在恒定磁场控制时可取“0”。
电枢电阻:a 0.2R =Ω电枢电感由下式估算:N a N N 0.422019.119.10.0021(H)2221460136CU L pn I ⨯==⨯≈⨯⨯⨯电枢绕组和励磁绕组间的互感af L :N a N e N 2200.21360.132(V min/r)1460U R I K n --⨯==≈⋅T e 60600.132 1.262π2πK K ==⨯≈ T af f 1.260.84(H)1.5K L I === 电机转动惯量2222.50.57(kg m )449.81GD J g ==≈⋅⨯③ 额定负载转矩L T N 1.26136171.4(N m)T K I ==⨯≈⋅表1 开环直流调速系统主要模型参数3)设置仿真参数:仿真算法odel5s ,仿真时间5.0s ,直流电动机空载起动,起动2.5s 后加额定负载L 171.4N m T =⋅。
单闭环直流调速系统的设计与仿真实验报告摘要:本文基于基本原理和方法,设计和仿真了一个单闭环直流调速系统。
首先介绍了直流电机调速的基本原理,然后根据系统要求,设计了控制系统的结构和参数,包括PID控制器的参数调整方法。
接下来使用Matlab/Simulink软件进行系统仿真实验,对系统的性能进行评估。
最后根据仿真结果对系统进行分析和总结,并提出了可能的改进方法。
关键词:直流电机调速、单闭环控制系统、PID控制器、仿真实验一、引言直流电机广泛应用于机械传动系统中,通过调节电机的电压和电流实现电机的调速。
在实际应用中,需要确保电机能够稳定运行,并满足给定的转速要求。
因此,设计一个高性能的直流调速系统至关重要。
本文基于单闭环控制系统的原理和方法,设计和仿真了一个直流调速系统。
首先介绍了直流电机调速的基本原理,然后根据系统要求,设计了控制系统的结构和参数,并采用PID控制器进行调节。
接着使用Matlab/Simulink软件进行系统仿真实验,并对系统的性能进行评估。
最后根据仿真结果对系统进行分析和总结,并提出了可能的改进方法。
二、直流电机调速的基本原理直流电机调速是通过调节电机的电压和电流实现的。
电压变化可以改变电机的转速,而电流变化可以改变电机的转矩。
因此,通过改变电机的电压和电流可以实现电机的调速。
三、控制系统设计和参数调整根据系统的要求,设计一个单闭环控制系统,包括传感器、控制器和执行器。
传感器用于测量电机的转速,并将信息传递给控制器。
控制器根据测量的转速和给定的转速进行比较,并调节电机的电压和电流。
执行器根据控制器的输出信号来控制电机的电压和电流。
在本实验中,采用PID控制器进行调节。
PID控制器的输出信号由比例项、积分项和微分项组成,可以根据需要对各项参数进行调整。
调整PID控制器的参数可以使用试错法、频率响应法等方法。
四、系统仿真实验使用Matlab/Simulink软件进行系统仿真实验,建立直流调速系统的模型,并对系统进行性能评估。
综合实验报告( 2011 -- 2012 年度第 1 学期)名称:电力电子综合实验题目:直流电机调速开环控制院系:电气与电子工程学院班级:台号:学号:学生姓名:指导教师:成绩:日期:2011年12 月一.实验目的1.掌握开环直流脉宽调速系统的组成,原理,各主要部件的工作原理2.验证直流电机运行的机械特性。
二.实验内容1.PWM触发脉冲的调试2.直流电机系统开环特性测试三.实验设备及仪器1.直流电动机2.双踪示波器3.测速发电机,直流发电机4.教学实验主控制屏四.注意事项1.注意安全,主电路电流不许超过电机的额定值。
2.改变正负给定时,必须先把电压调到最小值,然后按下主控制屏总电源开关的“断开”红色按钮,再改变给定方式。
3.注意接线方式的正确,老师检查正确后,才开始做实验。
五.实验设计方法和思想1.直流电机开环系统的测试因为我们需要讨论的是,直流电机开环的机械特性,即转矩T与转速N的关系。
从给定的实验仪器,我们知道测速发电机,测的也不是真正的转速,而是以电压来代替。
鉴于我们所学的东西的知识有限,我们无法测出真正的转矩,但是我们根据转矩T与电枢电流I成正比的关系,于是,我们小组的思路是,在回路中串联一个电流表测电枢电流,用电枢电流与测速发电机测出的转速的关系来描绘机械特性。
在单一控制变量法的思想的指导下,我们先把电机调到空载状态,而后保持输入电压的不变,再记录随着电枢电流的改变,转速的改变数据。
鉴于实验室提供了四个灯泡的并联串联,所以可以做到改变电阻来改变电枢电流。
六.实验数据的记录七.实验总结:根据我们所学的电机的知识,理想中的实验结果,应该是转矩T与转速N成正比的直线关系,随着电枢电流的增大,转速下降。
但是实际情况并不完全理想,所以,所得的不是直线,而是类似于平滑的曲线。
经过试验我们对电机运行有个更为具象的认识和了解,我们会继续努力学习相关知识,更深入的了解电机的特性。
电控学院运动控制系统仿真课程设计院(系):电气与控制工程学院专业班级:姓名:学号:开环直流调速系统的动态建模与仿真摘要:MATLAB仿真在科学研究中的地位越来越高,如何利用MATLAB仿真出理想的结果,关键在于如何准确的选择MATLAB的仿真。
本文就简单的开环直流调速系统的MATLAB仿真这个例子,通过对MATLAB的仿真,得到不同的仿真结果。
通过仿真结果的对比,对MATLAB的仿真进行研究。
从而总结出如何在仿真过程中对MATLAB的仿真做到最优选择。
详细介绍了用MATLAB语言对《电机与拖动》中直流电动机调速仿真实验的仿真方法和模型建立。
其仿真结果与理论分析一致,表明仿真是可信的,可以替代部分实物实验。
首先在分析直流调速系统原理的基础上, 介绍了基于数学模型的仿真, 在仿真中可灵活调节相关参数, 优化参数设计。
其次完成了基于系统框图, 并分析了调速系统的抗干扰能力。
采用工程设计方法对开环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的MATLAB 仿真模型。
分析系统起动的转速和电流的仿真波形,并进行调试,使开环直流调速系统趋于合理与完善。
1.1课题背景直流调速是现代电力拖动自动控制系统中发展较早的技术。
在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。
晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。
尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。
但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。
现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。
长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。
《计算机仿真及应用B》答卷学号:姓名:班级:任课老师:开环直流调速控制系统的仿真1、开环直流调速控制系统的组成开环控制系统是根据给定的控制量进行控制,而被控制量在整个控制过程中对控制量不产生任何影响。
对于被控制量相对于其预期值可能出现的偏差,开环控制系统不具备修正能力。
而直流调速开环控制系统通常是采用调节电枢电压方案,具体实现在20世纪60年代晶闸管整流器的应用而采用由晶闸管整流器和电动机(V-M )系统实现开环或闭环控制调速系统。
2、开环直流调速控制系统仿真(1)基于数学模型的开环直流调速系统仿真。
①开环直流调速控制系统数学模型。
开环直流调速控制系统主要包括给定信号、晶闸管触发装置及整流环节、平波电抗器和直流电动机等4个环节。
这里所说的基于数学模型的系统仿真主要是指基于传递函数的matlab 下的Simulink 下的实现,再通过机理法可以建立开环直流调速控制系统动态结构图,如图1-1所示。
然后,根据系统I 直接给出各个环节的传递函数及参数。
可以得到系统I 开环控制的动态结构图,如图1-2所示。
②开环直流调速系统仿真实现。
图1-1 开环直流调速控制系统动态结构图图1-2 系统I 的开环系统动态结构图根据系统I 的开环系统动态结构图及其参数值,在matlab 的Simulink 环境可以轻松的建立系统的仿真结构,如图1-3所示。
电动机的转速输出动态曲线,如图1-4所示。
I L (S) — n(s) U *n (s) 一 1/R a T d S+1 R a C e T m SC e K s T s S+1 U d (s) I d (s) I L (S) — n(s) U *n (s) 一1/0.08 0.025s+1 0.08 0.185×0.8s 0.185 23 0.0017s+1 U d (s) I d (s)图1-3 系统I仿真模型图1-4 电动机转速输出曲线通过改变给定信号的大小,来实现对电机输出转速的控制与调节的目的。
直流电动机开环调速系统仿真随着电动机在工业、交通等领域的广泛应用,开发一种高效可靠的电动机控制系统对于提高整个工业的精度和效率至关重要。
其中,直流电动机开环调速系统是电动机控制系统中的一种基础环节,其使得直流电动机能够以合适的速度运行,完成工作任务。
一、调速系统的基本原理1. 直流电动机的基本结构与原理直流电动机由定子、转子、刷子、通电电源四个基本部分组成,其中,定子上包覆绕组,绕组所带的电流受到直流电源的控制,与转子上的永磁体受到的作用力相互作用,产生电动力和电磁力,从而使转子旋转。
2. 直流电动机的调速根据直流电动机的转矩-速度特性曲线可知,直流电动机的转速与电极数、电流和电磁力等因素密切相关。
因此,通过控制直流电动机的电流大小,可以达到调节直流电动机转速的目的。
直流电动机开环调速系统主要由电动机本体、电流传感器、减速器以及驱动器等基本组成部分组成。
其中,电流传感器用于检测电动机电流的大小,而驱动器则输出一定的电压或电流,控制直流电动机的运行。
二、仿真实现1. 基本仿真模型基于MATLAB/Simulink软件建立的直流电动机开环调速系统仿真模型主要由瞬时电压、转速检测、控制逻辑、直流电机、直流电阻负载以及电流检测等组成,实时进行电磁转矩的计算,最终得到直流电机的运动状态,从而实现调速功能。
2. 仿真分析通过此仿真模型,我们可以得到直流电动机的运行状态,理解不同负载下的转矩-转速特性曲线以及电流在不同转速下的变化,从而通过调节电流、电压等参数,以达到理想的调速效果。
三、结论直流电动机的开环调速系统是一个重要的电动机控制系统组成部分,其能够有效地提高电动机的自动控制能力,大大提升了直流电动机的工作效率和精度。
本文通过介绍直流电动机调速系统的基本原理和仿真实现,为电动机控制系统研究和开发提供了参考和借鉴,对推动整个行业智能化和自动化发展具有重要意义。
基于MATLAB的直流电机双闭环调速系统的设计与仿真直流电机双闭环调速系统是一种常见的控制系统,常用于工业生产中对电机速度的精确控制。
本文将基于MATLAB软件进行直流电机双闭环调速系统的设计与仿真,包括系统设计、参数设置、控制策略选择、系统仿真以及性能分析等方面。
文章将以1200字以上的篇幅进行详细阐述。
一、系统设计直流电机双闭环调速系统由速度环和电流环构成。
速度环控制系统的输入为速度设定值和电机实际速度,输出为电机期望电压;电流环控制系统的输入为速度环输出的电压和电机实际电流,输出为电机实际电压。
通过控制电机的期望电压和实际电压,达到对电机速度的调控。
二、参数设置在进行系统仿真之前,需要确定系统中各个参数的值。
包括电机的额定转矩、额定电压、电感、电阻等参数,以及控制环节的比例增益、积分增益、微分增益等参数。
这些参数的选择会影响系统的稳定性和动态性能,需要根据实际情况进行调整。
三、控制策略选择常见的控制策略包括PID控制、PI控制、PD控制等。
在直流电机双闭环调速系统中,可以选择PID控制策略。
PID控制器由比例环节、积分环节和微分环节组成,可以提高系统的稳定性和响应速度。
四、系统仿真在MATLAB中进行直流电机双闭环调速系统的仿真,可以使用Simulink模块进行搭建。
根据系统设计和参数设置,搭建速度环和电流环的控制器,连接电机实际速度和电机实际电流的反馈信号,输入速度设定值和电机期望电流,输出电机期望电压。
通过仿真可以得到系统的动态响应曲线,评估系统的性能。
五、性能分析在仿真结果中,可以分析系统的静态误差、超调量、调整时间等指标,评估系统的控制性能。
通过参数调整和控制策略更改等方式,可以优化系统的控制性能,使系统达到更好的调速效果。
总结:本文基于MATLAB软件对直流电机双闭环调速系统进行了设计与仿真。
通过系统设计、参数设置、控制策略选择、系统仿真以及性能分析等步骤,可以得到直流电机双闭环调速系统的动态响应曲线,并通过参数调整和控制策略更改等方式,优化系统的控制性能。
《MATLAB工程应用》
晶闸管开环直流调速系统仿真
一、选题背景
本课程是在《电机学》《单片机》等课程上,独立设计的一门综合实验课程。
课程主要目的是培养学生分析问题,解决问题能力,提高学生自主学习,分工协作以及课程设计报告撰写水平。
二、方案论证(设计理念)
设计一个晶闸管直流调速系统仿真模型,通过改变触发器移相控制信号来调节晶闸管的触发角,而从获得可调的直流电压,以该直流输出为直流电机供电。
要求完成仿真模型图和仿真波形图,其中波形图包括直流电机的转速波形,电枢电流波形,转矩波形,改变触发角后的转速波形。
三、过程论述
直流电动机电枢由晶闸管整流电路经平波电抗器供电,通过改变触发器移相控制信号调节晶闸管的控制角,从而获得可调的直流电压,以实现直流电动机的调速。
移相控制信号,在实际调速时,给定信号是在一定范围内变化的,可通过仿真实践,确定给定信号允许的变化范围。
图1:构建的simulink仿真结构图
图2:参数设置
图3:波形
五、课程设计总结
仿真可得到闸管直流调速系统的输出波形。
电机转速波形,电枢电流波形,二者变化基本一致。
若将触发角改为30°,则转速波形发生明显改变,转速提高,这是因为直流电压增大的原因。
经过这段时间队MATLAB的学习,学会了对知识的汇总与运用,能够熟练使用相关软件,收获较大。
直流调速系统Matlab仿真应用作者:朱贤勇万晓慧来源:《价值工程》2018年第27期摘要:搭建Matlab仿真模型,揭示开环直流调速系统存在的问题和有静差的直流闭环调速系统中比例控制器放大系数确定原则,由此提出了一种理论问题引出与仿真实验验证相结合的教学方法,该方法能有效弥补电力拖动自动控制系统课程在传统教学中的不足之处,提高学生学习兴趣,便于推广。
Abstract: Through building Matlab simulation model, to reveale the problems of open loop DC speed regulating system, and parameters determination of the proportional controller in the static DC closed-loop speed control system, a teaching method that theoretical problems combined with simulation experimental verification is proposed, which can effectively make up the deficiency of automatic control system course in traditional teaching,and improve students' interest in learning,easily to be spreaded.关键词:直流调速系统;Matlab仿真;理论问题引出;仿真实验验证Key words: DC speed control system;Matlab simulation;theoretical problem extraction;simulation experimental verification中图分类号:TM341 文献标识码:A 文章编号:1006-4311(2018)27-0254-030 引言《电力拖动自动控制系统》(运动控制系统)是电气工程与自动化专业的一门专业技术课,主要涉及直流电机调速系统和交流电机调速系统的数学建模与控制系统的工程设计。
实验一、开环直流调速系统的仿真实验实验目的本实验旨在通过搭建开环直流调速系统的仿真实验平台,深入理解电机的转速调节原理,了解直流电机的调速方法,掌握仿真软件的基本操作,为后续实验打下坚实的基础。
实验器材•个人电脑•仿真软件MATLAB/Simulink实验原理直流电动机的转速调节方法有开环调速和闭环调速两种。
开环调速是采用给定电压和负载转矩(或负载电流)的关系表格,来确定电机所需要的电压值,然后通过直流调速器给电机供给相应电压值来调节电机的转速。
本次实验采用开环调速方法,实现直流电动机的转速控制。
电机通过直接接到电源上,输入直流电,可在一段范围内自动调节电机的转速。
实验过程中,通过修改电机被驱动的电压来达到调节电机的转速和功率的目的。
实验步骤1.在MATLAB/Simulink软件中新建一个仿真模型。
2.从Simulink库中拖拽Power System Toolbox中引入电源,将其与直流电动机模块相连。
3.调整电压、电流、电功率大小,展示不同转速下直流电动机的性能。
4.分析电动机性能曲线并记录实验数据。
5.结束实验后,停止仿真,保存实验数据。
实验结果通过本次实验,得到了不同电压下直流电动机的表现,所有数据都记录到实验报告中,以供参考。
从实验结果来看,不同电压下直流电动机的性能有很大的差异。
不同电压产生的转速和功率差异也十分明显。
本实验是初步了解直流电动机转速调节原理的实验,从中我们可以清晰地了解到开环调速的方法和它的应用。
同时还要深刻理解几个关键的概念,如转速、电压和功率之间的关系,并且会更加熟练地掌握这些内容。
此外,在进行实验时还需要注意实验操作的细节,避免出现过程错误和误差。
我们需要紧密联系育人活动和实验课程,深入了解和掌握实验原理,要严格按照实验要求操作,提高实验技能和实验思维能力,为以后的实验打下基础。
一、概述在现代工业生产中,直流电动机广泛应用于各种设备和机械中,其调速控制系统的稳定性和性能直接影响到整个生产线的效率和质量。
为了提高学生的实践操作能力和掌握直流电动机调速系统的原理和方法,我校开设了相关的仿真实训课程。
在本次实训中,我主要使用Matlab 软件,进行了直流电动机调速系统的仿真实验,获得了丰富的经验和收获,现将心得体会整理如下。
二、理论基础1. 直流电动机调速原理直流电动机调速系统是通过调节电动机的电流或电压来实现转速的调节。
常用的调速方法包括电阻调速、调速励磁和PWM调速等。
2. Matlab在仿真中的应用Matlab是一种功能强大的科学计算软件,广泛用于工程技术领域。
其仿真环境和信号处理工具箱可以方便地进行电机控制系统的建模和仿真。
三、实训内容与步骤1. 系统建模我根据直流电动机的特性和调速原理,进行了系统的建模工作。
通过Matlab的Simulink工具,搭建了直流电动机的数学模型,包括电动机的等效电路、控制系统和负载模型等。
2. 参数设置与仿真在建立完毕电机系统模型后,我对电机的各项参数进行了设置,包括额定转速、额定电流、负载惯量等。
利用Matlab进行了系统的仿真实验,观察了不同调速方法对电机性能的影响。
3. 实验结果分析通过对仿真实验数据的分析,我发现了不同调速方法的优缺点,比较了电机在不同负载和控制参数下的性能表现,提出了一些改进和优化控制策略的建议。
四、心得体会与经验总结1. 对仿真实验的认识通过本次实训,我深刻体会到仿真实验的重要性。
在实际工程中,通过仿真可以事先评估系统设计的合理性,降低试错成本,提高工程质量。
2. 对Matlab的认识与应用Matlab作为工程领域的标准软件之一,其强大的建模和仿真能力为工程师提供了便利。
在实训中,我更加熟练地掌握了Matlab的使用技巧,对其在电机控制系统仿真中的应用有了更深刻的理解。
3. 对直流电动机调速系统的认识通过本次实训,我对直流电动机调速系统的原理和方法有了更加深入的了解,认识到了控制系统设计和参数调节对电机性能的影响,为今后的工程实践打下了坚实的基础。
直流电机调速仿真报告1. 背景直流电机是一种常见的电动机类型,广泛应用于工业生产和家庭设备中。
在实际应用中,为了满足不同工况下的需求,需要对直流电机进行调速控制。
调速控制可以实现电机转速的精确控制,提高系统的稳定性和效率。
本报告旨在通过Matlab仿真分析直流电机调速控制系统,在理论与实践结合的基础上,提出相应的建议。
2. 分析2.1 直流电机调速原理直流电机调速原理主要基于改变电源的电压或者改变外加负载来实现对电机转速的控制。
常见的直流电机调速方法有:•电压调制法:通过改变直流电源的输出电压来改变转矩和转速;•变阻器分压法:通过改变外接阻值来改变转矩和转速;•变极数法:通过改变励磁回路中串联或并联的励磁线圈数目来改变转矩和转速;•PWM调制法:通过脉冲宽度调制技术来控制输入给定功率。
2.2 直流电机调速控制系统直流电机调速控制系统由电源、电机、传感器、控制器和负载组成。
其中,传感器用于测量电机的转速和位置,控制器根据测量值计算出合适的控制信号,通过电源提供给电机。
负载则影响电机的转速和转矩。
常见的直流电机调速控制方法有:•比例积分(PI)控制:根据误差信号进行比例和积分运算,生成合适的输出信号;•模糊控制:基于模糊推理原理,根据输入变量和规则库生成输出信号;•自适应控制:根据系统动态特性自动调整参数以实现最优性能。
2.3 仿真建模与参数设置本次仿真采用Matlab/Simulink软件进行建模与仿真。
首先需要确定直流电机的基本参数,如额定功率、额定转速、额定电压等。
然后根据实际情况设置仿真模型中的参数。
本次仿真设置了一个基于PWM调制法的直流电机调速系统模型。
具体参数如下:•额定功率:100W•额定转速:1500rpm•额定电压:220V•PWM调制频率:1kHz•控制器采样周期:0.01s3. 结果与分析3.1 仿真结果展示在进行仿真之后,我们得到了直流电机调速系统的仿真结果。
以下是部分结果的展示:•转速曲线图:•转矩曲线图:3.2 结果分析根据仿真结果,可以对直流电机调速系统进行分析。
比例控制的直流调速系统的仿真参数一、电机特性参数:1.电机额定电流(I_N):直流电机的额定电流,可以根据电机的额定功率和电压通过功率公式计算得到。
2.电机内阻(R):电机内部电阻,决定了电机的电流分布和阻尼特性。
可以通过实际测量或者从电机的技术手册中获取。
3.电机电感(L):电机的电感,反映了电机的自感特性,也会对电机的动态响应产生影响。
可以通过实际测量或者从电机的技术手册中获取。
4.电机转动惯量(J):电机的转动惯量,决定了电机的惯性和动态响应。
可以通过实际测量或者从电机的技术手册中获取。
5.电机反电动势常数(Ke):电机反电动势常数,反映了电机的输出电压与转速之间的关系。
可以通过实际测量或者从电机的技术手册中获取。
二、控制回路参数:1.比例增益(Kp):比例速度调节器的增益,决定了控制输出与误差之间的线性关系。
可以根据系统的要求进行选择。
2.采样周期(T):控制系统的采样周期,决定了控制器的调节速度和控制精度。
通常根据系统的性能指标进行选择,如超调量、调节时间等。
3.控制器类型:可以选择不同类型的控制器,如比例控制器、积分控制器、微分控制器或者PID控制器等。
4.控制器输出限制:对控制器的输出做限制,可以避免电机超调或者过负荷运行。
5.反馈方式:可以选择转速反馈或者位置反馈,一般采用转速反馈。
三、仿真环境参数:1.仿真时间:仿真的总时间长度,可以根据系统的稳态要求进行选择。
2.仿真步长:仿真器的时间步长,决定了仿真器的计算精度。
可以根据系统的要求进行选择。
3.仿真误差容限:控制系统的输出与设定值之间的允许误差范围。
可以根据系统的控制精度要求进行选择。
4.扰动信号:可以在仿真中添加加性或者乘性噪声,模拟实际工作环境中的扰动。
综上所述,比例控制的直流调速系统的仿真参数包括电机的特性参数、控制回路参数和仿真环境参数等。
根据具体的系统要求和性能指标,可以选择适当的参数值来进行仿真建模和分析,以评估系统的控制性能和稳定性。
直流电机PWM调速系统的设计与仿真一、引言直流电机是电力传动中最常用的一种电动机,具有调速范围广、响应快、结构简单等优点。
而PWM(脉宽调制)技术是一种有效的电机调速方法,可以通过改变占空比控制电机的转速。
本文将介绍直流电机PWM调速系统的设计与仿真,包括建模分析、控制策略、电路设计和仿真实验等内容。
二、建模分析1.直流电机的模型直流电机的数学模型包括电动势方程和电机转矩方程。
电动势方程描述电机的输出电动势与供电电压之间的关系,转矩方程描述电机的输出转矩与电机转速之间的关系。
2.PWM调速系统的控制策略PWM调速系统的控制策略主要包括PID控制和模糊控制两种方法。
PID控制是一种经典的控制方法,通过比较实际输出与期望输出,计算出控制量来调整系统。
模糊控制则是一种基于模糊逻辑的控制方法,通过模糊推理,将输入量映射为输出量。
三、电路设计1.电机驱动电路设计电机驱动电路主要由电流传感器、逆变器和滤波器组成。
电流传感器用于测量电机的电流,逆变器将直流电压转换为交流电压,滤波器用于消除电压中的高频噪声。
2.控制电路设计控制电路主要由控制器、比较器和PWM信号发生器组成。
控制器接收电机转速的反馈信号,并与期望转速进行比较,计算出控制量。
比较器将控制量与三角波进行比较,生成PWM信号。
PWM信号发生器将PWM信号转换为对应的脉宽调制信号。
四、仿真实验1.系统建模与参数设置根据直流电机的模型,建立MATLAB/Simulink仿真模型,并根据实际参数设置电机的转矩常数、转矩常数、电机阻抗等参数。
2.控制策略实现使用PID控制和模糊控制两种方法实现PWM调速系统的控制策略。
通过调节控制参数,比较不同控制方法在系统响应速度和稳定性上的差异。
3.仿真实验结果分析通过仿真实验,分析系统的静态误差、动态响应和稳定性等性能指标。
比较不同控制方法的优缺点,选择合适的控制方法。
五、结论本文介绍了直流电机PWM调速系统的设计与仿真,包括建模分析、控制策略、电路设计和仿真实验等内容。
晶闸管开环直流调速系统的仿真一、工作原理晶闸管开环直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。
在本实验中,整流装置的主电路为三相桥式电路,控制电路课直接由给定电压Ug座位触发器的移相控制电压Uct,改变Ug的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。
实验系统的组成原理如图1所示。
图1 晶闸管开环直流调速实验控制原理图二.设计步骤1主电路的建模和参数设置开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机灯部分组成。
由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以讲触发器轨道主电路进行建模。
①三相对称交流电压源的建模与参数设置。
首先从电源模块中选取一个交流电压源模块,即,再用复制的方法得到三相电源的另外两个电压源模块,并用模块标题名修改方法将模块标签分别改为“A相”、“B相”,“C相”,然后从连接器模块中选取,按图1主电路图进行连接。
为了得到三相对称交流电压源,其参数设置方法及参数设置如下。
双击A相交流电压源图标,打开电压源参数设置对话框,在A相交流电源参数设置中,幅值取220V,初相位设置成0°,频率为50Hz,其它为默认值,如图2所示,B、C相交流电源设置方法与A相基本相同,除了初相位设置成互差120°外,其它参数与A相相同。
由此可以得到三相对称交流电源。
②晶闸管整流桥的建模和参数设置。
首先从电力电子模块组中选取中的,并将模块标签改成“晶闸管整流桥”,然后双击模块图标,打开整流桥参数设置对话框,参数设置如图3所示。
当采用三相整流桥时,桥臂数为3,A、B、C三相交流电源接到整流桥的输入端,电力电子选择晶闸管。
参数设置原则如下,如果是针对某个具体的交流装置进行参数设置,对话框中的Rs、Cs、R ON、Vf应取该装置中晶闸管元件的实际值,若果是一般情况,不针对某个具体的变流装置,这些参数可先取默认值进行仿真。
MATLAB仿真技术大作业直流调速系统仿真1、电机开环特性计算PWM脉冲占空比:D=V O/Vd=420/600=70%画出转速的波形、电机电枢电流的波形:电机起动时的最大电流:I max=1708A 负载时的稳态电枢电流:I a=143.2A 空载时转速:n=4200rpm 负载时的转速:n=3896rpm2、转速闭环控制设置比例-积分环节,k P=0.01,k I=0.01,k D=0画出转速的波形、电机电枢电流的波形:电机起动时的最大电流:I max=2425A 负载时的稳态电枢电流:I a=141.6A 3、改善电机起动特性用斜坡函数加限幅(ramp--saturation)代替转速指令:斜坡斜率设为8400,限幅设为4200。
画出转速的波形、电机电枢电流的波形:电机起动时的最大电流:I max=619.7A4、简化降压斩波器降压斩波器只使用一只IGBT和一只二极管时,再次进行仿真。
画出电机电枢电流的波形与第3问的波形进行比较:与第3问的波形进行比较:t=0.3s时,I a(3)=379.3A I a(4)=379.3At=0.8s时,I a(3)=-8.92A I a(4)=-0.02107At=1.5s时,I a(3)= 143.4A I a(4)=143.8A通过对比,可知三段波形的数值几乎无差别或差别非常小可忽略不计;但波形显示在t=0.5s 左右时第四问波形的纹波值比第三问波形的纹波值小。
因为器件替换后,各部分的功能并未发生变化,电路的正常工作状态并未受到影响,因此用不同的降压斩波器波形几乎无差别。
纹波的区别可能是因为二极管与带反并联二极管的IGBT、不带反并联二极管的IGBT与带反并联二极管的IGBT结构上的区别所导致。
实验一直流电机开环调速系统仿真
一、实验目的
1、掌握直流电机开环系统各部分组成及基本原理
2、掌握基于物理模型的直流电机开环系统仿真方法
3、具备一定实验数据分析能力
二、实验内容
1、直流电机开环系统基本组成及原理
电气原理图见图1。
电动机采用它励直流电机,电枢回路由三相晶闸管整流电路经平波电抗
U调节晶闸管的控制角 ,从而改变整流器的输器L供电。
通过改变触发器移相控制信号
c
出电压,实现直流电机的调速。
2、直流电机开环系统仿真模型的建立
在MA TLAB/Simulink中搭建直流电机开环系统仿真模型如下:
在仿真中,为了方便仿真,对模型做了如下简化:
(1)省略了整流变压器和同步变压器,晶闸管交流侧电源直接采用三相交流电源代替,且三相交流电源的电感设置为0。
(2)直流电机的励磁回路由单独的直流电源供电,构成它励直流电机。
U,在仿真时直接给出控制信号对应(3)直流电机开环系统的给定信号本应该是控制电压
c
的移相触发角 。
3、仿真模型中各主要元件介绍与参数设置。
(1)直流电机模型
在MA TLAB/Simulink中,直流电机模型见下图。
其中几个端口作用如下:
F端口:励磁回路连接端口;
A端口:电枢回路连接端口;
TL端口:给直流电机施加的负载转矩端口;
m端口:连接示波器,显示电机运行时的4个参数,依次为转速、电枢电流、励磁电流、电磁转矩。
直流电机仿真时参数设置
直流电机仿真时必须先对其参数进行设置,此次试验需要设置的参数见下图。
注意:电机的这些参数是由电机的额定铭牌参数:额定电压、额定电流、额定转速、极对数、转动飞轮惯量等所求得的。
具体求法参考其他资料。
(2)交流电源模型模型
在MA TLAB/Simulink中,三相交流电源模型位于SimPowerSystem\Electrical\Three-Phase Source。
其参数设置如下。
(3)三相晶闸管整流器模型
采用通用桥式三相晶闸管整流器,模型位于SimPowerSystem\Power Electronics\Universal Bridge 。
其参数采用默认值。
(4)6脉冲出发电路模型
在MA TLAB/Simulink 中,6脉冲出发电路模型见下图。
其中,AB 、BC 、CA 分别接交流电源各对应线电压。
alpha_deg 连接触发脉冲的相位角α,可直接设置为某个角度数。
Block 端口为该模块的输出信号控制端,接入信号1时,该模块没有输出;接入信号0时,该模块输出6个相位依次相差60度的脉冲信号,此时可将输出端连接值晶闸管通用桥的信号控制端,从而驱动晶闸管整流电路。
该模块参数设置时,频率要与交流电源侧频率一致,当采用宽脉冲控制方式时,脉冲宽度应大于60度,保证可靠驱动。
(4)直流回路中平波电抗器的电感取H 35-=e L
(5)Powergui 模型
在用Simulink 中的SimPowerSystem 系统仿真时,界面必须要求Powergui 模块。
(5)其它模块介绍从略。
三、实验步骤
1、直流电机负载恒定、不同触发角α(即不同给定电压c U )下电机转速仿真
将电机转矩设为50,6脉冲触发装置的触发角在s t 1=时由30度变为50度,仿真模型如下。
仿真得到的电机转速变化如下,在s t 1=时,随着触晶闸管发角的增大,电机转速下降。
电枢电流与电磁转矩波形如下。
经分析可得:
(1)电枢电流与电磁转矩波形的形状相同,这与理论一致,因为a e e I C T =。
(2)在触发角α由30度变为50度时,稳态后,电磁转矩和电枢电流不变。
这是因为电机稳态时,电机的电磁转矩与负载转矩相等,由于负载转矩始终不变,所以稳态后电磁转矩也不变,只是在动态过程中有所波动。
2、直流电机触发角0
30=α(即给定电压c U 恒定),负载变化时电机转速仿真 设置电机的初始负载为50,s t 1=时负载变为100。
仿真模型如下:
仿真得到的电机转速变化如下,在s t 1 时,随着负载增大,电机稳态转速下降。
电枢电流与电磁转矩波形如下。
经分析可得:
(1)电枢电流与电磁转矩波形的形状相同,这与理论一致,因为a e e I C T =。
(2)在触发角030=α不变(即给定电压c U 不变),在s t 1=时,随着负载增大,电磁转矩和电枢电流也同时增大。
这是因为随着负载增加,要使电机达到稳态,相应的电磁转矩也必须增加,才能使转子合转矩为零,电机才能保持稳态,但注意此时电机的转速已经回不到原来的转速值了,所加负载越大,稳态误差就越大。
四、实验心得。