第二章+转速开环控制的直流调速系统
- 格式:pdf
- 大小:1.17 MB
- 文档页数:70
开环直流调速系统工作原理嗨,朋友们!今天咱们来唠唠开环直流调速系统的工作原理。
这东西啊,就像是一场精心编排的舞蹈,每个部件都有它独特的角色。
先来说说直流电机吧。
直流电机就像一个勤劳的小工匠,它的任务就是把电能转化成机械能。
想象一下,电能就像是小工匠手中的魔法力量,这个魔法力量进入电机后,电机就能欢快地转动起来,带动各种机械装置工作。
那这个电机的转速怎么来控制呢?这就轮到开环直流调速系统上场了。
这个开环直流调速系统里啊,有一个非常关键的角色——晶闸管整流装置。
这玩意儿可神奇了,它就像是一个电力的魔术师。
它能把交流电变成直流电,而且还能改变这个直流电的电压。
你可能会问,为啥要改变电压呢?这就好比给小工匠不同强度的魔法力量啊。
电压高的时候,电机就像被注入了超强的魔法,转得飞快;电压低呢,电机就像魔法变弱了,转得就慢些。
那这个晶闸管整流装置是怎么知道要给电机多少电压的呢?这就和我们设定的给定电压有关系了。
给定电压就像是指挥棒,我们想让电机转多快,就设定一个对应的给定电压值。
这时候啊,系统里就像是有个看不见的指挥官,拿着这个指挥棒指挥着晶闸管整流装置。
比如说,我们想要电机以中等速度转动,我们就设定一个中等大小的给定电压。
在这个过程中,还有个东西叫触发器。
触发器就像是一个信号的传递者,它接收到给定电压这个信号后,就像接到了秘密指令一样,赶紧去告诉晶闸管整流装置。
“嘿,兄弟,我们要这么多电压,你赶紧变出来!”触发器和晶闸管整流装置就像两个配合默契的小伙伴,一个传递信号,一个执行命令。
我有个朋友,之前对这个开环直流调速系统一窍不通。
有一天,他看到一个简单的直流电机调速装置,就跑来问我。
他说:“这电机咋就乖乖听我们的话,想快就快,想慢就慢呢?”我就跟他讲了这个开环直流调速系统的原理。
我跟他说:“你看啊,就像我们指挥一个乐团一样,给定电压就是我们的指挥棒,不同的指挥动作,乐团就演奏出不同的音乐,这里不同的给定电压,电机就有不同的转速。
第一章绪论1 电力拖动实现了电能与机械能之间的能量变换。
2 运动控制系统的任务是通过控制电动机电压、电流、频率等输入量,来改变工作机械的转矩、速度、位移等机械量。
3 功率放大器与变换装置有电机型、电磁型、电力电子型(晶闸管SCR为半控型)等4 转矩控制是运动控制的根本问题,与磁链控制同样重要。
5 风机、泵类负载特性。
第一篇直流调速系统1 电力拖动自动控制系统有调速系统、伺服系统、张力控制系统、多电动机同步控制系统等多种类型。
2 直流电动机的稳态转速公式:3 调节电动机转速的方法:1)调压调速2)弱磁调速3)变电阻调速第二章转速反馈控制的直流调速系统1 晶闸管整流器—电动机调速系统(V-M系统)通过调节触发装置GT的控制电压来移动触发脉冲的相位,改变可控整流器平均输出直流电压,从而实现直流电动机的平滑调速。
2 在动态过程中,可把晶闸管触发与整流装置看成一个滞后环节(由晶闸管的失控时间引起)。
3 与V-M系统相比,直流PWM调速系统在很多方面有较大的优越性:(1)主电路线路简单,需用的电力电子器件少;(2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小;(3)低速性能好,稳速精度高,调速范围宽;(4)若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗扰能力强;(5)电力电子开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高;(6)直流电源采用不控整流时,电网功率因数比相控整流器高。
4 直流PWM调速系统的机械特性(电流连续时,机械特性曲线相平行)1)稳态:电动机的平均电磁转矩与负载转矩相平衡的状态;2)机械特性:平均转速与平均转矩(电流)的关系。
5调速系统转速控制的要求(1)调速—在一定的最高转速和最低转速范围内,分挡地(有级)或平滑地(无级)调节转速;(2)稳速—以一定的精度在所需转速上稳定运行,在各种干扰下不允许有过大的转速波动,以确保产品质量;(3)加、减速—频繁起动、制动的设备要求加、减速尽量快,以提高生产率;不宜经受剧烈速度变化的机械则要求起动、制动尽量平稳。
引言目前,转速﹑电流双闭环控制直流调速系统是性能很好﹑应用最广泛的直流调速系统。
我们知道采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。
故需要引入转速﹑电流双闭环控制直流调速系统,本文着重阐明其控制规律﹑性能特点和设计方法,是各种交﹑直流电力拖动自动控制系统的重要基础。
首先介绍转速﹑电流双闭环调速系统的组成及其静特性,接着说明该系统的动态数学模型,并从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用。
在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。
电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。
因此,调速技术一直是研究的热点。
长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。
直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。
采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。
在现代化的工业生产中,几乎无处不使用电力拖动装置。
轧钢机、电铲、提升机、运输机等各类生产机械都要采用电动机来传动。
随着对生产工艺,产品质量的要求不断提高和产量的增长,越来越多的生产机械能实现自动调速。
从20世纪60年代以来,现代工业电力拖动系统达到了全新的发展阶段。
这种发展是以采用电力电子技术为基础的,在世界各国的工业部门中,直流电力拖动系统至今仍广泛的应用着。
直流拖动的突出优点在于:容易控制,能在很宽的范围内平滑而精确的调速,以及快速响应等。
在一定时期以内,直流拖动仍将具有强大的生命力。
1、不属于电力拖动自动控制系统构成单元的是()。
CA、电动机B、功率放大与变换装置C、柴油机D、传感器2、电动机转速与转角控制的根本是()控制,但同时也需要做好()控制。
BA、磁链、转矩B、转矩、磁链C、手动、自动D、自动、手动3、直流电力拖动控制系统和交流电力拖动控制系统比较,()流电力拖动控制系统的数学模型简单;()流电力拖动控制系统调节器的设计简单。
CA、直、交B、交、直C、直、直D、交、交4、船舶电力推进是通过()拖动螺旋桨的系统。
DA、柴油机B、汽轮机C、燃气轮机D、电动机5、()电动机的转速与电源频率保持严格对应关系,机械特性硬。
CA、直流B、异步C、同步D、永磁6、典型机械负载中,起重机提升重物属于()负载。
BA、反抗性恒转矩B、位能性恒转矩负载C、通风机类D、恒功率负载7、典型机械负载中,船舶螺旋桨属于()负载。
CA、反抗性恒转矩B、位能性恒转矩负载C、通风机类D、恒功率负载8、根据转速-转矩四象限,电动机在第四象限为()状态。
DA、正向电动B、反向电动C、正向制动D、反向制动9、转速-转矩四象限中的第三象限,电动机电磁转矩与转速方向相(),为()性质。
AA、同、驱动B、反、驱动C、同、制动D、反、制动10、根据运动方程式,转速变化是因为()。
DA、电磁转矩为驱动转矩B、电磁转矩为制动转矩C、电磁转矩等于阻转矩D、电磁转矩不等于阻转矩11、吊车电动机提升下放重物时,电动机所承担的机械负载属于典型机械负载中的()负载。
BA、反抗性恒转矩B、位能性恒转矩C、通风机类D、恒功率负载第二章转速反馈控制的直流调速系统转速反馈控制的直流调速系统测验1、直流调速系统要求一定范围内无级平滑调速,以()调速方式为最好。
BA、电枢回路串电阻B、降低电枢电压C、降低励磁电压D、励磁回路串电阻2、V-M直流调速系统中采用了平波电抗器来抑制电流脉动,改善()问题。
AA、轻载时电流断续B、低速时的高次谐波C、堵转时电流过大D、功率因数3、在V-M系统主电路的等效电路图中,不属于整流装置电阻的是()。
直流电机调速系统及其开环控制马宇威摘要:工业控制中大量采用异步电动机和直流电机作为电力拖动设备,为适应不同场合的需要,电机应当有较好的调速性能。
本文首先介绍直流电机的基本调速方式,并根据其电气结构特点给出几种常见的控制调速方式。
并建立了开环控制模型,分析其电气性能和机械性能上的优劣。
关键词:直流电机;开环控制1.直流电机及其调速方式直流电机是根据电磁感应定律和电磁力定律实现机械能与直流电能转换的电气设备。
直流电动机的特点是具有良好的起动,调速,制动性能。
它的起动转矩大,能在较大的范围内实现平滑,经济地调速。
虽然相对于三相异步电动机具有成本较高占地较大,机械设计维护制造维护难度较大,且需要整流电源配置等缺点,还是在实际工业生产中在对起动性能和调速性能要求较大的场合仍然具有一定的地位,如发电厂锅炉给粉系统,矿井卷扬机械,大型机床和电力机车以及城市无轨电车,都使用直流电动机拖动。
由此可见直流电动机在工农业生产中发挥的重要作用。
根据电机学中直流电机的基本理论,电机转速由下式给出:n =(U−IR)/(CeΦ)式中 n——转速(r/min);U——电枢电压(V);I——电枢电流(A);R——电枢回路总电阻(Ω);Φ——励磁磁通(Wb);Ce——电机的常数,由其结构决定。
从上式中可以看出三种基本的直流电机调速方法,改变电枢电压,改变主磁通,或者改变电枢回路总电阻。
改变电枢电压调速。
这种调速方法可以实现连续平滑调速,电枢电压可以依靠电力电子设备进行控制。
现常用的方法有两种,其一为使用晶闸管把交流电能整成直流电能,控制量为晶闸管的移相触发角。
在实现的时候,晶闸管的触发角和输出电压并不是正相关的关系。
在控制理论的建模中,将晶闸管环节简化成是一个一阶惯性环节,方便使用经典的控制理论进行系统分析与校正。
根据电力电子中的分析,三相全控整流桥的输出电压由U = 2.34U2cos()决定,触发角的范围为 0-90,这就需要在实际控制时,对触发角进行处理,包括将前级的输出量成比例的放缩至触发区间,以及将输出量转化为正相关的量。
《电力拖动自动控制系统》-第二章转速、电流双闭环直流调速系统和调节器的工程设计方法第二章转速、电流双闭环直流调速系统和调节器的工程设计方法内容提要:转速、电流双闭环控制的直流调速系统是应用最广性能很好的直流调速系统。
本章着重阐明其控制规律、性能特点和设计方法,是各种交、直流电力拖动自动控制系统的重要基础。
我们将重点学习:●转速、电流双闭环直流调速系统及其静特性●双闭环直流调速系统的数学模型和动态性能分析●调节器的工程设计方法●按工程设计方法设计双闭环系统的调节器●弱磁控制的直流调速系统2.1 转速、电流双闭环直流调速系统及其静特性问题的提出:第1章中表明,采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。
1. 主要原因是因为在单闭环系统中不能随心所欲地控制电流和转矩的动态过程。
在单闭环直流调速系统中,电流截止负反馈环节是专门用来控制电流的,但它只能在超过临界电流值 Idcr 以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想地控制电流的动态波形。
2.理想的启动过程a) 带电流截止负反馈的单闭环调速系统b) 理想的快速起动过程 2-1直流调速系统起动过程的电流和转速波形性能比较:带电流截止负反馈的单闭环直流调速系统起动过程如图所示,起动电流达到最大值Idm 后,受电流负反馈的作用降低下来,电机的电磁转矩也随之减小,加速过程延长。
理想起动过程波形如图所示,这时,起动电流呈方形波,转速按线性增长。
这是在最大电流(转矩)受限制时调速系统所能获得的最快的起动过程。
3. 解决思路为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值Idm的恒流过程。
按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。