2018高考数学一轮复习第2章函数、导数及其应用第2节函数的单调性与最值教师用书文新人教A版
- 格式:doc
- 大小:273.00 KB
- 文档页数:11
2018版高考数学一轮总复习 第2章 函数、导数及其应用 2.2 函数的单调性与最值模拟演练 理[A 级 基础达标](时间:40分钟)1.[2017·北京模拟]下列函数中,定义域是R 且为增函数的是( ) A .y =e -xB .y =x 3C .y =ln xD .y =|x | 答案 B解析 因为对数函数y =ln x 的定义域不是R ,故首先排除选项C ;因为指数函数y =e-x,即y =⎝ ⎛⎭⎪⎫1e x,在定义域内单调递减,故排除选项A ;对于函数y =|x |,当x ∈(-∞,0)时,函数变为y =-x ,在其定义域内单调递减,因此排除选项D ;而函数y =x 3在定义域R 上为增函数,故选B.2.[2016·江西模拟]若f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,则实数a 的取值范围是( )A .a <-3B .a ≤-3C .a >-3D .a ≥-3答案 B解析 对称轴x =1-a ≥4,∴a ≤-3. 3.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2] D .[2,+∞) 答案 A解析 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].4.[2017·郑州质检]函数f (x )=x 2+x -6的单调增区间是( ) A .(-∞,-3) B .[2,+∞) C .[0,2) D .[-3,2]答案 B解析 ∵x 2+x -6≥0,∴x ≥2或x ≤-3,又∵y =x 2+x -6是由y =t ,t ∈[0,+∞)和t =x 2+x -6,x ∈(-∞,-3]∪[2,+∞)两个函数复合而成,而函数t =x 2+x -6在[2,+∞)上是增函数,y =t 在[0,+∞)上是增函数,又因为y =x 2+x -6的定义域为(-∞,-3]∪[2,+∞),所以y =x 2+x -6的单调增区间是[2,+∞),故选B.5.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞) B.(8,9] C .[8,9] D .(0,8) 答案 B解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -,解得8<x ≤9.6.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________. 答案 6解析 易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f a =1,f b =f(13,)即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4.∴a +b =6.7.[2017·山西模拟]若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.答案 -6解析 由图象的对称性,知函数f (x )=|2x +a |关于直线x =-a2对称,因为函数f (x )=|2x +a |的单调递增区间是[3,+∞),所以-a2=3,即a =-6.8.[2017·湖南模拟]函数y =x -x (x ≥0)的最大值为________. 答案 14解析 令t =x ,则t ≥0,所以y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,结合图象知,当t =12,即x=14时,y max =14. 9.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解 (1)证明:任取x 1<x 2<-2,则f (x 1)-f (x 2) =x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1].10.[2017·衡阳联考]已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值. 解 (1)证明:设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2) =f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0, ∴f (x 1-x 2)<0,即f (x 1)<f (x 2), ∴f (x )在R 上为减函数. (2)∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,且f (0)+f (0)=f (0), ∴f (0)=0,又f (-3)+f (3)=f (-3+3)=0, ∴f (-3)=-f (3)=2.∴f (x )在[-3,3]上的最大值为2,最小值为-2.[B 级 知能提升](时间:20分钟)11.[2017·安徽合肥模拟]若2x +5y ≤2-y +5-x,则有( ) A .x +y ≥0 B.x +y ≤0 C.x -y ≤0 D.x -y ≥0 答案 B解析 设函数f (x )=2x-5-x,易知f (x )为增函数,又f (-y )=2-y-5y,由已知得f (x )≤f (-y ),∴x ≤-y ,∴x +y ≤0.12.[2017·山东泰安模拟]已知函数f (x )=⎩⎪⎨⎪⎧a x,x >1,⎝ ⎛⎭⎪⎫4-a 2x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围是( )A .(1,+∞) B.[4,8) C .(4,8) D .(1,8)答案 B解析 由f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,4-a 2>0,⎝ ⎛⎭⎪⎫4-a 2+2≤a ,解得4≤a <8.13.已知函数f (x )=3-axa -1(a ≠1). (1)若a >0,则f (x )的定义域是________;(2)若f (x )在区间(0,1]上是减函数,则实数a 的取值范围是________. 答案 (1)⎝ ⎛⎦⎥⎤-∞,3a (2)(-∞,0)∪(1,3]解析 (1)当a >0且a ≠1时,由3-ax ≥0得x ≤3a,即此时函数f (x )的定义域是⎝ ⎛⎦⎥⎤-∞,3a .(2)当a -1>0,即a >1时,要使f (x )在(0,1]上是减函数,则需3-a ×1≥0,此时1<a ≤3. 当a -1<0,即a <1时,要使f (x )在(0,1]上是减函数,则需-a >0,此时a <0. 综上所述,所求实数a 的取值范围是(-∞,0)∪(1,3]. 14.已知函数f (x )=a -1|x |. (1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. 解 (1)证明:当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0,f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫a -1x 2-⎝ ⎛⎭⎪⎫a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x )在(0,+∞)上是增函数.(2)由题意,a -1x<2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立. 任取x 1,x 2∈(1,+∞)且x 1<x 2,h (x 1)-h (x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫2-1x 1x 2.∵1<x 1<x 2,∴x 1-x 2<0,x 1x 2>1, ∴2-1x 1x 2>0,∴h (x 1)<h (x 2),∴h (x )在(1,+∞)上单调递增. 故a ≤h (1),即a ≤3, ∴a 的取值范围是(-∞,3].。
2018年高考数学一轮复习第二章函数、导数及其应用课时达标14导数与函数的单调性理[解密考纲]本考点主要考查利用导数研究函数的单调性.高考中导数试题经常和不等式、函数、三角函数、数列等知识相结合,作为中档题或压轴题出现.三种题型均有出现,以解答题为主,难度较大.一、选择题1.(2017·福建福州模拟)函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是( D )解析:由函数f(x)的图象可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上f′(x)>0,在(0,+∞)上f′(x)<0.选项D满足,故选D.2.(2017·苏中八校联考)函数f(x)=x-ln x的单调递减区间为( A )A .(0,1)B .(0,+∞)C .(1,+∞)D .(-∞,0)∪(1,+∞)解析:函数的定义域是(0,+∞), 且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x <1,所以单调递减区间是(0,1).3.(2017·吉林长春调研)已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.4.函数f (x )对定义域R 上的任意x 都有f (2-x )=f (x ),且当x ≠1时,其导函数f ′(x )满足xf ′(x )>f ′(x ),若1<a <2,则有( C )A .f (2a)<f (2)<f (log 2a ) B .f (2)<f (log 2a )<f (2a) C .f (log 2a )<f (2)<f (2a)D .f (log 2a )<f (2a)<f (2)解析:∵函数f (x )对定义域R 上的任意x 都有f (2-x )=f (x ),∴函数图象的对称轴为直线x =1.又∵其导函数f ′(x )满足xf ′(x )>f ′(x ),即(x -1)f ′(x )>0,故当x ∈(1,+∞)时,函数单调递增,x ∈(-∞,1)时,函数单调递减.∵1<a <2,∴0<log 2a <1,2a >2,∴f (log 2a )<f (2)<f (2a),故选C .5.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为( D )A .(-∞,-2)∪(1,+∞)B .(-∞,2)∪(1,2)C .(-∞,-1)∪(-1,0)∪(2,+∞)D .(-∞,-1)∪(-1,1)∪(3,+∞)解析:由题图可知,f ′(x )>0,则x ∈(-∞,-1)∪(1,+∞),f ′(x )<0,则x ∈(-1,1),不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧f ′x >0,x 2-2x -3>0,或⎩⎪⎨⎪⎧f ′x <0,x 2-2x -3<0,解得x ∈(-∞,-1)∪(-1,1)∪(3,+∞).6.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( C )A .[1,+∞)B .[1,2)C .⎣⎢⎡⎭⎪⎫1,32D .⎣⎢⎡⎭⎪⎫32,2 解析:f ′(x )=4x -1x=2x -12x +1x,∵x >0,由f ′(x )=0得x =12.∴令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.由题意得⎩⎪⎨⎪⎧k -1≥0,k -1<12<k +1⇒1≤k <32.故C 正确.二、填空题7.函数f (x )=x 3-15x 2-33x +6的单调减区间为(-1,11).解析:由f (x )=x 3-15x 2-33x +6得f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,解得-1<x <11,所以函数f (x )的单调减区间为(-1,11).8.f (x )=xn 2-3n (n ∈Z )是偶函数,且y =f (x )在(0,+∞)上是减函数,则n =1或2.解析:∵f (x )=xn 2-3n (n ∈Z )是偶函数,∴n 2-3n =2k (k ∈Z ),即f (x )=x 2k,∴f ′(x )=2kx 2k -1,∵f (x )是偶函数且在(0,+∞)上是减函数, ∴在(0,+∞)上f ′(x )=2kx 2k -1<0恒成立.∵x2k -1>0,∴2k <0.即n 2-3n <0,解得0<n <3.∵n ∈Z ,∴n =1或n =2.9.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则实数b 的最大值是-1.解析:函数的定义域是x +2>0,即x >-2,而f ′(x )=-x +bx +2=-x 2-2x +bx +2.因为x +2>0,函数f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,即-x 2-2x +b ≤0在x∈(-1,+∞)上恒成立,得b ≤x 2+2x 在x ∈(-1,+∞)上恒成立,令g (x )=x 2+2x =(x +1)2-1,x ∈(-1,+∞),则g (x )>g (-1)=-1,所以b ≤-1,则b 的最大值为-1.三、解答题10.已知函数f (x )=ln x +kex(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.解析:(1)由题意得f ′(x )=1x-ln x -ke x,又f ′(1)=1-ke=0,故k =1. (2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),递减区间是(1,+∞).11.已知二次函数h (x )=ax 2+bx +2,其导函数y =h ′(x )的图象如图,f (x )=6ln x +h (x ).(1)求函数f (x )的解析式;(2)若函数f (x )在区间⎝⎛⎭⎪⎫1,m +12上是单调函数,求实数m 的取值范围.解析:(1)由已知,h ′(x )=2ax +b ,其图象为直线,且过(0,-8),(4,0)两点,把两点坐标代入h ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧b =-8,8a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-8,∴h (x )=x 2-8x +2,h ′(x )=2x -8, ∴f (x )=6ln x +x 2-8x +2. (2)f ′(x )=6x+2x -8=2x -1x -3x,∵x >0,∴f ′(x ),f (x )的变化如下:x (0,1) 1 (1,3) 3 (3,+∞)f ′(x ) + 0- 0+ f (x )递增递减递增∴f (x )递减区间为(1,3),要使函数f (x )在区间⎝ ⎛⎭⎪⎫1,m +12上是单调函数, 则⎩⎪⎨⎪⎧1<m +12,m +12≤3,解得12<m ≤52.故m 的取值范围是⎝ ⎛⎦⎥⎤12,52.12.设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解析:(1)函数的定义域为(-∞,+∞),f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <⎝⎛⎭⎪⎫x +2x max =-22,当且仅当x =2x,即x =-2时等号成立,所以满足要求的a 的取值范围是(-∞,-22).。
第二节 函数的单调性与最值1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则都有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调性、单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.3.函数的最值1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,x 1≠x 2且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(3)函数y =|x |是R 上的增函数.( ) (4)所有的单调函数都有最值.( )[答案] (1)√ (2)× (3)× (4)×2.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-xD [选项A 中,y =11-x 在(-∞,1)和(1,+∞)上为增函数,故y =11-x 在(-1,1)上为增函数;选项B 中,y =cos x 在(-1,1)上先增后减;选项C 中,y =ln(x +1)在(-1,+∞)上为增函数,故y =ln(x +1)在(-1,1)上为增函数;选项D 中,y =2-x =⎝ ⎛⎭⎪⎫12x 在R 上为减函数,故y =2-x在(-1,1)上是减函数.]3.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________.2 25 [可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.]4.函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________.【导学号:51062019】⎝⎛⎭⎪⎫-∞,-12 [由题意知2k +1<0,得k <-12.] 5.f (x )=x 2-2x ,x ∈[-2,3]的单调增区间为________,f (x )max =________. [1,3] 8 [f (x )=(x -1)2-1,故f (x )的单调增区间为[1,3],f (x )max =f (-2)=8.](1)2(2)试讨论函数f (x )=x +kx(k >0)的单调性.(1)(-∞,-1) [由x 2-1>0得x >1或x <-1,即函数f (x )的定义域为(-∞,-1)∪(1,+∞).令t =x 2-1,因为y =log 2t 在t ∈(0,+∞)上为增函数,t =x 2-1在x ∈(-∞,-1)上是减函数,所以函数f (x )=log 2(x 2-1)的单调递减区间为(-∞,-1).](2)法一:由解析式可知,函数的定义域是(-∞,0)∪(0,+∞).在(0,+∞)内任取x 1,x 2,令0<x 1<x 2,那么f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫x 2+k x 2-⎝ ⎛⎭⎪⎫x 1+k x 1=(x 2-x 1)+k ⎝ ⎛⎭⎪⎫1x 2-1x 1=(x 2-x 1)x 1x 2-kx 1x 2.2分因为0<x 1<x 2,所以x 2-x 1>0,x 1x 2>0. 故当x 1,x 2∈(k ,+∞)时,f (x 1)<f (x 2), 即函数在(k ,+∞)上单调递增.6分 当x 1,x 2∈(0,k )时,f (x 1)>f (x 2), 即函数在(0,k )上单调递减.考虑到函数f (x )=x +k x(k >0)是奇函数,在关于原点对称的区间上具有相同的单调性,故在(-∞,-k )上单调递增,在(-k ,0)上单调递减.综上,函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.15分法二:f ′(x )=1-k x2.2分令f ′(x )>0得x 2>k ,即x ∈(-∞,-k )或x ∈(k ,+∞),故函数的单调增区间为(-∞,-k )和(k ,+∞).6分令f ′(x )<0得x 2<k ,即x ∈(-k ,0)或x ∈(0,k ),故函数的单调减区间为(-k ,0)和(0,k ).12分故函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.15分[规律方法] 1.利用定义判断或证明函数的单调性时,作差后应注意差式的分解变形要彻底.2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确.易错警示:求函数的单调区间,应先求定义域,在定义域内求单调区间,如本题(1). [变式训练1] (1)(2017·湖州二次调研)下列四个函数中,在定义域上不是单调函数的是( )A .y =x 3B .y =xC .y =1xD .y =⎝ ⎛⎭⎪⎫12x(2)函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)(1)C (2)D [(1)选项A ,B 中函数在定义域内均为单调递增函数,选项D 为在定义域内为单调递减函数,选项C 中,设x 1<x 2(x 1,x 2≠0),则y 2-y 1=1x 2-1x 1=x 1-x 2x 1x 2,因为x 1-x 2<0,当x 1,x 2同号时x 1x 2>0,1x 2-1x 1<0,当x 1,x 2异号时x 1x 2<0,1x 2-1x 1>0,所以函数y =1x在定义域上不是单调函数,故选C.(2)由x 2-4>0得x >2或x <-2,所以函数f (x )的定义域为(-∞,-2)∪(2,+∞),因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,可知所求区间为(-∞,-2).]已知f (x )=x,x ∈[1,+∞),且a ≤1.(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.[思路点拨] (1)先判断函数f (x )在[1,+∞)上的单调性,再求最小值;(2)根据f (x )min>0求a 的范围,而求f (x )min 应对a 分类讨论.[解] (1)当a =12时,f (x )=x +12x +2,f ′(x )=1-12x 2>0,x ∈[1,+∞),即f (x )在[1,+∞)上是增函数,∴f (x )min =f (1)=1+12×1+2=72.4分(2)f (x )=x +ax+2,x ∈[1,+∞).法一:①当a ≤0时,f (x )在[1,+∞)内为增函数.f (x )min =f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0, ∴-3<a ≤0.7分②当0<a ≤1时,f (x )在[1,+∞)内为增函数,f (x )min =f (1)=a +3,∴a +3>0,a >-3,∴0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1].15分法二:f (x )=x +a x+2>0,∵x ≥1,∴x 2+2x +a >0,8分∴a >-(x 2+2x ),而-(x 2+2x )在x =1时取得最大值-3,∴-3<a ≤1,即a 的取值范围为(-3,1].15分[规律方法] 利用函数的单调性求最值是求函数最值的重要方法,若函数f (x )在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).请思考,若函数f (x )在闭区间[a ,b ]上是减函数呢? [变式训练2] 函数f (x )=xx -1(x ≥2)的最大值为________. 2 [法一:∵f ′(x )=-1x -2,∴x ≥2时,f ′(x )<0恒成立,∴f (x )在[2,+∞)上单调递减,∴f (x )在[2,+∞)上的最大值为f (2)=2. 法二:∵f (x )=xx -1=x -1+1x -1=1+1x -1, ∴f (x )的图象是将y =1x的图象向右平移1个单位,再向上平移1个单位得到的.∵y =1x在[2,+∞)上单调递减,∴f (x )在[2,+∞)上单调递减,故f (x )在[2,+∞)上的最大值为f (2)=2.法三:由题意可得f (x )=1+1x -1. ∵x ≥2,∴x -1≥1,∴0<1x -1≤1, ∴1<1+1x -1≤2,即1<x x -1≤2. 故f (x )在[2,+∞)上的最大值为2.]☞角度1 比较大小(2017·浙江冲刺卷四)定义在R 上的奇函数f (x )满足f (x -2)=-f (x ),且在区间[0,1]上是增函数,则( )A .f ⎝ ⎛⎭⎪⎫54<f ⎝ ⎛⎭⎪⎫53<f ⎝ ⎛⎭⎪⎫52B .f ⎝ ⎛⎭⎪⎫53<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫54C .f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫54<f ⎝ ⎛⎭⎪⎫53D .f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫53<f ⎝ ⎛⎭⎪⎫54 D [由f (x -2)=-f (x ),得f (x +2)=-f (x ),又f (x )为R 上的奇函数,从而有f (x+2)=f (-x ).则f ⎝ ⎛⎭⎪⎫52=-f ⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫53=f ⎝ ⎛⎭⎪⎫13,f ⎝ ⎛⎭⎪⎫54=f ⎝ ⎛⎭⎪⎫34.因为f (x )在区间[0,1]上是增函数,且34>13>0,所以f ⎝ ⎛⎭⎪⎫34>f ⎝ ⎛⎭⎪⎫13>f (0)=0,即有f ⎝ ⎛⎭⎪⎫54>f ⎝ ⎛⎭⎪⎫53>0,又f ⎝ ⎛⎭⎪⎫12>f (0)=0,则f ⎝ ⎛⎭⎪⎫52=-f ⎝ ⎛⎭⎪⎫12<0,从而有f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫53<f ⎝ ⎛⎭⎪⎫54.] ☞角度2 解不等式已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则不等式f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的解集是________. 【导学号:51062020】 ⎣⎢⎡⎭⎪⎫12,23 [由题意知⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,即⎩⎪⎨⎪⎧x ≥12,x <23,所以12≤x <23.]☞角度3 求参数的取值范围(1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a的取值范围是( )A.⎝ ⎛⎭⎪⎫-14,+∞B.⎣⎢⎡⎭⎪⎫-14,+∞C.⎣⎢⎡⎭⎪⎫-14,0 D.⎣⎢⎡⎦⎥⎤-14,0 (2)已知函数f (x )=⎩⎪⎨⎪⎧a -x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.(1)D (2)(2,3] [(1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,0.(2)要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f 1≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3].][规律方法] 1.比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.2.解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.3.利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.易错警示:(1)若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.[思想与方法]1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时为增函数,不同时为减函数.(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性.2.求函数最值的常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.[易错与防范]1.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.3.函数在两个不同的区间上单调性相同,要分开写,用“,”隔开,不能用“∪”连接.课时分层训练(四) 函数的单调性与最值A 组 基础达标 (建议用时:30分钟)一、选择题1.下列函数中,定义域是R 且为增函数的是( ) 【导学号:51062021】 A .y =2-xB .y =xC .y =log 2xD .y =-1xB [由题知,只有y =2-x与y =x 的定义域为R ,且只有y =x 在R 上是增函数.] 2.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增B [由题意知,a <0,b <0,则-b2a <0,从而函数y =ax 2+bx 在(0,+∞)上为减函数.]3.函数f (x )=ln(4+3x -x 2)的单调递减区间是( ) A.⎝ ⎛⎦⎥⎤-∞,32 B.⎣⎢⎡⎭⎪⎫32,+∞C.⎝⎛⎦⎥⎤-1,32 D.⎣⎢⎡⎭⎪⎫32,4 D [要使函数有意义需4+3x -x 2>0, 解得-1<x <4,∴定义域为(-1,4).令t =4+3x -x 2=-⎝ ⎛⎭⎪⎫x -322+254.则t 在⎝ ⎛⎦⎥⎤-1,32上递增,在⎣⎢⎡⎭⎪⎫32,4上递减, 又y =ln t 在⎝⎛⎦⎥⎤0,254上递增,∴f (x )=ln(4+3x -x 2)的单调递减区间为⎣⎢⎡⎭⎪⎫32,4.]4.(2017·绍兴质检)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( )A .(-∞,1]B .(-∞,-1]C .[-1,+∞)D .[1,+∞)A [因为函数f (x )在(-∞,-1)上是单调函数,所以-a ≥-1,解得a ≤1.]5.(2017·台州调研)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,x 2-2x ,x <0.若f (-a )+f (a )≤2f (1),则a 的取值范围是( )A .[-1,0)B .[0,1]C .[-1,1]D .[-2,2]C [因为函数f (x )是偶函数,故f (-a )=f (a ),原不等式等价于f (a )≤f (1),即f (|a |)≤f (1),而函数在[0,+∞)上单调递增,故|a |≤1,解得-1≤a ≤1.]二、填空题6.(2017·温州一模)函数f (x )=log 2(-x 2+22)的值域为________.【导学号:51062022】⎝⎛⎦⎥⎤-∞,32 [∵0<-x 2+22≤22,∴当x =0时,f (x )取得最大值,f (x )max =f (0)=log 222=32,∴f (x )的值域为⎝⎛⎦⎥⎤-∞,32.] 7.已知函数f (x )为R 上的减函数,若m <n ,则f (m )________f (n );若f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1),则实数x 的取值范围是________.> (-1,0)∪(0,1) [由题意知f (m )>f (n );⎪⎪⎪⎪⎪⎪1x>1, 即|x |<1,且x ≠0.故-1<x <1且x ≠0.]8.(2017·宁波模拟)设函数f (x )=⎩⎪⎨⎪⎧-x +a ,x <1,2x,x ≥1的最小值为2,则实数a 的取值范围是________.[3,+∞) [当x ≥1时,f (x )≥2,当x <1时,f (x )>a -1.由题意知a -1≥2,∴a ≥3.]三、解答题9.已知函数f (x )=-2x +1,x ∈[0,2],用定义证明函数的单调性,并求函数的最大值和最小值. 【导学号:51062023】[解] 设0≤x1<x 2≤2,则f (x 1)-f (x 2)=-2x 1+1-⎝ ⎛⎭⎪⎫-2x 2+1=-x 2+1-x 1-x 1+x 2+=-x 2-x 1x 1+x 2+.3分由0≤x 1<x 2≤2,得x 2-x 1>0,(x 1+1)(x 2+1)>0,6分所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在区间[0,2]上是增函数.10分因此,函数f (x )=-2x +1在区间[0,2]的左端点取得最小值,右端点取得最大值,即最小值是f (0)=-2,最大值是f (2)=-23.15分 10.已知f (x )=xx -a (x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.[解] (1)证明:设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.4分 ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.7分(2)f (x )=xx -a =x -a +a x -a =1+a x -a , 当a >0时,f (x )在(-∞,a ),(a ,+∞)上是减函数,10分又f (x )在(1,+∞)内单调递减,∴0<a ≤1,故实数a 的取值范围是(0,1].15分B 组 能力提升(建议用时:15分钟)1.(2017·诸暨市一中模拟)已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若存在f (a )=g (b ),则实数b 的取值范围为( )A .[0,3]B .(1,3)C .[2-2,2+2]D .(2-2,2+2) D [由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1,若f (a )=g (b ),则g (b )∈(-1,1],即-b 2+4b -3>-1,即b 2-4b +2<0,解得2-2<b <2+ 2.所以实数b 的取值范围为(2-2,2+2),故选D.]2.规定符号“*”表示一种两个正实数之间的运算,即a *b =ab +a +b ,a ,b 是正实数,已知1] .(1,+∞) [由题意知1]k )+1+k =3,解得k =1或k =-2(舍去),所以f (x )=k *x =1]x )+x +1=⎝⎛⎭⎪⎫x +122+34,因为x >0,所以f (x )>1,即f (x )的值域是(1,+∞).]3.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 【导学号:51062024】[解] (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.3分(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,当x >1时,f (x )<0,∴f ⎝ ⎛⎭⎪⎫x 1x2<0,5分 即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),∴函数f (x )在区间(0,+∞)上是单调递减函数.9分(3)∵f (x )在(0,+∞)上是单调递减函数,∴f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),得f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),12分 而f (3)=-1,∴f (9)=-2.∴f (x )在[2,9]上的最小值为-2.15分。
2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标5函数的单调性与最值 理[解密考纲]本考点考查函数的单调性,单独命题多以选择题的形式呈现,排在中间靠前的位置,题目难度系数属于中等或中等偏上;另外,函数的性质也常常与三角函数、向量、不等式、导数等相结合出解答题,有一定难度.一、选择题1.(2017·北京模拟)下列函数中,在区间(1,+∞)上是增函数的是( B ) A .y =-x +1 B .y =11-xC .y =-(x -1)2D .y =31-x解析:函数y =-x +1在(1,+∞)上为减函数;y =11-x在(1,+∞)上为增函数;y =-(x -1)2在(1,+∞)上为减函数;y =31-x在(1,+∞)上为减函数,故选B .2.(2017·广东广州模拟)已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( C )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:函数f (x )为R 上的减函数,且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1),所以⎪⎪⎪⎪⎪⎪1x >1,即|x |<1且|x |≠0,所以x ∈(-1,0)∪(0,1).3.若函数f (x )(x ∈R )对任意x 1≠x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则函数f (x )是( A )A .增函数B .减函数C .奇函数D .偶函数解析:由x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0,即(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )为增函数,故选A .4.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )在[a ,b ]上有( C )A .最小值f (a )B .最大值f (b )C .最小值f (b )D .最大值f ⎝⎛⎭⎪⎫a +b 2解析:设x 1<x 2,由已知得f (x 1)=f ((x 1-x 2)+x 2)=f (x 1-x 2)+f (x 2). 又x 1-x 2<0,所以f (x 1-x 2)>0,则f (x 1)>f (x 2),即f (x )在R 上为减函数. 所以f (x )在[a ,b ]上也为减函数,所以f (x )min =f (b ),f (x )max =f (a ),故选C .5.(2017·东北三校联考)已知函数f (x )=⎩⎪⎨⎪⎧-x -3a ,x <0,a x-2,x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( B )A .⎝ ⎛⎦⎥⎤0,23B .⎝ ⎛⎦⎥⎤0,13 C .(0,1)D .(0,2]解析:由f (x )是(-∞,+∞)上的减函数,可得⎩⎪⎨⎪⎧0<a <1,f 0=a 0-2≤-3a ,解得0<a ≤13.6.(2017·陕西咸阳模拟)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4,若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( D )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)解析:如图,画出f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4的图象,若使函数y =f (x )在区间(a ,a +1)上单调递增,则a +1≤2或a ≥4,解得实数a 的取值范围是(-∞,1]∪[4,+∞),故选D .二、填空题7.函数f (x )=x +21-x 的最大值为2. 解析:设1-x =t (t ≥0),所以x =1-t 2.所以y =x +21-x =1-t 2+2t =-t 2+2t +1=-(t -1)2+2. 所以当t =1,即x =0时,y max =2.8.(2017·湖北武汉模拟)用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为6.解析:由f (x )=min{2x,x +2,10-x }(x ≥0)画出图象,最大值在A 处取得,联立⎩⎪⎨⎪⎧y =x +2,y =10-x ,得y =6.9.(2017·河北石家庄调研)已知a >0且a ≠1,设函数f (x )=⎩⎪⎨⎪⎧x -2,x ≤3,2+log a x ,x >3的最大值为1,则a 的取值范围为⎣⎢⎡⎭⎪⎫13,1.解析:f (x )在(-∞,3]上是增函数,则f (x )max =1. ∵f (x )在R 上的最大值为1,∴0<a <1,且2+log a 3≤1, 解得13≤a <1,∴a 的取值范围是⎣⎢⎡⎭⎪⎫13,1. 三、解答题10.已知函数f (x )=-2x +1,x ∈[0,2],用定义证明函数的单调性,并求函数的最大值和最小值.解析:设x 1,x 2是区间[0,2]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=-2x 1+1-⎝ ⎛⎭⎪⎫-2x 2+1=-2x 2+1-x 1-1x 1+1x 2+1=-2x 2-x 1x 1+1x 2+1.由0≤x 1<x 2≤2,得x 2-x 1>0,(x 1+1)(x 2+1)>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 故f (x )在区间[0,2]上是增函数. 因此,函数f (x )=-2x +1在区间[0,2]的左端点取得最小值,右端点取得最大值,即最小值是f (0)=-2,最大值是f (2)=-23.11.已知f (x )是定义在(0,+∞)上的减函数,满足f (x )+f (y )=f (xy ). (1)求证:f (x )-f (y )=f ⎝ ⎛⎭⎪⎫x y;(2)若f (4)=-4,解不等式f (x )-f ⎝⎛⎭⎪⎫1x -12≥-12.解析:(1)证明:由条件f (x )+f (y )=f (xy )可得f ⎝ ⎛⎭⎪⎫x y +f (y )=f ⎝ ⎛⎭⎪⎫x y·y =f (x ),所以f (x )-f (y )=f ⎝ ⎛⎭⎪⎫x y .(2)f (4)=-4,所以f (4)+f (4)=f (16)=-8,f (4)+f (16)=f (64)=-12.由(1)得f (x )-f ⎝⎛⎭⎪⎫1x -12=f (x (x -12)),又f (x )是定义在(0,+∞)上的减函数,⎩⎪⎨⎪⎧x >01x -12>0⇒x >12,由f (x )-f ⎝⎛⎭⎪⎫1x -12≥-12,有f (x (x -12))≥f (64),所以x (x -12)≤64. 所以x 2-12x -64=(x -16)(x +4)≤0, 得-4≤x ≤16,又x >12,所以x ∈(12,16].12.已知f (x )=x 2+2x +ax,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解析:(1)当a =12时,f (x )=x +12x+2,任取1≤x 1<x 2,则f (x 1)-f (x 2)=(x 1-x 2)+⎝⎛⎭⎪⎫12x 1-12x 2=x 1-x 22x 1x 2-12x 1x 2, ∵1≤x 1<x 2,∴x 1x 2>1,∴2x 1x 2-1>0. 又x 1-x 2<0,∴f (x 1)<f (x 2), ∴f (x )在[1,+∞)上是增函数,∴f (x )在[1,+∞)上的最小值为f (1)=72.(2)∵在区间[1,+∞)上,f (x )=x 2+2x +ax>0恒成立,则⎩⎪⎨⎪⎧x 2+2x +a >0,x ≥1⇔⎩⎪⎨⎪⎧a >-x 2+2x,x ≥1,等价于a 大于函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.∵φ(x )=-(x +1)2+1在[1,+∞)上递减,∴当x =1时,φ(x )取最大值为φ(1)=-3,∴a>-3,故实数a的取值范围是(-3,+∞).。
第二节 函数的单调性与最值1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则都有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2);(2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2).2.单调性、单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.3.函数的最值1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,x 1≠x 2且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( ) (3)函数y =|x |是R 上的增函数.( )(4)所有的单调函数都有最值.( )[答案] (1)√ (2)× (3)× (4)×2.下列函数中,在区间(-1,1)上为减函数的是( )A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-xD [选项A 中,y =11-x 在(-∞,1)和(1,+∞)上为增函数,故y =11-x在(-1,1)上为增函数;选项B 中,y =cos x 在(-1,1)上先增后减;选项C 中,y =ln(x +1)在(-1,+∞)上为增函数,故y =ln(x +1)在(-1,1)上为增函数; 选项D 中,y =2-x =⎝ ⎛⎭⎪⎫12x 在R 上为减函数,故y =2-x 在(-1,1)上是减函数.] 3.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________.2 25 [可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.]4.函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________.【导学号:51062019】 ⎝⎛⎭⎪⎫-∞,-12 [由题意知2k +1<0,得k <-12.] 5.f (x )=x 2-2x ,x ∈[-2,3]的单调增区间为________,f (x )max =________.[1,3] 8 [f (x )=(x -1)2-1,故f (x )的单调增区间为[1,3],f (x )max =f (-2)=8.](1)2(2)试讨论函数f (x )=x +kx (k >0)的单调性.(1)(-∞,-1) [由x 2-1>0得x >1或x <-1,即函数f (x )的定义域为(-∞,-1)∪(1,+∞).令t =x 2-1,因为y =log 2t 在t ∈(0,+∞)上为增函数, t =x 2-1在x ∈(-∞,-1)上是减函数,所以函数f (x )=log 2(x 2-1)的单调递减区间。
第2讲 函数的单调性与最值最新考纲 1.理解函数的单调性、最大(小)值及其几何意义;2.会运用基本初等函数的图象分析函数的性质.知 识 梳 理1.函数的单调性 (1)单调函数的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值 1.判断正误(在括号内打“√”或“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,且x 1≠x 2有(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(3)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( )(4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) 解析 (2)此单调区间不能用并集符号连接,取x 1=-1,x 2=1,则f (-1)<f (1),故应说成单调递减区间为(-∞,0)和(0,+∞). (3)应对任意的x 1<x 2,f (x 1)<f (x 2)成立才可以.(4)若f (x )=x ,f (x )在[1,+∞)上为增函数,但y =f (x )的单调递增区间可以是R .答案 (1)√ (2)× (3)× (4)×2.(2017·丽水调研)下列函数中,在区间(0,+∞)内单调递减的是( ) A.y =1x-xB.y =x 2-xC.y =ln x -xD.y =e x -x解析 对于A ,y 1=1x在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x-x 在(0,+∞)内是减函数;B ,C 选项中的函数在(0,+∞)上均不单调;选项D 中,y ′=e x -1,而当x ∈(0,+∞)时,y ′>0,所以函数y =e x -x 在(0,+∞)上是增函数. 答案 A3.如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,那么( ) A.a =-2 B.a =2 C.a ≤-2D.a ≥2解析 二次函数的对称轴方程为x =-a -13,由题意知-a -13≥1,即a ≤-2.答案 C4.函数f (x )=lg x 2的单调递减区间是________.解析 f (x )的定义域为(-∞,0)∪(0,+∞),y =lg u 在(0,+∞)上为增函数,u =x 2在(-∞,0)上递减,在(0,+∞)上递增,故f (x )在(-∞,0)上单调递减. 答案 (-∞,0)5.(2016·北京卷)函数f (x )=x x -1(x ≥2)的最大值为________.解析 易得f (x )=x x -1=1+1x -1, 当x ≥2时,x -1>0,易知f (x )在[2,+∞)是减函数, ∴f (x )max =f (2)=1+12-1=2. 答案 26.(2017·金华模拟)已知函数f (x )=⎩⎨⎧3x-1,x ≤1,f (x -1),x >1,则f (f (2))=________,值域为________.解析 ∵f (x )=⎩⎨⎧3x-1,x ≤1,f (x -1),x >1,∴f (2)=f (2-1)=f (1)=3-1=2,f (f (2))=f (2)=2.当x ≤1时,f (x )=3x -1在(-∞,1]上递增,∴f (x )∈(-1,2]; 当x >1时,记x =[x ]+(x -[x ]),其中[x ]为不大于x 的最大整数,则x -[x ]∈[0,1),由f (x -1)=f (x )得f (x )=f (x -[x ])=3x -[x ]-1∈[0,2),故f (x )的值域为(-1,2]∪[0,2)=(-1,2]. 答案 2 (-1,2]考点一 确定函数的单调性(区间)【例1】 (1)函数f (x )=log 12(x 2-4)的单调递增区间为( )A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)(2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.(1)解析 由x 2-4>0,得x >2或x <-2. ∴f (x )的定义域为(-∞,-2)∪(2,+∞). 令t =x 2-4,则y =log 12t (t >0).∵t =x 2-4在(-∞,-2)上是减函数,且y =log 12t 在(0,+∞)上是减函数,∴函数f (x )在(-∞,-2)上是增函数,即f (x )单调递增区间为(-∞,-2). 答案 D(2)解 法一 设-1<x 1<x 2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1= a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上递增. 法二 f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上递增.规律方法 (1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1).(2)函数单调性的判断方法有:①定义法;②图象法;③利用已知函数的单调性;④导数法.(3)函数y =f (g (x ))的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.【训练1】 判断函数f (x )=x +a x(a >0)在(0,+∞)上的单调性,并给出证明. 解 f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数. 证明如下:法一 设x 1,x 2是任意两个正数,且0<x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+a x 1-⎝ ⎛⎭⎪⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ).当0<x 1<x 2≤a 时,0<x 1x 2<a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数. 当a ≤x 1<x 2时,x 1x 2>a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上为增函数.法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-a x2>0, 解得x >a 或x <-a (舍).令f ′(x )<0,则1-ax 2<0,解得-a <x <a .∵x >0,∴0<x <a .∴f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数. 考点二 确定函数的最值【例2】 (1)(2017·丽水一模)已知函数f (x )=⎩⎨⎧log 13x ,x >1,-x 2+2x ,x ≤1,则f (f (3))=________,函数f (x )的最大值是________.(2)已知函数f (x )=x 2+2x +ax,x ∈[1,+∞)且a ≤1.①当a =12时,求函数f (x )的最小值;②若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.(1)解析①由于f (x )=⎩⎨⎧log 13x ,x >1,-x 2+2x ,x ≤1.所以f (3)=log 133=-1,则f (f (3))=f (-1)=-3,②当x >1时,f (x )=log 13x 是减函数,得f (x )<0.当x ≤1时,f (x )=-x 2+2x =-(x -1)2+1在(-∞,1]上单调递增,则f (x )≤1,综上可知,f (x )的最大值为1. 答案 -3 1(2)解 ①当a =12时,f (x )=x +12x +2,设1≤x 1<x 2,则f (x 2)-f (x 1)=(x 2-x 1)⎝ ⎛⎭⎪⎫1-12x 1x 2, ∵1≤x 1<x 2,∴x 2-x 1>0,2x 1x 2>2, ∴0<12x 1x 2<12,1-12x 1x 2>0,∴f (x 2)-f (x 1)>0,f (x 1)<f (x 2). ∴f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=72.②当x ∈[1,+∞)时,x 2+2x +ax >0恒成立.则x 2+2x +a >0对x ∈[1,+∞)上恒成立. 即a >-(x 2+2x )在x ∈[1,+∞)上恒成立.令g (x )=-(x 2+2x )=-(x +1)2+1,x ∈[1,+∞), ∴g (x )在[1,+∞)上是减函数,g (x )max =g (1)=-3. 又a ≤1,∴当-3<a ≤1时,f (x )>0在x ∈[1,+∞)上恒成立.故实数a 的取值范围是(-3,1].规律方法 (1)求函数最值的常用方法:①单调性法;②基本不等式法;③配方法;④图象法;⑤导数法.(2)利用单调性求最值,应先确定函数的单调性,然后根据性质求解.若函数f (x )在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).若函数f (x )在闭区间[a ,b ]上是减函数,则f (x )在[a ,b ]上的最大值为f (a ),最小值为f (b ).【训练2】 如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-2,0]上的最大值与最小值之和为( ) A.2B.3C.4D.-1解析 根据f (1+x )=f (-x ),可知函数f (x )的图象关于直线x =12对称.又函数f (x )在⎣⎢⎡⎭⎪⎫12,+∞上单调递增,故f (x )在⎝ ⎛⎦⎥⎤-∞,12上单调递减,则函数f (x )在[-2,0]上的最大值与最小值之和为f (-2)+f (0)=f (1+2)+f (1+0)=f (3)+f (1)=log 28+log 22=4. 答案 C考点三 函数单调性的应用(典例迁移)【例3】 (1)如果函数f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.(2)(2017·宁波模拟)定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,则不等式f (log 19x )>0的解集为________.解析 (1)对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0.所以y =f (x )在(-∞,+∞)上是增函数.所以⎩⎨⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫32,2.(2)∵y =f (x )是定义在R 上的奇函数,且y =f (x )在(0,+∞)上递增. ∴y =f (x )在(-∞,0)上也是增函数, 又f ⎝ ⎛⎭⎪⎫12=0,知f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=0.故原不等式f (log 19x )>0可化为f (log 19x )>f ⎝ ⎛⎭⎪⎫12或f (log 19x )>f ⎝ ⎛⎭⎪⎫-12,∴log 19x >12或-12<log 19x <0,解得0<x <13或1<x <3.所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <13或1<x <3.答案 (1)⎣⎢⎡⎭⎪⎫32,2 (2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <13或1<x <3【迁移探究1】 在例题第(1)题中,条件不变,若设m =f (-12),n =f (a ),t=f (2),试比较m ,n ,t 的大小.解 由例题知f (x )在(-∞,+∞)上是增函数, 且32≤a <2,又-12<a <2, ∴f ⎝ ⎛⎭⎪⎫-12<f (a )<f (2),即m <n <t . 【迁移探究2】 在例题第(2)题中,若条件改为:“定义在R 上的偶函数y =f (x )在[0,+∞)上单调递减”,且f ⎝ ⎛⎭⎪⎫12=0,则不等式f (log 19x )>0的解集是________.解析 因为f (x )在R 上为偶函数,且f ⎝ ⎛⎭⎪⎫12=0,所以f ⎝ ⎛⎭⎪⎫log 19x >0等价于f ⎝ ⎛⎭⎪⎫|log 19x |>f ⎝ ⎛⎭⎪⎫12,又f (x )在[0,+∞)上为减函数,所以⎪⎪⎪⎪⎪⎪log 19x <12,即-12<log 19x <12,解得13<x <3.答案 ⎝ ⎛⎭⎪⎫13,3规律方法 (1)利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.(2)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解,此时应特别注意函数的定义域. 【训练3】 (2016·天津卷)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________. 解析 ∵f (x )在R 上是偶函数,且在区间(-∞,0)上单调递增, ∴f (x )在(0,+∞)上是减函数, 则f (2|a -1|)>f (-2)=f (2),因此2|a -1|<2=212,又y =2x 是增函数, ∴|a -1|<12,解得12<a <32.答案 ⎝ ⎛⎭⎪⎫12,32[思想方法]1.利用定义证明或判断函数单调性的步骤: (1)取值 ;(2)作差;(3)定号;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法、利用基本不等式.闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时,最值一定在端点处取到. [易错防范]1.区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.例如,函数f (x )在区间(-1,0)上是减函数,在(0 ,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x.基础巩固题组 (建议用时:40分钟)一、选择题1.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A.-2B.2C.-6D.6解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6. 答案 C2.(2016·北京卷)下列函数中,在区间(-1,1)上为减函数的是( ) A.y =11-xB.y =cos xC.y =ln(x +1)D.y =2-x解析 ∵y =11-x与y =ln(x +1)在(-1,1)上为增函数,且y =cos x 在(-1,1)上不具备单调性.∴A,B ,C 不满足题意.只有y =2-x=⎝ ⎛⎭⎪⎫12x在(-1,1)上是减函数.答案 D3.定义新运算“⊕”:当a ≥b 时,a ⊕b =a 2;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),在区间[-2,2]上的最大值等于( ) A.-1B.1C.6D.12解析 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 答案 C4.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c <b <a B.b <a <c C.b <c <aD.a <b <c解析 ∵函数图象关于x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3),即b <a <c .答案 B5.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( ) A.(8,+∞) B.(8,9] C.[8,9]D.(0,8)解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎨⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.答案 B 二、填空题6.(2017·宁波调研)设函数f (x )=⎩⎨⎧x 2+1,x ≤1,2x +ax ,x >1,若f (f (1))=4a ,则实数a=________,函数f (x )的单调增区间为________.解析 ∵f (x )=⎩⎨⎧x 2+1,x ≤1,2x +ax ,x >1,∴f (1)=12+1=2,f (f (1))=f (2)=22+2a ,由f (f (1))=4a ,∴22+2a =4a ,∴a =2.当x ≤1时,f (x )在(-∞,0]上递减,在[0,1]上递增,且f (1)=2;当x >1时,f (x )=2x +2x 在(1,+∞)上递增,令x =1时f (1)=2+2=4,故f (x )的单调增区间为[0,1]∪(1,+∞)=[0,+∞).答案 2 [0,+∞)7.(2017·绍兴调研)函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.解析 由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3. 答案 38.(2017·潍坊模拟)设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.答案 (-∞,1]∪[4,+∞) 三、解答题9.已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.(1)证明 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)解 ∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又由(1)得f (x )在⎣⎢⎡⎦⎥⎤12,2上是单调增函数,∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,易知a =25.10.已知函数f (x )=2x -a x的定义域为(0,1](a 为实数). (1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.解 (1)当a =1时,f (x )=2x -1x,任取1≥x 1>x 2>0,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫2+1x 1x 2.∵1≥x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0.∴f (x 1)>f (x 2),∴f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值2-a ;当a <0时,f (x )=2x +-ax,当-a2≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ; 当-a2<1,即a ∈(-2,0)时,y =f (x )在⎝⎛⎦⎥⎤0,-a 2上单调递减,在⎣⎢⎡⎦⎥⎤-a2,1上单调递增,无最大值,当x =-a2时取得最小值2-2a . 能力提升题组 (建议用时:25分钟)11.(2017·郑州质检)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =( ) A.4B.2C.12D.14解析 当a >1,则y =a x 为增函数,有a 2=4,a -1=m ,此时a =2,m =12,此时g (x )=-x 在[0,+∞)上为减函数,不合题意. 当0<a <1,则y =a x 为减函数, 有a -1=4,a 2=m ,此时a =14,m =116.此时g (x )=34x 在[0,+∞)上是增函数.故a =14. 答案 D12.(2017·东阳第一中学模拟)已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若存在f (a )=g (b ),则实数b 的取值范围为( ) A.[0,3]B.(1,3)C.[2-2,2+2]D.(2-2,2+2)解析 由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1, 若f (a )=g (b ),则g (b )∈(-1,1], 即-b 2+4b -3>-1,即b 2-4b +2<0, 解得2-2<b <2+ 2.所以实数b 的取值范围为(2-2,2+2). 答案 D13.对于任意实数a ,b ,定义min{a ,b }=⎩⎨⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析 依题意,h (x )=⎩⎨⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, ∴h (x )在x =2时,取得最大值h (2)=1. 答案 114.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +ax>0,当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +ax -2,当a ∈(1,4),x ∈[2,+∞)时,∴g ′(x )=1-a x 2=x 2-ax 2>0.因此g (x )在[2,+∞)上是增函数, ∴f (x )在[2,+∞)上是增函数. 则f (x )min =f (2)=ln a2.(3)对任意x ∈[2,+∞),恒有f (x )>0.即x +ax -2>1对x ∈[2,+∞)恒成立.∴a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞).由于h (x )=-⎝ ⎛⎭⎪⎫x -322+94在[2,+∞)上是减函数,∴h (x )max =h (2)=2.故a >2时,恒有f (x )>0.因此实数a 的取值范围为(2,+∞).15.(2016·义乌模拟)a ∈R ,设函数f (x )=x |x -a |-x . (1)若a =3时,求f (x )函数的单调区间;(2)若a ≤0,对于任意的x ∈[0,t ],不等式-1≤f (x )≤6恒成立,求实数t 的最大值及此时a 的值.解 (1)当a =3时,f (x )=⎩⎨⎧-x 2+2x =-(x -1)2+1,x <3,x 2-4x =(x -2)2-4,x ≥3,函数f (x )的单调递增区间为(-∞,1),(3,+∞),单调递减区间为(1,3).(2)f (x )=⎩⎨⎧-x 2+(a -1)x ,x <a ,x 2-(a +1)x ,x ≥a ,①当a ≤-1时,a ≤a -12<a +12≤0,f (x )在[0,t ]上单调递增,f (x )min =f (0)=0,f (x )max =f (t )=t 2-(a +1)t ,由题意得f (x )max ≤6,即 t 2-(a +1)t ≤6,解得0≤t ≤(a +1)+(a +1)2+242.令m =-(a +1)≥0,h (m )=m 2+24-m 2=12m 2+24+m在[0,+∞)上单调递减, 所以h (x )max =h (0)=6,即当a =-1时,t max = 6.②当-1<a ≤0时,a -12<a ≤0<a +12,f (x )在⎣⎢⎡⎦⎥⎤0,a +12上单调递减,在⎣⎢⎡⎭⎪⎫a +12,+∞上单调递增,f (x )min =f ⎝ ⎛⎭⎪⎫a +12=-(a +1)24∈⎣⎢⎡⎭⎪⎫-14,0,满足f (x )min ≥-1,f (x )max =f (t )=t 2-(a +1)t 由题意得f (x )max ≤6, 即t 2-(a +1)t ≤6,解得0≤t ≤(a +1)+(a +1)2+242,令m =a +1>0,h (m )=m +m 2+242在(0,1]上单调递增,所以h(m)max=h(1)=3,即当a=0时,t max=3.综上所述,t max=3,此时a=0.。
第二节函数的单调性与最值1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质.知识点一 函数的单调性 1.单调函数的定义若函数f (x )在区间D 上是________或________,则称函数f (x )在这一区间上具有(严格的)单调性,________叫做f (x )的单调区间.答案1.f (x 1)<f (x 2) f (x 1)>f (x 2) 2.增函数 减函数 区间D1.(2016·北京卷)下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x解析:函数y =11-x,y =ln(x +1)在(-1,1)上都是增函数,函数y =cos x 在(-1,0)上是增函数,在(0,1)上是减函数,而函数y =2-x=(12)x 在(-1,1)上是减函数,故选D.答案:D2.(必修①P39A 组第3题改编)函数y =(2m -1)x +b 在R 上是减函数,则( ) A .m >12B .m <12C .m >-12D .m <-12解析:若y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.答案:B3.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞) 知识点二 函数的最值f(x)≤M f(x 0)=M f(x)≥M f(x 0)=M4.函数f(x)=⎩⎪⎨⎪⎧log 12x ,x≥1,2x ,x<1的值域为________.解析:当x≥1时,f(x)=log 12 x 是单调递减的,此时,函数的值域为(-∞,0];x<1时,f(x)=2x是单调递增的,此时,函数的值域为(0,2).综上,f(x)的值域是(-∞,2).答案:(-∞,2)5.(必修①P 31例4改编)函数f(x)=2xx -1在[2,6]上的最大值和最小值分别是________.解析:函数f(x)=2x x -1=2 x-1 +2x -1=2+2x -1在[2,6]上单调递减,所以f(x)min =f(6)=2×66-1=125. f(x)max =f(2)=2×22-1=4.答案:4,125热点一 函数单调性的判断与证明【例1】 (1)下列四个函数中,在(0,+∞)上为增函数的是( )A .f(x)=3-xB .f(x)=x 2-3xC .f(x)=-1x +1D .f(x)=-|x|(2)试讨论函数f(x)=axx -1(a ≠0)在(-1,1)上的单调性.【解析】 (1)当x>0时,f(x)=3-x 为减函数;当x∈⎝ ⎛⎭⎪⎫0,32时,f(x)=x 2-3x 为减函数;当x∈⎝ ⎛⎭⎪⎫32,+∞时,f(x)=x 2-3x 为增函数;当x∈(0,+∞)时,f(x)=-1x +1为增函数;当x∈(0,+∞)时,f(x)=-|x|为减函数.(2)解:设-1<x 1<x 2<1,f(x)=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,f(x 1)-f(x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a x 2-x 1x 1-1 x 2-1.由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a>0时,f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),函数f(x)在(-1,1)上递减; 当a<0时,f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),函数f(x)在(-1,1)上递增.综上,当a>0时,f(x)在(-1,1)上单调递减;当a<0时,f(x)在(-1,1)上单调递增. 【答案】 (1)C已知a>0,函数f(x)=x +ax (x>0),证明:函数f(x)在(0,a]上是减函数,在[a ,+∞)上是增函数.证明:方法1:任意取x 1>x 2>0,则f(x 1)-f(x 2)=⎝ ⎛⎭⎪⎫x 1+a x 1-⎝ ⎛⎭⎪⎫x 2+a x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫a x 1-a x 2 =(x 1-x 2)+a x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-a x 1x 2.当a ≥x 1>x 2>0时,x 1-x 2>0,1-a x 1x 2<0,有f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),此时,函数f(x)=x +ax (a>0)在(0,a]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0,有f(x 1)-f(x 2)>0,即f(x 1)>f(x 2), 此时,函数f(x)=x +ax(a>0)在[a ,+∞)上为增函数;综上可知,函数f(x)=x +ax(a>0)在(0,a]上为减函数,在[a ,+∞)上为增函数.方法2:f′(x)=1-a x 2,令f′(x)>0,则1-ax 2>0,解得x>a 或x<-a(舍).令f′(x)<0,则1-ax2<0,解得-a<x< a.∵x>0,∴0<x< a.故f(x)在(0,a]上为减函数,在[a ,+∞)上为增函数. 热点二 函数单调区间的确定 【例2】 求下列函数的单调区间: (1)y =-x 2+2|x|+1; (2)y =log 12 (x 2-3x +2).【解】 (1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x≥0,-x 2-2x +1,x<0,即y =⎩⎪⎨⎪⎧- x-1 2+2,x≥0,- x+1 2+2,x<0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12 u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x<1或x>2.∴函数y =log 12 (x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u=x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y=log 12 (x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).求下列函数的单调区间: (1)y =⎝ ⎛⎭⎪⎫13x 2-x ; (2)y =3x 2-6ln x.解:(1)设u =x 2-x ,则y =⎝ ⎛⎭⎪⎫13u .∵u 在⎝⎛⎦⎥⎤-∞,12上为减函数, 在⎣⎢⎡⎭⎪⎫12,+∞上为增函数,又∵y=⎝ ⎛⎭⎪⎫13u为减函数, ∴y=⎝ ⎛⎭⎪⎫13x 2-x 在⎝ ⎛⎦⎥⎤-∞,12上为增函数,在⎣⎢⎡⎭⎪⎫12,+∞上为减函数.(2)y′=6x -6x =6x 2-6x .∵定义域为(0,+∞),由y′>0,得x>1,∴增区间为(1,+∞). 由y′<0,得0<x<1,∴减区间为(0,1). 热点三 函数单调性的应用 考向1 比较大小【例3】 (2017·衡阳模拟)已知函数f(x)=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f(x 1)<0,f(x 2)<0B .f(x 1)<0,f(x 2)>0C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0【解析】因为f(x)在(1,+∞)上是增函数,且f(2)=log22+11-2=0,又x1∈(1,2),所以f(x1)<f(2)=0;x2∈(2,+∞),所以f(x2)>f(2)=0.【答案】B考向2 解不等式【例4】已知偶函数f(x)在[0,+∞)上单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是________.【解析】由题意,得函数f(x)的草图如图所示.因为f(x-1)>0,所以|x-1|<2,所以-2<x-1<2,所以-1<x<3.【答案】(-1,3)考向3 求参数的取值范围【例5】已知函数f(x)=e|x-a|(a为常数),若f(x)在区间[1,+∞)上是增函数,则a 的取值范围是________.【解析】易知函数y=|x-a|在区间[a,+∞)上单调递增,又函数f(x)=e|x-a|在[1,+∞)上单调递增,所以a≤1,所以a的取值范围是(-∞,1].【答案】(-∞,1](1)(2017·哈尔滨联考)已知函数f(x)的图象关于直线x =1对称,当x 2>x 1>1时,[f(x 2)-f(x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f(2),c =f(e ),则a ,b ,c 的大小关系为( )A .c>a>bB .c>b>aC .a>c>bD .b>a>c(2)f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)(3)已知函数f(x)=⎩⎪⎨⎪⎧a-2 x-1,x≤1,log a x ,x>1,若f(x)在(-∞,+∞)上单调递增,则实数a 的取值范围为________.解析:(1)因f(x)的图象关于直线x =1对称.由此可得f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,[f(x 2)-f(x 1)](x 2-x 1)<0恒成立,知f(x)在(1,+∞)上单调递减.∵1<2<52<e ,∴f(2)>f ⎝ ⎛⎭⎪⎫52>f(e ).∴b>a>c. (2)2=1+1=f(3)+f(3)=f(9),由f(x)+f(x -8)≤2,可得f[x(x -8)]≤f(9),因为f(x)是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x>0,x -8>0,x x-8 ≤9,解得8<x≤9.(3)要使函数f(x)在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f 1 ≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3.即实数a 的取值范围是(2,3]. 答案:(1)D (2)B (3)(2,3] 热点四 函数的最值【例6】 (1)若函数f (x )=1a -1x 在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,则实数a 的值为________.(2)函数y =2x 2-2x +3x 2-x +1的值域为________.【解析】 (1)因为函数f (x )在区间⎣⎢⎡⎦⎥⎤12,2上是增函数,值域为⎣⎢⎡⎦⎥⎤12,2,所以f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,即⎩⎪⎨⎪⎧1a -2=12,1a -12=2,解得a =25.(2)y =2x 2-2x +3x 2-x +1=2+1x 2-x +1.因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,所以2<2+1x 2-x +1≤103.故值域为⎝⎛⎦⎥⎤2,103.【答案】 (1)25 (2)⎝ ⎛⎦⎥⎤2,103(1)函数f (x )=⎩⎪⎨⎪⎧log 13x ,x ≥1,3x ,x <1的值域为________.(2)函数f (x )=3x +2x,x ∈[1,2]的值域为________.解析:(1)当x ≥1时,f (x )=log 13x 是单调递减的,此时,函数的值域为(-∞,0];当x <1时,f (x )=3x 是单调递增的,此时,函数的值域为(0,3).综上,f (x )的值域是(-∞,3).(2)方法1:f (x )=3(x +23x ),易证f (x )在⎣⎢⎡⎭⎪⎫23,+∞上是增函数. ∴f (x )在[1,2]上为增函数,从而得值域为[5,7].方法2:f ′(x )=3-2x2,当1≤x ≤2时,f ′(x )>0,∴f (x )在[1,2]上为增函数,又f (1)=5,f (2)=7.∴f (x )=3x +2x,x ∈[1,2]的值域为[5,7].答案:(1)(-∞,3) (2)[5,7]1.单调区间是定义域的子区间,求单调区间定义域优先. 2.熟记各基本初等函数的单调区间,是求单调区间的前提、基础.3.对于对勾函数y =x +a x(a >0),单调递增区间:(-∞,-a ],[a ,+∞);单调递减区间:[-a ,0),(0,a ].4.函数的单调增、减区间要分开写;两个(或两个以上)同一类单调区间之间用“,”隔开,不能用“∪”符号连接.5.若f (x )具有对称轴x =a ,则在x =a 两侧的对称区间上f (x )具有相反的单调性. 若f (x )具有对称中心(a ,b ),则在x =a 两侧的对称区间上f (x )具有相同的单调性. 6.函数图象的平移不影响单调性;其中左右平移能改变单调区间,上下平移不改变单调区间.抽象函数的几个解题技巧抽象函数是指没有明确给出具体的函数表达式,只是给出了一些体现函数特征的式子的一类函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等.它是中学数学中的一个难点,抽象性较强,灵活性大,解决抽象函数问题最重要的一点是要抓住函数中的某些性质,利用数学方法(如赋值法、化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题.本文对这一问题进行了初步整理、归类,大概有以下几种题型:一、利用赋值法求抽象函数的值【例1】定义在R上的函数f(x)满足:f(x)=f(4-x)且f(2-x)+f(x-2)=0,则f(2 016)的值为________.【解析】由f(2-x)+f(x-2)=0,令t=x-2,代入,有f(-t)=-f(t),∴f(x)为奇函数且有f(0)=0,又f(x+4)=f[4-(x+4)]=f(-x)=-f(x),∴f(x+8)=-f(x+4)=f(x),故f(x)是周期为8的周期函数,∴f(2 016)=f(0)=0.【答案】0解题策略:这类抽象函数一般是给出定义域,某些性质及运算式来求特殊值.其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是使抽象问题具体化.二、利用配凑法证明抽象函数的单调性【例2】已知函数f(x)对任意x,y∈R有f(x)+f(y)=2+f(x+y),当x>0时,f(x)>2,f(3)=5.求不等式f(a2-2a-2)<3的解集.【解】设x1,x2∈R且x1<x2,则x2-x1>0,∴f(x2-x1)>2,即f(x2-x1)-2>0,∴f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-2>f(x1),∴f(x2)>f(x1),故f(x)为增函数,又f(3)=f(2+1)=f(2)+f(1)-2=3f(1)-4=5,∴f(1)=3,∴f(a2-2a-2)<3=f(1),即a2-2a -2<1,∴-1<a<3,因此不等式f(a2-2a-2)<3的解集为{a|-1<a<3}.解题策略:一般地,抽象函数所满足的关系式,应看作是给定的运算法则,则变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联.此外这类不等式一般需要将常数表示为函数在某点处的函数值,再通过函数的单调性去掉函数符号“f”,转化为代数不等式求解.三、利用周期性回归已知【例3】已知f(x)是定义在R上的函数,f(1)=1,且对于任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1,若g(x)=f(x)+1-x,则g(2 002)=________.【解析】由g(x)=f(x)+1-x,得f(x)=g(x)+x-1,从而由题设有g(x+5)+(x+5)-1≥[g(x)+x-1]+5⇒g(x+5)≥g(x),g(x+1)+(x+1)-1≤[g(x)+x-1]+1⇒g(x+1)≤g(x).故g(x)≤g(x+5)≤g(x+4)≤g(x+3)≤g(x+2)≤g(x+1)≤g(x),即g(x)=g(x +1),所以g(x)是以1为周期的周期函数.又g(1)=f(1)+1-1=1,所以g(2 002)=1.【答案】 1解题策略:根据题目中所给出的或推出的函数方程,运用递推的思想,逐步递推,发现函数具有周期性,利用周期性达到目的.- 11 -。
2-2 函数的单调性与最值课时规X 练(授课提示:对应学生用书第219页)A 组 基础对点练1.下列函数中,定义域是R 且为增函数的是( B ) A .y =e -xB .y =x 3C .y =ln xD .y =|x |2.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( C ) A .y =1xB .y =e -xC .y =-x 2+1 D .y =lg|x |3.下列函数中,既是奇函数且在定义域内是增函数的为( D ) A .y =x +1 B .y =-x 3C .y =1xD .ln 2+x 2-x4.函数f (x )=ln(x 2-3x +2)的递增区间是( D ) A .(-∞,1)B .⎝ ⎛⎭⎪⎫1,32 C.⎝ ⎛⎭⎪⎫32,+∞ D .(2,+∞)解析:令t =x 2-3x +2=(x -1)(x -2)>0,求得x <1或x >2,故函数的定义域为{x |x <1或x >2},f (x )=ln t ,由复合函数的单调性知本题即求函数t 在定义域内的增区间.结合二次函数的性质可得函数t 在定义域内的增区间为(2,+∞). 5.设f (x )=x -sin x ,则f (x )( B ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( D )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)7.(2017·某某模拟)若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( C ) A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=ln(x +1)8.(2018·某某二模)已知实数x ,y 满足⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y,则下列关系式中恒成立的是( D )A .tan x >tan yB .ln(x 2+2)>ln(y 2+1) C.1x >1yD .x 3>y 3解析:根据题意,实数x ,y 满足⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y,则x >y ,依次分析选项:对于A ,因为y =tan x 在其定义域上不是单调函数,故tan x >tan y 不一定成立,不符合题意;对于B ,若x >y ,则x 2+2>y 2+2不一定成立,故ln(x 2+2)>ln(y 2+1)不一定成立,不符合题意;对于C ,当x >y >0时,1x <1y,不符合题意;对于D ,函数y =x 3在R 上为增函数,若x >y ,必有x 3>y 3,符合题意.9.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( A ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件10.已知函数f (x )=x 2-2ax +3在区间[1,2]上具有单调性,则实数a 的取值X 围为( D ) A .(-∞,1] B .[1,2]C .[2,+∞)D .(-∞,1]∪[2,+∞)11.(2017·某某模拟)函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x,x ≥0(a >0且a ≠1)是R 上的减函数,则a的取值X 围是( B ) A .(0,1)B .⎣⎢⎡⎭⎪⎫13,1C.⎝ ⎛⎦⎥⎤0,13 D .⎝ ⎛⎦⎥⎤0,23 解析:由题意知⎩⎪⎨⎪⎧0<a <1,3a ≥1,得13≤a <1. 12.函数f (x )=x +2x -1的最小值为 12.解析:由2x -1≥0可得x ≥12,∴函数的定义域为⎣⎢⎡⎭⎪⎫12,+∞, 又函数f (x )=x +2x -1在⎣⎢⎡⎭⎪⎫12,+∞上单调递增,∴当x =12时,函数取最小值f ⎝ ⎛⎭⎪⎫12=12.13.已知y =f (x )是定义在(-2,2)上的增函数,若f (m -1)<f (1-2m ),则m 的取值X 围是⎝ ⎛⎭⎪⎫-12,23.解析:依题意,原不等式等价于⎩⎪⎨⎪⎧-2<m -1<2-2<1-2m <2m -1<1-2m⇒⎩⎪⎨⎪⎧-1<m <3-12<m <32m <23⇒-12<m <23.14.(2018·城关区校级模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 3x +2,x ≥1,e x-1,x <1,若m >0,n >0,且m +n =f (f (ln 2)),则1m +2n的最小值为 3+2 2.解析:函数f (x )=⎩⎪⎨⎪⎧log 3x +2,x ≥1,e x-1,x <1,m +n =f [f (ln 2)]=f (e ln 2-1)=f (2-1)=log 33=1,则1m +2n=(m +n )⎝ ⎛⎭⎪⎫1m +2n =3+n m +2m n≥3+2n m ·2mn=3+22, 当且仅当n =2m 时,取得最小值3+2 2.15.(2018·某某模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤2,log 2x -1,x >2,则f (f (4))= 1 ;函数f (x )的单调递减区间是 [1,2] . 解析:f (4)=log 24-1=1, ∴f (f (4))=f (1)=-12+2×1=1.x ≤2时,f (x )=-x 2+2x ,对称轴为x =1,∴f (x )在[1,2]上单调递减. ∴f (x )的单调递减区间为[1,2].B 组 能力提升练1.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f ⎝⎛⎭⎪⎫log 12a ≤2f (1),则a 的取值X 围是( C )A .[1,2]B .⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]2.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是( D )A.⎝ ⎛⎦⎥⎤-14,0 B .(0,+∞)C.⎣⎢⎡⎦⎥⎤-14,0 D .⎝ ⎛⎭⎪⎫-14,+∞ 解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.3.(2017·某某阶段测试)设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( B ) A .m =1,且f (x )在(0,1)上是增函数 B .m =1,且f (x )在(0,1)上是减函数 C .m =-1,且f (x )在(0,1)上是增函数 D .m =-1,且f (x )在(0,1)上是减函数4.(2018·某某一模)已知函数f (x )满足:①对任意x 1,x 2∈(0,+∞)且x 1≠x 2,都有f x 1-f x 2x 1-x 2>0;②对定义域内任意x ,都有f (x )=f (-x ),则符合上述条件的函数是( A )A .f (x )=x 2+|x |+1 B .f (x )=1x-xC .f (x )=ln|x +1|D .f (x )=cos x解析:由题意得f (x )是偶函数,在(0,+∞)递增,对于A ,f (-x )=f (x ),是偶函数,且x >0时,f (x )=x 2+x +1,f ′(x )=2x +1>0,故f (x )在(0,+∞)递增,符合题意;对于B ,函数f (x )是奇函数,不合题意;对于C ,由x +1=0,解得x ≠-1,定义域不关于原点对称,故函数f (x )不是偶函数,不合题意;对于D ,函数f (x )在(0,+∞)无单调性,不合题意.5.若函数f (x )=x 2-12ln x +1在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值X 围是( B ) A .[1,+∞)B .⎣⎢⎡⎭⎪⎫1,32C .[1,2)D .⎣⎢⎡⎭⎪⎫32,2 解析:由题意知f ′(x )=2x -12x=2x +12x -12x ,易知函数f (x )在x =12处取得极值,所以有k -1<12<k +1,且k -1≥0,得k ∈⎣⎢⎡⎭⎪⎫1,32. 6.(2018·铁东区校级一模)指数函数f (x )=a x(a >0,且a ≠1)在R 上是减函数,则函数g (x )=a -2x 2在其定义域上的单调性为( C ) A .单调递增 B .单调递减C .在(0,+∞)上递增,在(-∞,0)上递减D .在(0,+∞)上递减,在(-∞,0)上递增 解析:∵指数函数f (x )=a x在R 上是减函数, ∴0<a <1,∴-2<a -2<-1,函数y =1x2在(-∞,0)上递增,在(0,+∞)上递减.∴g (x )在(-∞,0)上递减,在(0,+∞)上递增. 7.已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( C ) A .sgn[g (x )]=sgn x B .sgn[g (x )]=sgn[f (x )] C .sgn[g (x )]=-sgn x D .sgn[g (x )]=-sgn[f (x )]8.若f (x )=e x -a e -x为奇函数,则f (x -1)<e -1e 的解集为( A )A .(-∞,2)B .(-∞,1)C .(2,+∞)D .(1,+∞)9.已知函数f (x )=lg(a x-b x)+x 中,常数a ,b 满足a >1>b >0,且a =b +1,那么f (x )>1的解集为( B ) A .(0,1) B .(1,+∞) C .(1,10)D .(10,+∞)10.(2018·兴庆区校级三模)已知函数f (x )=⎩⎪⎨⎪⎧a x -1-b ,x ≤1,-log 2x +1,x >1(a >0,a ≠1),在其定义域上单调,则ab 的值不可能的是( D ) A .-1 B .1 C .-2D .2解析:由于函数f (x )在R 上单调,当x >1时,函数f (x )=-log 2(x +1)单调递减,则当x ≤1时,函数f (x )=a x -1-b 单调递减,所以0<a <1,且a1-1-b ≥-log 2(1+1),即1-b ≥-1,解得b ≤2.当0<b ≤2时,0<ab <2;当b ≤0时,则ab ≤0.因此,ab ≠2,故选D.11.已知函数f (x )是定义在R 上的单调递增函数,且满足对任意的实数x 都有f (f (x )-3x)=4,则f (x )+f (-x )的最小值等于( B ) A .2 B .4 C .8D .12解析:由f (x )的单调性知存在唯一实数K 使f (K )=4,即f (x )=3x+K ,令x =K 得f (K )=3K +K =4,所以K =1,从而f (x )=3x +1,即f (x )+f (-x )=3x+13x +2≥23x·13x +2=4,当且仅当x =0时取等号.故选B.12.(2018·某某二模)已知函数f (x )=(x +2 012)(x +2 014)(x +2 016)(x +2 018),x ∈R ,则函数f (x )的最小值是 -16 解析:令x +2 012=t ,t ∈R ,则y =t (t +2)(t +4)(t +6)=(t 2+6t )(t 2+6t +8)=(t 2+6t )2+8(t 2+6t )=(t 2+6t +4)2-16,当t 2+6t +4=0,即t =-3±5时,取得最小值-16.13.(2017·某某东营广饶一中模拟)已知f (x )=⎩⎪⎨⎪⎧3a -1x +4a ,x ≤1,log a x ,x >1是R 上的减函数,则a 的取值X 围是 ⎣⎢⎡⎭⎪⎫17,13 . 解析:由函数f (x )为单调递减函数可得g (x )=(3a -1)x +4a 在(-∞,1]上单调递减,函数h (x )=log a x 在(1,+∞)上单调递减,且g (1)≥h (1), ∴⎩⎪⎨⎪⎧3a -1<0,0<a <1,7a -1≥0,∴17≤a <13. 14.已知函数f (x )=则f (f (3))= -3 ,函数f (x )的最大值是1 . 解析:f (3)=3=-1,∴f (f (3))=f (-1)=-(-1)2-2=-3. 当x >1时,f (x )=x 为减函数,可得f (x )<0;当x ≤1时,f (x )=-x 2+2x =-(x -1)2+1,最大值为1. 15.(2017·模拟)已知函数f (x )=xx 2+1,关于f (x )的性质,有下列四个结论:①f (x )的定义域是(-∞,+∞);②f (x )的值域是⎣⎢⎡⎦⎥⎤-12,12; ③f (x )是奇函数;④f (x )是区间(0,2)上的增函数.其中正确结论的个数是 3 . 解析:对于①,∵函数f (x )=xx 2+1,∴f (x )的定义域是(-∞,+∞),故①正确; 对于②,当x ≠0时,f (x )=1x +1x,若x >0,则0<f (x )≤12,若x <0,则-12≤f (x )<0;当x =0时,f (x )=0,故f (x )的值域是⎣⎢⎡⎦⎥⎤-12,12,故②正确; 对于③,f (-x )=-f (x ),∴f (x )是奇函数,故③正确; 对于④,f ′(x )=1-x2x 2+12,令f ′(x )>0,解得-1<x <1,令f ′(x )<0,解得x >1或x <-1,∴f (x )在区间(0,2)上先增后减,故④错误. 综上可知,正确结论的个数是3.。
第2讲函数的单调性与最值一、知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A当x1<x2时,都有f(x1)<f(x2),那么,就称函数y=f(x)在区间A上是增加的,有时也称函数y=f(x)在区间A上是递增的当x1<x2时,都有f(x1)>f(x2),那么,就称函数y=f(x)在区间A上是减少的,有时也称函数y=f(x)在区间A上是递减的①如果y=f(x)在区间A上是增加的或是减少的,那么称A为单调区间.②如果函数y=f(x)在定义域的某个子集上是增加的或是减少的,那么就称函数y=f(x)在这个子集上具有单调性.(3)单调函数如果函数y=f(x)在整个定义域内是增加的或是减少的,我们称这个函数为增函数或减函数,统称为单调函数.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(1)对于任意的x∈I,都有f(x)≥M;(2)存在x ∈I ,使得f (x )=M(2)存在x ∈I ,使得f (x )=M结论 M 为最大值M 为最小值1.函数单调性的两种等价形式 设任意x 1,x 2∈[a ,b ]且x 1≠x 2,(1)f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.(2)(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.2.五条常用结论(1)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(2)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (3)函数f (g (x ))的单调性与函数y =f (u ),u =g (x )的单调性的关系是“同增异减”. (4)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(5)开区间上的“单峰”函数一定存在最大(小)值. 二、教材衍化1.函数f (x )=x 2-2x 的递增区间是________. 答案:[1,+∞)(或(1,+∞))2.若函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________. 解析:因为函数y =(2k +1)x +b 在R 上是减函数,所以2k +1<0,即k <-12.答案:⎝⎛⎭⎫-∞,-12 3.已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为__________.解析:可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25. 答案:2 25一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数f (x )的递增区间是[1,+∞).( ) (3)函数y =1x 的递减区间是(-∞,0)∪(0,+∞).( )(4)所有的单调函数都有最值.( )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)闭区间上的单调函数,其最值一定在区间端点处取到. ( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)√ 二、易错纠偏常见误区|K(1)求单调区间忘记定义域导致出错; (2)对于分段函数,一般不能整体单调,只能分段单调; (3)利用单调性解不等式忘记在单调区间内求解; (4)混淆“单调区间”与“在区间上单调”两个概念. 1.函数y =log 12(x 2-4)的递减区间为________.答案:(2,+∞)2.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2是定义在R 上的减函数,则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧a -2<0,2(a -2)≤⎝⎛⎭⎫122-1, 解得⎩⎪⎨⎪⎧a <2,a ≤138,即a ≤138.答案:⎝⎛⎦⎤-∞,138 3.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,即⎩⎪⎨⎪⎧-3≤a ≤1,-1≤a ≤1,a <1.所以-1≤a <1. 答案:[-1,1)4.(1)若函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是________;(2)若函数f (x )=x 2+2(a -1)x +2的递减区间为(-∞,4],则a 的值为________. 答案:(1)a ≤-3 (2)-3确定函数的单调性(区间)(多维探究) 角度一 给出具体解析式的函数的单调性(1)函数f (x )=|x 2-3x +2|的递增区间是( )A.⎣⎡⎭⎫32,+∞ B .⎣⎡⎦⎤1,32和[2,+∞) C .(-∞,1]和⎣⎡⎦⎤32,2D .⎝⎛⎦⎤-∞,32和[2,+∞) (2)函数y =x 2+x -6的递增区间为________,递减区间为________.【解析】 (1)y =|x 2-3x +2|=⎩⎪⎨⎪⎧x 2-3x +2,x ≤1或x ≥2,-(x 2-3x +2),1<x <2. 如图所示,函数的递增区间是⎣⎡⎦⎤1,32和[2,+∞);递减区间是(-∞,1)和⎝⎛⎭⎫32,2.故选B.(2)令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数,所以y =x 2+x -6的递减区间为(-∞,-3],递增区间为[2,+∞). 【答案】 (1)B (2)[2,+∞) (-∞,-3] 角度二 含参函数的单调性(一题多解)判断并证明函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.【解】 法一:设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1 =a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上是减少的;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上是增加的. 法二:f ′(x )=a (x -1)-ax (x -1)2=-a(x -1)2,所以当a >0时,f ′(x )<0,当a <0时,f ′(x )>0, 即当a >0时,f (x )在(-1,1)上为减函数, 当a <0时,f (x )在(-1,1)上为增函数.确定函数单调性的4种方法(1)定义法.利用定义判断.(2)导数法.适用于初等函数、复合函数等可以求导的函数.(3)图象法.由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)性质法.利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.[提醒] 求函数的单调区间,应先求定义域,在定义域内求单调区间.1.函数y =-x 2+2|x |+3的递减区间是________. 解析:由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图,由图象可知,函数y =-x 2+2|x |+3的递减区间为[-1,0],[1,+∞).答案:[-1,0],[1,+∞)2.判断并证明函数f (x )=ax 2+1x (其中1<a <3)在x ∈[1,2]上的单调性.解:设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-⎝⎛⎭⎫ax 21+1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上是增加的.求函数的最值(师生共研)(1)函数f (x )=⎝⎛⎭⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________. (2)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (x )的最小值是________.【解析】 (1)由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上递减,故f (x )在[-1,1]上的最大值为f (-1)=3.(2)当x ≤1时,f (x )min =0,当x >1时,f (x )min =26-6,当且仅当x =6时取到最小值,又26-6<0,所以f (x )min =26-6.【答案】 (1)3 (2)26-6求函数最值的5种常用方法及其思路1.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数, 所以⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4. 所以a +b =6. 答案:62.(一题多解)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:法一:在同一直角坐标系中, 作出函数f (x ),g (x )的图象, 依题意,h (x )的图象如图所示. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.法二:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 所以h (x )在x =2处取得最大值h (2)=1.答案:1函数单调性的应用(多维探究) 角度一 比较大小已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c【解析】 因为f (x )的图象关于直线x =1对称. 所以f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时, [f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝⎛⎭⎫52>f (e),所以b >a >c . 【答案】 D角度二 解函数不等式已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)【解析】 因为当x =0时,两个表达式对应的函数值都为零,所以函数f (x )的图象是一条连续的曲线.因为当x ≤0时,函数f (x )=x 3为增函数, 当x >0时,f (x )=ln(x +1)也是增函数, 所以函数f (x )是定义在R 上的增函数. 因此,不等式f (2-x 2)>f (x )等价于2-x 2>x , 即x 2+x -2<0,解得-2<x <1. 【答案】 D角度三 根据函数的单调性求参数(1)(2020·南阳调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a的取值范围是________.(2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上是增加的,则实数a的取值范围是________.【解析】 (1)法一:设1<x 1<x 2,所以x 1x 2>1. 因为函数f (x )在(1,+∞)上是增函数, 所以f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.因为x 1-x 2<0,所以1+ax 1x 2>0,即a >-x 1x 2.因为1<x 1<x 2,x 1x 2>1,所以-x 1x 2<-1,所以a ≥-1. 所以a 的取值范围是[-1,+∞). 法二:由f (x )=x -a x +a 2得f ′(x )=1+ax 2,由题意得1+ax2≥0(x >1),可得a ≥-x 2,当x ∈(1,+∞)时,-x 2<-1. 所以a 的取值范围是[-1,+∞).(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上是增加的,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.【答案】 (1)[-1,+∞) (2)(-∞,1]∪[4,+∞)函数单调性应用问题的3种常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.1.(2020·武汉模拟)若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]解析:选B.因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a -2x +2a +3,x <a , 因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调, 所以a >1.所以a 的取值范围是(1,+∞).故选B.2.定义在[-2,2]上的函数f (x )满足(x 1-x 2)·[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( )A .[-1,2)B .[0,2)C .[0,1)D .[-1,1)解析:选C.因为函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2, 所以函数f (x )在[-2,2]上是增加的,所以-2≤2a -2<a 2-a ≤2,解得0≤a <1,故选C.[基础题组练]1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C.当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( )A .(-∞,0)B .⎣⎡⎦⎤0,12C .[0,+∞)D .⎝⎛⎭⎫12,+∞ 解析:选B.y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎪⎨⎪⎧-x 2+x ,x ≥0,x 2-x ,x <0函数y 的草图如图所示.由图易知原函数在⎣⎡⎦⎤0,12上递增.故选B. 3.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B .[-6,-4] C .[-3,-22]D .[-4,-3]解析:选B.由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知函数f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a2∈[2,3],即a ∈[-6,-4].4.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B .⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23解析:选D.因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.5.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C.由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,所以f (x )的最大值为6.6.函数f (x )=4-x -x +2的值域为________.解析:因为⎩⎪⎨⎪⎧4-x ≥0,x +2≥0,所以-2≤x ≤4,所以函数f (x )的定义域为[-2,4].又y 1=4-x ,y 2=-x +2在区间[-2,4]上均为减函数, 所以f (x )=4-x -x +2在[-2,4]上为减函数, 所以f (4)≤f (x )≤f (-2). 即-6≤f (x )≤ 6. 答案:[-6,6]7.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)8.若f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围是________.解析:由题意知,⎩⎪⎨⎪⎧3a -1<0,(3a -1)×1+4a ≥-a ,a >0,解得⎩⎪⎨⎪⎧a <13,a ≥18,a >0,所以a ∈⎣⎡⎭⎫18,13. 答案:⎣⎡⎭⎫18,139.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值.解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,因为x 1>x 2>0,所以x 1-x 2>0,x 1x 2>0, 所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上为增函数, 所以f ⎝⎛⎭⎫12=1a -2=12, f (2)=1a -12=2,解得a =25.10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上是增加的;(2)若a >0且f (x )在(1,+∞)上是减少的,求a 的取值范围. 解:(1)证明:设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)上是增加的. (2)设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立, 所以a ≤1.综上所述,0<a ≤1.[综合题组练]1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D.函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B.因为函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.故选B.3.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为________.解析:因为当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,所以a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,所以a 的取值范围是0≤a ≤2. 答案:[0,2]4.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x+32是区间I 上的“缓增函数”,则“缓增区间”I 为________. 解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2, 由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1, 3 ]上递减,故“缓增区间”I 为[1, 3 ].答案:[1, 3 ]5.已知函数f (x )=x 2+a |x -2|-4.(1)当a =2时,求f (x )在[0,3]上的最大值和最小值;(2)若f (x )在区间[-1,+∞)上是增加的,求实数a 的取值范围. 解:(1)当a =2时,f (x )=x 2+2|x -2|-4=⎩⎪⎨⎪⎧x 2+2x -8,x ≥2x 2-2x ,x <2=⎩⎪⎨⎪⎧(x +1)2-9,x ≥2(x -1)2-1,x <2, 当x ∈[0,2)时,-1≤f (x )<0,当x ∈[2,3]时,0≤f (x )≤7, 所以f (x )在[0,3]上的最大值为7,最小值为-1.(2)因为f (x )=⎩⎪⎨⎪⎧x 2+ax -2a -4,x >2x 2-ax +2a -4,x ≤2,又f (x )在区间[-1,+∞)上是增加的,所以当x >2时,f (x ) 是增加的,则-a2≤2,即a ≥-4.当-1<x ≤2时,f (x ) 是增加的,则a2≤-1.即a ≤-2,且4+2a -2a -4≥4-2a +2a -4恒成立, 故a 的取值范围为[-4,-2].6.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2),所以函数f (x )在R 上是增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.。
第2讲函数的单调性与最值[考纲解读] 1.掌握求函数单调性与单调区间的求解方法,并能利用函数的单调性求最值.(重点)2.理解函数的单调性、最大值、最小值及其几何意义.(重点)3.能够运用函数图象理解和研究函数的性质.(难点)[考向预测] 从近三年高考情况来看,本讲是高考中的一个热点.预测2020年高考将主要考查函数单调性的应用、比较大小、函数最值的求解、根据函数的单调性求参数的取值范围等问题.1.函数的单调性(1)增函数、减函数(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)□06单调性.区间D叫做函数y=f(x)的□07单调区间.2.函数的最值1.概念辨析(1)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(2)设任意x 1,x 2∈[a ,b ]且x 1≠x 2,那么f (x )在[a ,b ]上是增函数⇔f x 1-f x 2x 1-x 2>0⇔(x 1-x 2)[f (x 1)-f (x 2)]>0.( )(3)函数y =f (x )在[0,+∞)上为增函数,则函数y =f (x )的增区间为[0,+∞).( ) (4)闭区间上的单调函数,其最值一定在区间端点取到.( ) 答案 (1)× (2)√ (3)× (4)√ 2.小题热身(1)下列函数中,在区间(0,1)上是增函数的是( ) A .y =|x | B .y =3-x C .y =1xD .y =-3x 2答案 A解析 y =|x |在(0,1)上是增函数,y =3-x ,y =1x,y =-3x 2在(0,1)上都是减函数.(2)设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.答案 [-1,1],[5,7]解析 由图可知函数的单调递增区间为[-1,1]和[5,7].(3)函数f (x )=2-x 2,x ∈[-1,2]的最大值为________,最小值为________. 答案 2 -2解析 f (x )=2-x 2在[-1,0]上是增函数,在[0,2]上是减函数,f (-1)=1,f (0)=2,f (2)=-2,所以最大值为2,最小值为-2.(4)函数y =2k +1x在(0,+∞)上是增函数,则k 的取值范围是________.答案 ⎝⎛⎭⎪⎫-∞,-12解析 因为函数y =2k +1x 在(0,+∞)上是增函数,所以2k +1<0,解得k <-12.题型 一 确定函数的单调性(区间)1.函数f (x )=|x -2|x 的单调递减区间是( ) A .[1,2] B .[-1,0] C .[0,2] D .[2,+∞)答案 A解析 f (x )=|x -2|x =⎩⎪⎨⎪⎧x -x ,x ≥2,-x x ,x <2.作出此函数的图象如下.观察图象可知,f (x )=|x -2|x 的单调递减区间是[1,2].2.(2017·全国卷Ⅱ)函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)答案 D解析 由x 2-2x -8>0,得x >4或x <-2. 设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8在定义域内的单调递增区间. ∵函数t =x 2-2x -8在(-∞,-2)上单调递减,在(4,+∞)上单调递增, ∴函数f (x )的单调递增区间为(4,+∞).故选D. 3.试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.解 解法一:设-1<x 1<x 2<1, f (x )=a ·x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a x 2-x 1x 1-x 2-.由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增.解法二:f ′(x )=axx --ax x -x -2=a x --ax x -2=-ax -2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.条件探究 将举例说明1中“f (x )=|x -2|x ”改为“f (x )=x 2-2|x |”,试写出其单调区间.解 f (x )=x 2-2|x |=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,x 2+2x ,x <0.作出此函数的图象如右:观察图象可知,此函数的单调递减区间是(-∞,-1],(0,1];单调递增区间是(-1,0],(1,+∞).1.确定函数单调性(区间)的三种常用方法(1)定义法:一般步骤:①任取x 1,x 2∈D ,且x 1<x 2;②作差f (x 1)-f (x 2);③变形(通常是因式分解和配方);④定号(即判断f (x 1)-f (x 2)的正负);⑤下结论(即指出函数f (x )在给定的区间D 上的单调性).如举例说明3解法一.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性确定它的单调性.如举例说明1.(3)导数法:利用导数取值的正负确定函数的单调性.如举例说明3解法二. 2.熟记函数单调性的三个常用结论(1)若f (x ),g (x )均是区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.如举例说明2.1.若函数f (x )=ax +1在R 上递减,则函数g (x )=a (x 2-4x +3)的增区间是( ) A .(2,+∞) B .(-∞,2) C .(4,+∞) D .(-∞,4)答案 B解析 因为函数f (x )=ax +1在R 上递减,所以a <0,所以g (x )=a (x 2-4x +3)=a [(x -2)2-1]的增区间是(-∞,2).2.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x2=f (x 1)-f (x 2),且当x >1时,f (x )>0.判断f (x )的单调性.解 设x 1>x 2>0,则x 1x 2>1,∵当x >1时,f (x )>0, ∴f (x 1)-f (x 2)=f ⎝ ⎛⎭⎪⎫x 1x 2>0,∴f (x 1)>f (x 2),∴函数f (x )在区间(0,+∞)上为增函数. 题型 二 求函数的最值(值域)1.(2018·上饶模拟)函数f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上的最大值是( )A.32 B .-83 C .-2 D .2 答案 A解析 因为函数f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上是减函数,所以f (x )max =f (-2)=2-12=32.2.函数y =x -x -1的最小值为________. 答案 34解析 令t =x -1,则t ≥0且x =t 2+1,所以y =t 2+1-t =⎝ ⎛⎭⎪⎫t -122+34,t ≥0,所以当t =12时,y min =34.3.函数y =2x 2-2x +3x 2-x +1的值域为________.答案 ⎝⎛⎦⎥⎤2,103解析 y =2x 2-2x +3x 2-x +1=x 2-x ++1x 2-x +1=2+1x 2-x +1, 由x ∈R 得x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34∈⎣⎢⎡⎭⎪⎫34,+∞,所以1x 2-x +1∈⎝ ⎛⎦⎥⎤0,43,所以y =2x 2-2x +3x 2-x +1的值域是⎝⎛⎦⎥⎤2,103.4.(2018·石家庄模拟)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案 1解析 解法一:在同一坐标系中, 作函数f (x ),g (x )的图象, 依题意,h (x )的图象如图所示. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.解法二:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 所以h (x )在x =2时取得最大值h (2)=1.条件探究1 将举例说明1中“f (x )=-x +1x”改为“f (x )=-x -1x”,其他条件不变,如何解答?解 f (x )=-x -1x 在[-2,-1]上是减函数,在⎣⎢⎡⎦⎥⎤-1,-13上是增函数,且f (-2)=52,f ⎝ ⎛⎭⎪⎫-13=103,所以f (x )max =103.条件探究2 将举例说明2中“y =x -x -1”改为“y =x +1-x 2”,其他条件不变,如何解答?解 由1-x 2≥0可得-1≤x ≤1. 可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4,θ∈[0,π],所以-1≤y ≤2,故所求函数的最小值是-1.条件探究3 将举例说明3中“y =2x 2-2x +3x 2-x +1”改为“y =1-x21+x 2”,其他条件不变,如何解答?解 由y =1-x 21+x 2得x 2=1-y 1+y , 由x 2≥0知1-y 1+y ≥0,解得-1<y ≤1,故所求函数的值域为(-1,1].求函数的最值(或值域)的常用方法(1)单调性法:若所给函数为单调函数,可根据函数的单调性求值域.如举例说明1. (2)有界性法:利用代数式的有界性(如x 2≥0,x ≥0,2x>0,-1≤sin x ≤1等)确定函数的值域.(3)数形结合法:若函数解析式的几何意义较明显(如距离、斜率等)或函数图象易作出,可用数形结合法求函数的值域或最值.如举例说明4.(4)换元法:形如求y =ax +b +(cx +d )(ac ≠0)的函数的值域或最值,常用代数换元法、三角换元法结合题目条件将原函数转化为熟悉的函数,再利用函数的相关性质求解.如举例说明2.(5)分离常数法:形如求y =cx +dax +b(ac ≠0)的函数的值域或最值常用分离常数法求解.如举例说明3.另外,基本不等式法、导数法求函数值域或最值也是常用方法,在后面章节中有重点讲述.1.已知函数f (x )=a x+log a x (a >0,且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为________.答案 2解析 因为f (x )=a x+log a x (a >0且a ≠1)在[1,2]上为单调函数,所以由题意可得f (1)+f (2)=a +a 2+log a 2=log a 2+6,所以a +a 2=6,解得a =2或a =-3(舍去),所以a =2.2.已知定义在D =[-4,4]上的函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,-4≤x ≤0,2|x -2|,0<x ≤4,对任意x ∈D ,存在x 1,x 2∈D ,使得f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最大值与最小值之和为________.答案 9解析 作出函数f (x )的图象如图所示,由任意x ∈D ,f (x 1)≤f (x )≤f (x 2)知,f (x 1),f (x 2)分别为f (x )的最小值和最大值,由图可知|x 1-x 2|max =8,|x 1-x 2|min =1,所以|x 1-x 2|的最大值与最小值之和为9.题型 三 函数单调性的应用角度1 比较函数值的大小1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c 答案 D解析 根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,+∞)上是减函数,所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,且2<52<3,所以b >a >c .角度2 解不等式2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则不等式f (1-x 2)>f (2x )的x 的取值范围是( )A .(0,2-1)B .(-1,2+1)C .(0,2+1)D .(-1,2-1) 答案 D解析 作出函数f (x )的图象如图所示.则不等式f (1-x 2)>f (2x )等价于⎩⎪⎨⎪⎧1-x 2>0,2x ≤0或⎩⎪⎨⎪⎧1-x 2>0,2x >0,1-x 2>2x ,解得-1<x <2-1.角度3 求参数的值或取值范围3.已知函数f (x )=⎩⎪⎨⎪⎧a -x +5,x ≤1,2a -log a x ,x >1,对于任意x 1≠x 2都有f x 1-f x 2x 1-x 2<0成立,则实数a 的取值范围是( )A .(1,3]B .(1,3)C .(1,2]D .(1,2) 答案 C解析 根据题意,由f x 1-f x 2x 1-x 2<0,易知函数f (x )为R 上的单调递减函数,则⎩⎪⎨⎪⎧a -3<0,a >1,a -+5≥2a ,解得1<a ≤2.故选C.函数单调性应用问题的常见类型及解题策略(1)比较大小.如举例说明1.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.如举例说明2.(3)利用单调性求参数①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较; ②需注意:若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.如举例说明3.1.(2019·郑州模拟)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3答案 C 解析 y =x -5x -a -2=x -a -2+a -3x -a -2=1+a -3x -a +,所以当a -3<0时,y =x -5x -a -2的单调递增区间是(-∞,a +2),(a +2,+∞);当a-3≥0时不符合题意.又因为y =x -5x -a -2在(-1,+∞)上单调递增,所以(-1,+∞)≤(a+2,+∞),所以a +2≤-1,即a ≤-3,综上知,a 的取值范围是(-∞,-3].2.(2018·河南百校联盟质检)已知f (x )=2x -2-x,a =⎝ ⎛⎭⎪⎫79- 14 ,b =⎝ ⎛⎭⎪⎫97 15 ,c =log 279,则f (a ),f (b ),f (c )的大小顺序为( )A .f (b )<f (a )<f (c )B .f (c )<f (b )<f (a )C .f (c )<f (a )<f (b )D .f (b )<f (c )<f (a ) 答案 B解析 a =⎝ ⎛⎭⎪⎫79- 14 =⎝ ⎛⎭⎪⎫97 14 >⎝ ⎛⎭⎪⎫9715 >1,c =log 279<0,所以c <b <a .因为f (x )=2x -2-x =2x-⎝ ⎛⎭⎪⎫12x 在R 上单调递增,所以f (c )<f (b )<f (a ).3.已知函数f (x )的定义域为R ,对任意x 1<x 2,都有f (x 1)-f (x 2)<x 1-x 2,且f (-3)=-4,则不等式f (log 12 |3x-1|)>log 12|3x-1|-1的解集为( )A .(2,+∞)B .(-∞,2)C .(0,1)∪(1,2)D .(-∞,0)∪(0,2)答案 D解析 由对任意x 1<x 2,都有f (x 1)-f (x 2)<x 1-x 2,得f (x 1)-x 1<f (x 2)-x 2.令g (x )=f (x )-x ,则有对任意x 1<x 2,都有g (x 1)<g (x 2),所以g (x )在R 上单调递增,因为f (-3)=-4,所以g (-3)=f (-3)-(-3)=-1,所以f (log 12 |3x-1|)>log 12|3x-1|-1等价于g (log 12 |3x-1|>g (-3),所以log 12 |3x-1|>-3=log 12 8,所以0<|3x-1|<8,解得x <2且x ≠0,故所求不等式的解集是(-∞,0)∪(0,2).精美句子1、善思则能“从无字句处读书”。
第二节 函数的单调性与最值———————————————————————————————— [考纲传真] 1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则都有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调性、单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.3.函数的最值1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,x 1≠x 2且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(3)函数y =|x |是R 上的增函数.( ) (4)所有的单调函数都有最值.( ) [答案] (1)√ (2)× (3)× (4)×2.(2016·北京高考)下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-xD [选项A 中,y =11-x 在(-∞,1)和(1,+∞)上为增函数,故y =11-x 在(-1,1)上为增函数;选项B 中,y =cos x 在(-1,1)上先增后减;选项C 中,y =ln(x +1)在(-1,+∞)上为增函数,故y =ln(x +1)在(-1,1)上为增函数;选项D 中,y =2-x =⎝ ⎛⎭⎪⎫12x 在R 上为减函数,故y =2-x在(-1,1)上是减函数.]3.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________.2 25 [可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.]4.函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________.【导学号:31222025】⎝ ⎛⎭⎪⎫-∞,-12 [由题意知2k +1<0,得k <-12.] 5.f (x )=x 2-2x ,x ∈[-2,3]的单调增区间为________,f (x )max =________. [1,3] 8 [f (x )=(x -1)2-1,故f (x )的单调增区间为[1,3],f (x )max =f (-2)=8.](1)2(2)试讨论函数f (x )=x +kx(k >0)的单调性.(1)(-∞,-1) [由x 2-1>0得x >1或x <-1,即函数f (x )的定义域为(-∞,-1)∪(1,+∞).令t =x 2-1,因为y =log 2t 在t ∈(0,+∞)上为增函数,t =x 2-1在x ∈(-∞,-1)上是减函数,所以函数f (x )=log 2(x 2-1)的单调递减区间为(-∞,-1).](2)法一:由解析式可知,函数的定义域是(-∞,0)∪(0,+∞).在(0,+∞)内任取x 1,x 2,令0<x 1<x 2,那么f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫x 2+k x 2-⎝ ⎛⎭⎪⎫x 1+k x 1=(x 2-x 1)+k ⎝ ⎛⎭⎪⎫1x 2-1x 1=(x 2-x 1)x 1x 2-k x 1x 2.2分因为0<x 1<x 2,所以x 2-x 1>0,x 1x 2>0. 故当x 1,x 2∈(k ,+∞)时,f (x 1)<f (x 2), 即函数在(k ,+∞)上单调递增.6分 当x 1,x 2∈(0,k )时,f (x 1)>f (x 2), 即函数在(0,k )上单调递减.考虑到函数f (x )=x +k x(k >0)是奇函数,在关于原点对称的区间上具有相同的单调性,故在(-∞,-k )上单调递增,在(-k ,0)上单调递减.综上,函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.12分法二:f ′(x )=1-k x2.2分令f ′(x )>0得x 2>k ,即x ∈(-∞,-k )或x ∈(k ,+∞),故函数的单调增区间为(-∞,-k )和(k ,+∞).6分令f ′(x )<0得x 2<k ,即x ∈(-k ,0)或x ∈(0,k ),故函数的单调减区间为(-k ,0)和(0,k ).10分故函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.12分[规律方法] 1.利用定义判断或证明函数的单调性时,作差后应注意差式的分解变形要彻底.2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确.易错警示:求函数的单调区间,应先求定义域,在定义域内求单调区间,如本题(1). [变式训练1] (1)(2017·深圳二次调研)下列四个函数中,在定义域上不是单调函数的是( )A .y =x 3B .y =xC .y =1xD .y =⎝ ⎛⎭⎪⎫12x(2)函数f (x )=log 12(x 2-4)的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(2,+∞)D .(-∞,-2)(1)C (2)D [(1)选项A ,B 中函数在定义域内均为单调递增函数,选项D 为在定义域内为单调递减函数,选项C 中,设x 1<x 2(x 1,x 2≠0),则y 2-y 1=1x 2-1x 1=x 1-x 2x 1x 2,因为x 1-x 2<0,当x 1,x 2同号时x 1x 2>0,1x 2-1x 1<0,当x 1,x 2异号时x 1x 2<0,1x 2-1x 1>0,所以函数y =1x在定义域上不是单调函数,故选C.(2)由x 2-4>0得x >2或x <-2,所以函数f (x )的定义域为(-∞,-2)∪(2,+∞),因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,可知所求区间为(-∞,-2).]已知f (x )=x,x ∈[1,+∞),且a ≤1. 【导学号:31222026】 (1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.[思路点拨] (1)先判断函数f (x )在[1,+∞)上的单调性,再求最小值;(2)根据f (x )min>0求a 的范围,而求f (x )min 应对a 分类讨论.[解] (1)当a =12时,f (x )=x +12x +2,f ′(x )=1-12x 2>0,x ∈[1,+∞),即f (x )在[1,+∞)上是增函数,∴f (x )min =f (1)=1+12×1+2=72.4分(2)f (x )=x +ax+2,x ∈[1,+∞).法一:①当a ≤0时,f (x )在[1,+∞)内为增函数.f (x )min =f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0, ∴-3<a ≤0.7分②当0<a ≤1时,f (x )在[1,+∞)内为增函数,f (x )min =f (1)=a +3,∴a +3>0,a >-3,∴0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1].10分 法二:f (x )=x +a x+2>0,∵x ≥1,∴x 2+2x +a >0,8分∴a >-(x 2+2x ),而-(x 2+2x )在x =1时取得最大值-3,∴-3<a ≤1,即a 的取值范围为(-3,1].12分[规律方法] 利用函数的单调性求最值是求函数最值的重要方法,若函数f (x )在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).请思考,若函数f (x )在闭区间[a ,b ]上是减函数呢? [变式训练2] (2016·北京高考)函数f (x )=xx -1(x ≥2)的最大值为________.2 [法一:∵f ′(x )=-1x -2,∴x ≥2时,f ′(x )<0恒成立,∴f (x )在[2,+∞)上单调递减,∴f (x )在[2,+∞)上的最大值为f (2)=2. 法二:∵f (x )=xx -1=x -1+1x -1=1+1x -1, ∴f (x )的图象是将y =1x的图象向右平移1个单位,再向上平移1个单位得到的.∵y =1x在[2,+∞)上单调递减,∴f (x )在[2,+∞)上单调递减,故f (x )在[2,+∞)上的最大值为f (2)=2.法三:由题意可得f (x )=1+1x -1. ∵x ≥2,∴x -1≥1,∴0<1x -1≤1, ∴1<1+1x -1≤2,即1<x x -1≤2. 故f (x )在[2,+∞)上的最大值为2.]☞角度1 比较大小(2015·山东高考)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <aC [因为函数y =0.6x是减函数,0<0.6<1.5,所以1>0.60.6>0.61.5,即b <a <1.因为函数y =x 0.6在(0,+∞)上是增函数,1<1.5,所以1.50.6>10.6=1,即c >1.综上,b <a <c .]☞角度2 解不等式已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则不等式f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的解集是________.⎣⎢⎡⎭⎪⎫12,23 [由题意知⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,即⎩⎪⎨⎪⎧x ≥12,x <23,所以12≤x <23.]☞角度3 求参数的取值范围(1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a的取值范围是( )【导学号:31222027】A.⎝ ⎛⎭⎪⎫-14,+∞B.⎣⎢⎡⎭⎪⎫-14,+∞C.⎣⎢⎡⎭⎪⎫-14,0 D.⎣⎢⎡⎦⎥⎤-14,0 (2)已知函数f (x )=⎩⎪⎨⎪⎧a -x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.(1)D (2)(2,3] [(1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,0.(2)要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3].][规律方法] 1.比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.2.解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.3.利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.易错警示:(1)若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.[思想与方法]1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时为增函数,不同时为减函数.(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性.2.求函数最值的常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. [易错与防范]1.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.3.函数在两个不同的区间上单调性相同,要分开写,用“,”隔开,不能用“∪”连接.课时分层训练(五) 函数的单调性与最值A 组 基础达标 (建议用时:30分钟)一、选择题1.下列函数中,定义域是R 且为增函数的是( ) A .y =2-xB .y =xC .y =log 2xD .y =-1xB [由题知,只有y =2-x与y =x 的定义域为R ,且只有y =x 在R 上是增函数.] 2.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )【导学号:31222028】A .增函数B .减函数C .先增后减D .先减后增B [由题意知,a <0,b <0,则-b2a <0,从而函数y =ax 2+bx 在(0,+∞)上为减函数.]3.函数f (x )=ln(4+3x -x 2)的单调递减区间是( ) A.⎝⎛⎦⎥⎤-∞,32 B.⎣⎢⎡⎭⎪⎫32,+∞C.⎝⎛⎦⎥⎤-1,32 D.⎣⎢⎡⎭⎪⎫32,4 D [要使函数有意义需4+3x -x 2>0, 解得-1<x <4,∴定义域为(-1,4).令t =4+3x -x 2=-⎝ ⎛⎭⎪⎫x -322+254.则t 在⎝ ⎛⎦⎥⎤-1,32上递增,在⎣⎢⎡⎭⎪⎫32,4上递减,又y =ln t 在⎝⎛⎦⎥⎤0,254上递增,∴f (x )=ln(4+3x -x 2)的单调递减区间为⎣⎢⎡⎭⎪⎫32,4.]4.(2017·长春质检)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( )A .(-∞,1]B .(-∞,-1]C .[-1,+∞)D .[1,+∞)A [因为函数f (x )在(-∞,-1)上是单调函数,所以-a ≥-1,解得a ≤1.]5.(2017·衡水调研)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,x 2-2x ,x <0.若f (-a )+f (a )≤2f (1),则a 的取值范围是( )【导学号:31222029】A .[-1,0)B .[0,1]C .[-1,1]D .[-2,2]C [因为函数f (x )是偶函数,故f (-a )=f (a ),原不等式等价于f (a )≤f (1),即f (|a |)≤f (1),而函数在[0,+∞)上单调递增,故|a |≤1,解得-1≤a ≤1.]二、填空题6.(2017·江苏常州一模)函数f (x )=log 2(-x 2+22)的值域为________.⎝⎛⎦⎥⎤-∞,32 [∵0<-x 2+22≤22,∴当x =0时,f (x )取得最大值,f (x )max =f (0)=log 222=32,∴f (x )的值域为⎝⎛⎦⎥⎤-∞,32.] 7.已知函数f (x )为R 上的减函数,若m <n ,则f (m )________f (n );若f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1),则实数x 的取值范围是________.> (-1,0)∪(0,1) [由题意知f (m )>f (n );⎪⎪⎪⎪⎪⎪1x>1, 即|x |<1,且x ≠0.故-1<x <1且x ≠0.]8.(2017·郑州模拟)设函数f (x )=⎩⎪⎨⎪⎧-x +a ,x <1,2x,x ≥1的最小值为2,则实数a 的取值范围是________.【导学号:31222030】[3,+∞) [当x ≥1时,f (x )≥2,当x <1时,f (x )>a -1.由题意知a -1≥2,∴a ≥3.] 三、解答题9.已知函数f (x )=-2x +1,x ∈[0,2],用定义证明函数的单调性,并求函数的最大值和最小值.[解] 设0≤x1<x 2≤2,则f (x 1)-f (x 2)=-2x 1+1-⎝ ⎛⎭⎪⎫-2x 2+1=-x 2+1-x 1-x 1+x 2+=-x 2-x 1x 1+x 2+.3分由0≤x 1<x 2≤2,得x 2-x 1>0,(x 1+1)(x 2+1)>0,6分 所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),故f (x )在区间[0,2]上是增函数.10分 因此,函数f (x )=-2x +1在区间[0,2]的左端点取得最小值,右端点取得最大值,即最小值是f (0)=-2,最大值是f (2)=-23.12分10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. [解] (1)证明:设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.2分∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.5分 (2)f (x )=xx -a =x -a +a x -a =1+ax -a,当a >0时,f (x )在(-∞,a ),(a ,+∞)上是减函数,8分 又f (x )在(1,+∞)内单调递减,∴0<a ≤1,故实数a 的取值范围是(0,1].12分B 组 能力提升 (建议用时:15分钟)11 1.(2017·湖北枣阳第一中学3月模拟)已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若存在f (a )=g (b ),则实数b 的取值范围为( ) 【导学号:31222031】A .[0,3]B .(1,3)C .[2-2,2+2]D .(2-2,2+2) D [由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1,若f (a )=g (b ),则g (b )∈(-1,1],即-b 2+4b -3>-1,即b 2-4b +2<0,解得2-2<b <2+ 2.所以实数b 的取值范围为(2-2,2+2),故选D.]2.函数y =x -x (x ≥0)的最大值为________.14 [令t =x ,则t ≥0,所以y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,结合图象(图略)知,当t =12,即x =14时,y max =14.] 3.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.[解] (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.3分(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,当x >1时,f (x )<0,∴f ⎝ ⎛⎭⎪⎫x 1x 2<0,5分即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),∴函数f (x )在区间(0,+∞)上是单调递减函数.7分(3)∵f (x )在(0,+∞)上是单调递减函数,∴f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),得f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),9分 而f (3)=-1,∴f (9)=-2.∴f (x )在[2,9]上的最小值为-2.12分。