高等数学Ⅱ复习题部分答案
- 格式:docx
- 大小:2.56 MB
- 文档页数:47
《 高等数学(一) 》复习资料一、选择题1. 若23lim53x x x kx →-+=-,则k =( ) A. 3- B.4- C.5- D.6-2. 若21lim21x x kx →-=-,则k =( ) A. 1 B.2 C.3 D.43. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.132y x =-+5. 211limsin x x x→-=( ) A.0 B.3 C.4 D.56.设函数0()(1)(2)xf x t t dt =+-⎰,则(3)f '=( )A 1B 2C 3D 47. 求函数43242y x x =-+的拐点有( )个。
A 1 B 2 C 4 D 08. 当x →∞时,下列函数中有极限的是( )。
A. sin xB. 1x eC. 211x x +- D. arctan x9.已知'(3)=2f ,0(3)(3)lim2h f h f h→--=( ) 。
A. 32 B. 32- C. 1 D. -110. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。
A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( )A.至少有两个零点B. 有且只有一个零点C. 没有零点D. 零点个数不能确定 12. [()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C )A.2222(ln )(ln )f x f x x 'B. 24(ln )f x x 'C. 224(ln )(ln )f x f x x 'D. 222(ln )()f x f x x '14. ()d f x ⎰=( B)A.'()f x C +B.()f xC.()f x 'D.()f x C +15.2ln xdx x =⎰( D )A.2ln x x C +B.ln xC x+ C.2ln x C + D.()2ln x C + 16. 211limln x x x→-=( ) A.2 B.3 C.4 D.517. 设函数0()(1)(2)xf x t t dt =-+⎰,则(2)f '-=( )A 1B 0C 2-D 2 18. 曲线3y x =的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知(ln )y f x =,则y '=( A )A.(ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln )f x x20. ()d df x =⎰( A)A.()df xB.()f xC.()df x 'D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x -D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求dx x⎰. 3. 求arctan xdx ⎰.4. 求⎰5. 求2356x dx x x +-+⎰.6. 求定积分8⎰7. 计算20cos x xdx π⎰.8. 求2128dx x x +-⎰.9. 求⎰11. 求2212x xe dx -⎰12. 求3x⎰13. 求21ln exdx x⎰14.求⎰三、解答题1. 若(1lim 36x x →∞=,求a2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间3. 求函数22()2x x f x x --=-的间断点并确定其类型4. 设2sin ,.xy xy x e y '+=求5.求y =6. 求由方程cos sin x a ty b t =⎧⎨=⎩ 确定的导数x y '.7. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?8. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导?9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin yy y xe =+确定的函数,求y '12.求证: ln 1,1x x x <->13. 设y 是由方程1yy xe =+确定的函数,求y '14. 讨论函数32()29123f x x x x =-+-的单调性并求其单调区间15.求证: 21,x e x >-16. 求函数3(1)()x x f x x x -=-的间断点并确定其类型五、解方程1. 求方程0)(22=-+dy xy x dx y 的通解.2.求方程20yy y '''+=的通解.3. 求方程22y y y x '''-+=的一个特解. 4. 求方程3595xy y y xe -'''-+=的通解.高数一复习资料参考答案一、选择题 1-5: DABAA 6-10:DBCDD 11-15: BCCBD 16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰2. 求⎰.解:13(43ln )(ln )dx x d x x =+⎰⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则arctan arctan (arctan )xdx x x xd x =-⎰⎰2arctan 1xx x dx x =-+⎰ 21arctan ln(1)2x x x C =-++.4. 求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰223e 6e 6e 3e 6e 6e t t t t t t t t dt t t C =-+=-++⎰2)C=+.5. 求2356xdxx x+-+⎰.解:由上述可知23565623xx x x x+-=+-+--,所以2356()5623xdx dxx x x x+-=+-+--⎰⎰115623dx dxx x=-+--⎰⎰5ln26ln3x x C=--+-+.6.求定积分8⎰t=,即3x t=,则23dx t dt=,且当0x=时,0t=;当8x=时,2t=,于是28222000313ln(1)3ln312t dtt t tt⎡⎤==-++=⎢⎥+⎣⎦⎰⎰.7. 计算2cosx xdxπ⎰.解:令2u x=,cosdv xdx=,则2du xdx=,sinv x=,于是2220000cos sin(sin)2sin2sinx xdx x d x x x x xdx x xdxπππππ==-=-⎰⎰⎰⎰.再用分部积分公式,得2000cos2cos2(cos)cosx xdx xd x x x xdxππππ⎡⎤==-⎢⎥⎣⎦⎰⎰⎰002(cos)sin2x x xπππ⎡⎤=-=-⎣⎦.8. 求2128dxx x+-⎰.解:221113(1)(1)ln28(1)963(1)xdx d x Cx x x x-+=+=++-+-++⎰⎰12ln64xCx-=++.9.求⎰解:令u=32x u=-,23dx u du=,从而有22311311u udu duu u-+==++⎰⎰213(1)3(ln1)12uu du u u Cu=-+=-++++⎰11. 求2212xxe dx-⎰解:2222222411112x x xxe dx e dx e e e-----===-⎰⎰12.求3x⎰解:333223(3)(3)3x x x C=--=--+⎰13. 求21lne x dxx⎰解:22111ln111ln(ln)ln ln333ee exdx xd x x ex====⎰⎰14.求⎰解:3322222121(3)(3)(3)233x x C x C=--=-⋅-+=--+⎰三、解答题1.若(1lim36xx→∞=,求a解:因为223x=,所以9a=否则极限不存在。
复习题(一)一、选择题1. 函数⎪⎩⎪⎨⎧=≠=001cos)(x x xx x f 在0=x 处( )A 、连续;B 、不连续;C 、为第一类间断点;D 、为第二类间断点.2、已知2)]([)(x f x f =',则=)()(x f n ( )A 、1)]([+n x f ;B 、n x f n )]([;C 、1][+n f(x)n!;D 、n x f n )]([! 3、设xe y sin =,则dy=( )A 、x d e 22sin ;B 、x d e x sin sin ;C 、x d e x sin 2sin ;D 、xdx e x sin 2sin . 4.函数)(x f 在0x 可导是函数)(x f 在该点连续的 ( )A 、充分条件;B 、必要条件;C 、充要条件;D 、非充分非必要条件.5、1lim(1)n n n→∞-=( )A.2eB.1C. 1 -eD. e6. 0tan 1lim(sin )x x x x x→-=( )A. 1B. 2C. 0D. 不存在 7、 数列收敛是数列有界的( )A 、充分非必要条件;B 、必要非充分条件;C 、充分必要条件;D 、既不充分又不必要条件. 8、0x →时,下列无穷小中,( )是等价无穷小A 、arcsin x x 与 x ;B 、1cos x -与 22x ;C 、1xe -与 2x ;D 、22x x -与 24x x -.9、设1112()1xxe f x e+=+,则0x =是()f x 的( )A 、可去间断点;B 、跳跃间断点;C 、无穷间断点;D 、振荡间断点. 10、函数()f x 在0x 不可导,则()f x 在0x 处( )A 、一定不连续;B 、一定无界;C 、不一定连续;D 、一定无定义.11、设曲线L 的参数方程是2(sin )2(1cos )x t t y t =-⎧⎨=-⎩,则曲线在2t π=处的切线方程是( )A 、x y π-=;B 、4x y π+=-;C 、x y π+=;D 、4x y π-=-.12、设tan ln 2y x =+,则y '=( )A 、1sec 2x +;B 、2sec 2x +; C 、2sec x ;D 、cot x .二、填空题1. 当)(),(),(0x x x x x γβα时,→都是无穷小,且))(o()(x x βα=,)(x β~)(x γ,则)()()(limx x x x x γβα+→=2. 21lim()xx x x→∞+= 3.设a )(=x x f 在连续,且6)1(2tan lima 0=-→xe f x x x x ,则=)a (f ; 4、过曲线xxy -+=66上点(2,2)处的切线方程为 ; 5、设)0(,)sin(ln >=x x y ,则=dy x d ln 。
WORD 文档 可编辑一、填空题(共6小题,每小题3分,共18分)1. 由曲线2cos r θ=所围成的图形的面积是π。
2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x=-。
3. 函数2sin y x =的带佩亚诺余项的四阶麦克劳林公式为2441()3x x o x -+。
4.11dx =⎰。
5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为6π+。
6. 222222lim 12n nn n n n n n →∞⎛⎫+++⎪+++⎝⎭=4π。
二、选择题(共7小题,每小题3分,共21分)1. 设21cos sin ,0()1,0x x x f x x x x ⎧+<⎪=⎨⎪+≥⎩,则0x =是()f x 的 D 。
A .可去间断点 B .跳跃间断点 C .振荡间断点 D .连续点2. 设()232x x f x =+-,则当0x →时,下列结论正确的是 B 。
A .是等价无穷小与x x f )(B .同阶但非等价无穷小与x x f )(C .高阶的无穷小是比x x f )(D .低阶的无穷小是比x x f )(3.1+∞=⎰C 。
A .不存在B .0C .2πD .π4. 设()f x 具有二阶连续导数,且(0)0f '=,0lim ()1x f x →''=-,则下列叙述正确的是 A 。
A .(0)f 是()f x 的极大值B .(0)f 是()f x 的极小值C .(0)f 不是()f x 的极值D .(0)f 是()f x 的最小值5.曲线2xy d t π-=⎰的全长为 D 。
A .1B .2C .3D .46. 当,a b 为何值时,点( 1, 3 )为曲线32y ax bx =+的拐点? A 。
A .32a =-,92b = B. 32a =,92b =- C .32a =-,92b =- D. 32a =,92b = 7. 曲线2xy x -=⋅的凸区间为 D 。
高等数学一试题及答案一、选择题(每题2分,共20分)1. 下列函数中,不是周期函数的是:A. y = sin xB. y = cos xC. y = tan xD. y = e^x2. 函数f(x) = x^2 + 2x + 3的导数是:A. 2x + 2B. 2x + 4C. 2x + 1D. 2x + 33. 若f(x) = 2x - 3,求f(5)的值是:A. 7B. 4B. 1D. 24. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. 2D. 不存在5. 以下哪个选项是微分方程dy/dx = 3x^2 + 2的解:A. y = x^3 + 2xB. y = x^3 + 2x + 1C. y = x^3 + 3x + 2D. y = x^3 + 2x^26. 曲线y = x^3 - 6x^2 + 9x的拐点是:A. (1, 4)B. (2, 4)C. (3, 0)D. (0, 0)7. 若函数f(x)在区间(a, b)内连续,则下列说法正确的是:A. f(x)在(a, b)内必有最大值和最小值B. f(x)在(a, b)内必有零点C. f(x)在(a, b)内不一定有最大值和最小值D. f(x)在(a, b)内一定有零点8. 以下哪个选项是函数f(x) = x^3 - 3x^2 + 2x的极值点:A. x = 0B. x = 1C. x = 2D. x = 39. 曲线y = x^2与直线y = 4x在第一象限的交点坐标是:A. (0, 0)B. (2, 8)C. (4, 16)D. (1, 4)10. 以下哪个选项是函数f(x) = ln(x)的泰勒展开式:A. x - 1 + 1/2x^2 - 1/3x^3 + ...B. 1 - x + x^2 - x^3 + ...C. x + x^2/2 + x^3/3 + ...D. x - x^2 + x^3 - x^4 + ...二、填空题(每题2分,共20分)1. 函数f(x) = ________ 在x = 2处取得极小值。
数学必修1复习题答案一、选择题1. 函数\( f(x) = x^2 - 4x + 4 \)的最小值是:A. 0B. 1C. 4D. 8答案:B2. 若\( \sin(\alpha) = \frac{3}{5} \),\( \alpha \)在第一象限,求\( \cos(\alpha) \)的值:A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{5} \)D. \( -\frac{3}{5} \)答案:A3. 已知等差数列的首项为2,公差为3,求第10项的值:A. 29B. 32C. 35D. 38答案:A4. 圆的半径为5,求圆的面积:A. 25πB. 50πC. 75πD. 100π答案:B5. 直线\( y = 2x + 3 \)与直线\( y = -x + 5 \)的交点坐标是:A. (1, 5)B. (2, 7)C. (4, 11)D. (-1, 1)答案:A二、填空题6. 函数\( f(x) = \sqrt{x} \)的定义域是______。
答案:\( [0, +\infty) \)7. 已知\( \tan(\beta) = 2 \),求\( \sin(\beta) \)的值(假设\( \beta \)在第一象限):答案:\( \frac{2\sqrt{5}}{5} \)8. 等比数列的首项为1,公比为2,求第5项的值:答案:\( 32 \)9. 已知三角形ABC的三边长分别为3, 4, 5,求三角形的面积:答案:\( 6 \)10. 抛物线\( y = x^2 \)的焦点坐标是:答案:\( (0, \frac{1}{4}) \)三、解答题11. 证明:如果一个三角形的三边长分别为a, b, c,且满足\( a^2 + b^2 = c^2 \),则该三角形是直角三角形。
证明:根据勾股定理,如果一个三角形的斜边的平方等于另外两边平方和,那么这个三角形是直角三角形。
《高等数学(一)》期末复习题一、选择题1. 极限)x x →∞的结果是 ( C ).(A )0 (B ) ∞ (C ) 12(D )不存在 2. 设()xxx f +-=11ln,则)(x f 是 ( A ). (A )奇函数 (B) 偶函数 (C )非奇非偶函数 (D )既奇又偶函数 3. 极限21lim sinx x x→= ( A ) . (A )0 (B) 1 (C )+∞ (D )-∞ 4. 方程3310x x -+=在区间(0,1)内( B ).(A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 5. 设()()ln 1f x x =+,g (x )=x ,则当0x →时,()f x 是()g x 的( A ).(A )等价无穷小 (B) 低阶无穷小(C )高阶无穷小 (D) 同阶但非等价无穷小 6. 下列变量中,是无穷小量的为( A ).(A ))1(ln →x x (B ))0(1ln +→x x (C )cos (0)x x → (D ))2(422→--x x x 7. 极限011lim(sinsin )x x x x x→- 的结果是( C ).(A )0 (B ) 1 (C ) 1- (D )不存在8. 下列函数中满足罗尔定理条件的是( D ).(A )()2,[0,1]f x x x =-∈ (B) 3(),[0,1]f x x x =∈ (C )(),[1,1]f x x x =∈- (D)4(),[1,1]f x x x =∈-9. 函数1cos sin ++=x x y 是( C ).(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 10. 当0→x 时, 下列是无穷小量的是( B ).(A )1+x e (B) )1ln(+x (C) )1sin(+x (D) 1+x11. 当x →∞时,下列函数中有极限的是( A ).(A )211x x +- (B) cos x (C) 1xe(D)arctan x 12. 方程310(0)x px p ++=>的实根个数是 ( B ).(A )零个 (B )一个 (C )二个 (D )三个 13.21()1dx x '=+⎰( B ).(A )211x + (B )211C x++ (C ) arctan x (D ) arctan x c + 14. 定积分()f x dx ⎰是( A ).(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数15.函数(ln y x =+是( A ).(A )奇函数 (B )偶函数 (C ) 非奇非偶函数 (D )既是奇函数又是偶函数 16. 设函数在区间上连续,在开区间内可导,且,则( B ).(A) (B) (C) (D) 17. 设曲线221x y e-=-,则下列选项成立的是( C ). (A) 没有渐近线 (B) 仅有铅直渐近线 (C) 既有水平渐近线又有铅直渐近线 (D) 仅有水平渐近线 18. 设是的一个原函数,则等式( D )成立.(A )(B) (C ) (D)19. 设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ). (A )C x +--32)1(43 (B )C x +--32)1(31 (C )C x +-322)1(43 (D )C x +-322)1(32()f x []0,1()0,1()0f x '>()00f <()()10f f >()10f >()()10f f <F x ()f x ()dd d x f x x F x (())()⎰='=+⎰F x x f x c()()d '=⎰F x x F x ()()d dd d xf x x f x (())()⎰=20. 数列})1({nn n-+的极限为( A ).(A )1(B) 1-(C) 0(D) 不存在21. 下列命题中正确的是( B ).(A )有界量和无穷大量的乘积仍为无穷大量(B )有界量和无穷小量的乘积仍为无穷小量 (C )两无穷大量的和仍为无穷大量 (D )两无穷大量的差为零 22. 若()()f x g x ''=,则下列式子一定成立的有( C ).(A)()()f x g x = (B)()()df x dg x =⎰⎰(C)(())(())df x dg x ''=⎰⎰(D)()()1f x g x =+ 23. 下列曲线有斜渐近线的是 ( C ).(A)sin y x x =+ (B)2sin y x x =+ (C)1siny x x =+ (D)21sin y x x=+ 24. 函数)1,0(11)(≠>+-=a a a a x x f x x ( B ).(A )是奇函数 (B )是偶函数(C )既奇函数又是偶函数 (D )是非奇非偶函数 25. 下列函数中满足罗尔定理条件的是( D ).(A )]1,0[,1)(∈-=x x x f (B)]1,0[,)(2∈=x x x f (C )()sin ,[1,1]f x x x =∈- (D)]1,1[,)(2-∈=x x x f26. 若函数221)1(xx x x f +=+,则=)(x f ( B ). (A )2x (B )22-x (C )2)1(-x (D )12-x 27. 设函数,ln )(x x x f =则下面关于)(x f 的说法正确的是( A ).(A )在(0,e 1)内单调递减 (B)在(+∞,1e)内单调递减 (C )在(0,+∞)内单调递减 (D)(0,+∞)在内单调递增28. 设1)(+=x x f ,则)1)((+x f f =( D ).(A )x (B )x + 1 (C )x + 2 (D )x + 329. 已知0)1(lim 2=--+∞→b ax x x x ,其中a ,b 是常数,则( C ).(A )1,1==b a , (B )1,1=-=b a (C )1,1-==b a (D )1,1-=-=b a 30. 下列函数在指定的变化过程中,( B )是无穷小量.(A ) (B )(C ) (D )31. 设函数(),2x xe ef x -+=则下面关于)(x f 的说法正确的是( B ) .(A )在(0,)+∞内单调递减 (B)在(,0)-∞内单调递减 (C )在(,0)-∞内单调递增 (D)在(,)-∞+∞内单调递增32. 下列函数中,在给定趋势下是无界变量且为无穷大的函数是( C ).(A ))(1sin∞→=x xx y (B )())(1∞→=-n n y n (C ))0(ln +→=x x y (D ))0(1cos 1→=x xx y33. 设⎪⎩⎪⎨⎧≤>=0,0,1sin )(x x x xx x f ,则)(x f 在0=x 处( B ). (A )连续且可导(B )连续但不可导 (C )不连续但可导(D )既不连续又不可导34. 在下列等式中,正确的是( C ).(A )()()f x dx f x '=⎰ (B) ()()df x f x =⎰(C )()()df x dx f x dx=⎰ (D)[()]()d f x dx f x =⎰ 35. 曲线x x y -=3在点(1,0)处的切线是( A ).(A )22-=x y(B )22+-=x ye 1xx ,()→∞sin ,()xxx →∞ln(),()11+→x x x xx +-→110,()(C )22+=x y(D )22--=x y36. 已知441x y =,则y ''=( B ). (A ) 3x (B )23x (C )x 6 (D ) 6 37. 若x xf =)1(,则=')(x f ( D ).(A )x 1 (B )21x (C )x 1- (D )21x-38. 下列各组函数中,是相同的函数的是( B ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 39. 函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩ 在0x =处连续,则a =( B ).(A )0 (B )14(C )1 (D )240. 曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 41. 设函数()||f x x =,则函数在点0x =处( C ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 42. 设()f x 可微,则0()(2)limh f x f x h h→--=( D ).(A )()f x '- (B)1()2f x ' (C )2()f x '- (D)2()f x '43. 点0x =是函数4y x =的( D ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 44. 曲线1||y x =的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线45.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( D ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭46.x x dxe e -+⎰的结果是( A ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++47. 下列各组函数中,是相同函数的是( C ).(A) ()f x x =和()g x =()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =48. 设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( D ).(A) 0 (B) 1 (C) 2 (D)不存在49. 设函数22456x y x x -=-+,则2x =是函数的( A ).(A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 50. 设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为( C ). (A) 0 (B)2π(C)锐角 (D)钝角 51. 曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( D ).(A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭52. 函数2x y x e -=及图象在()1,2内是( B ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 53. 以下结论正确的是( C ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.54. 设函数22132x y x x -=-+,则1x =是函数的( A ).(A )可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 55. 设函数()y f x =的一个原函数为12x x e ,则()f x =( A ).(A) ()121x x e - (B)12xx e - (C) ()121x x e + (D) 12xxe56. 若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( D ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+57. 函数21,0e ,0xx x y x ⎧+<=⎨≥⎩在点0x =处( D ).(A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 58. 函数 2)1ln(++-=x x y 的定义域是( C ).(A ) []1,2- (B ) [)1,2- (C )(]1,2- (D )()1,2- 59. 极限x x e ∞→lim 的值是( D ).(A )∞+ (B ) 0 (C )∞- (D )不存在 60. =--→211)1sin(limx x x ( C ).(A )1 (B ) 0 (C )21-(D )2161. 曲线 23-+=x x y 在点)0,1(处的切线方程是( B ).(A ) )1(2-=x y (B ))1(4-=x y (C )14-=x y (D ))1(3-=x y62. 函数, 0,0xx x y e x <⎧=⎨≥⎩在点0x =处( B ). (A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 63. 下列各微分式正确的是( C ).(A ))(2x d xdx = (B ))2(sin 2cos x d xdx = (C ))5(x d dx --= (D )22)()(dx x d = 64. 设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( B ). (A )2sin x (B ) 2sin x - (C )C x +2sin (D )2sin 2x-65. 设()f x 可微,则0(2)()limh f x h f x h→+-=( D ).(A )()f x '- (B)1()2f x ' (C)2()f x '- (D)2()f x ' 66.⎰=+dx x xln 2( B ).(A )Cx x ++-22ln 212 (B )C x ++2)ln 2(21(C )C x ++ln 2ln (D )C xx++-2ln 1 67. 函数)1lg(12+++=x x y 的定义域是( B ).(A )()()+∞--,01,2 (B )()),0(0,1+∞- (C )),0()0,1(+∞- (D )),1(+∞-68. 设0tan 4()lim6sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )1 (B )2 (C )6 (D )24 69. 下列各式中,极限存在的是( A ).(A ) x x cos lim 0→ (B )x x arctan lim ∞→ (C )x x sin lim ∞→ (D )x x 2lim +∞→70. =+∞→xx xx )1(lim ( D ). (A )e (B )2e (C )1 (D )e1 71. 设0sin 4()lim5sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )0 (B )1 (C )5 (D )2572. 曲线x x y ln =的平行于直线01=+-y x 的切线方程是( C ).(A )x y = (B ))1)(1(ln --=x x y (C )1-=x y (D ))1(+-=x y73. 已知x x y 3sin = ,则=dy ( B ).(A )dx x x )3sin 33cos (+- (B )dx x x x )3cos 33(sin + (C )dx x x )3sin 3(cos + (D )dx x x x )3cos 3(sin + 74. 下列等式成立的是( C ).(A )⎰++=-C x dx x 111ααα (B )⎰+=C x a dx a x x ln (C )⎰+=C x xdx sin cos (D )⎰++=C xxdx 211tan 75. 极限01lim sinx x x→= ( A ) . (A ) 0 (B) 1 (C )+∞ (D) -∞ 76. 设()1cos f x x =-,()2g x x =,则当0x →时,()f x 是()g x 的( D ).(A )等价无穷小 (B) 低阶无穷小 (C ) 高阶无穷小 (D) 同阶但非等价无穷小 77. 计算⎰xdx x e x cos sin sin 的结果中正确的是( D ).(A )C e x +sin (B )C x e x +cos sin (C )C x e x +sin sin (D )C x e x +-)1(sin sin78. 5lg 1)(-=x x f 的定义域是( D ).(A )()),5(5,+∞∞- (B )()),6(6,+∞∞-(C )()),4(4,+∞∞- (D )())5,4(4, ∞- ()),6(6,5+∞79. 如果函数f (x )的定义域为[1,2],则函数f (x )+f (x 2)的定义域是( B ).(A )[1,2] (B )[1,2] (C )]2,2[- (D )]2,1[]1,2[ --80. 函数)1lg()1lg(22x x x x y -++++=( D ).(A )是奇函数,非偶函数 (B )是偶函数,非奇函数 (C )既非奇函数,又非偶函数 (D )既是奇函数,又是偶函数 81. 设()sin f x x x =,则)(x f 是( C ).(A )非奇非偶函数 (B) 奇函数 (C)偶函数 (D) 既奇又偶函数 82. 函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f( C ).(A )21x - (B )21x --(C ))01(12≤≤--x x (D ))01(12≤≤---x x 83. 下列数列收敛的是( C ).(A )1)1()(1+-=+n n n f n (B )⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)((C )⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( (D )⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f nn n n ,221,221)(84. 设1111.0个n n y =,则当∞→n 时,该数列( C ).(A )收敛于0.1 (B )收敛于0.2 (C )收敛于91(D )发散 85. 下列极限存在的是( A ).(A )2)1(lim x x x x +∞→ (B )121lim -∞→x x (C )x x e 10lim → (D )x x x 1lim 2++∞→ 86. xx xx x x sin 2sin 2lim 22+-+∞→=( A ).(A )21(B )2 (C )0 (D )不存在 87. =--→1)1sin(lim 21x x x ( B ).(A )1 (B )2 (C )21(D )0 88. 下列极限中结果等于e 的是( B ).(A )xx x x x sin 0)sin 1(lim +→ (B )x xx x x sin )sin 1(lim +∞→ (C )xxx xxsin )sin 1(lim -∞→- (D )xxx xxsin 0)sin 1(lim +→89. 函数||ln 1x y =的间断点有( C )个. (A )1 (B )2 (C )3 (D )4 90. 下列结论错误的是( A ).(A )如果函数f (x )在点x =x 0处连续,则f (x )在点x =x 0处可导; (B )如果函数f (x )在点x =x 0处不连续,则f (x )在点x =x 0处不可导; (C )如果函数f (x )在点x =x 0处可导,则f (x )在点x =x 0处连续; (D )如果函数f (x )在点x =x 0处不可导,则f (x )在点x =x 0处也可能连续。
第一章自测题一、填空题(每题 3 分,共 18 分)sin x tan x1. lim.x 0 ln 12x32.3x1x. lim2x 1x x23.已知 lim 2x2ax b3,此中为 a,b 常数,则a, b.x1x14.若 f x sin 2x x e2 ax 1, x0 在,上连续,则 a.a,x05.曲线 f ( x)x1的水平渐近线是,铅直渐近线是.x24x 316.曲线y2x 1 e x的斜渐近线方程为.二、单项选择题(每题 3 分,共 18 分)1.“对随意给定的0,1,总存在整数 N ,当 n N 时,恒有 x n a 2 ”是数列 x n收敛于 a 的.A. 充足条件但非必需条件B.必需条件但非充足条件C. 充足必需条件D.既非充足也非必需条件2x,x022.设 g x x ,x 0则 g f x.x2,x , f x0x,x02 x2 , x 0B.2 x2 , x 0C.2 x2 , x 0D.2 x2 , x 0A.2 x, x 0 2 x, x 0 2 x, x 02 x, x 03.以下各式中正确的选项是.1xA.lim1e x 0x1xC. lim1ex x1xB.lim1ex 0x1x D.lim1e-1x x4.设x0 时,e tan x1 与x n是等价无量小,则正整数n.A. 1B. 2C. 3D. 4优选文库1 e5. 曲线 ye1x 2x 2.A. 没有渐近线B.仅有水平渐近线C. 仅有铅直渐近线D.既有水平渐近线又有铅直渐近线6.以下函数在给定区间上无界的是.A.1sin x, x(0,1]B.1sin x, x(0, )xxC.11 x(0,1] D.1 x(0, )sin,x sin ,xxx三、求以下极限(每题5 分,共 35 分)1. lim x 2x 2x 24x1 312. limx e 2 xxx 013. lim 12n 3n nnx 2sin14. limxx2x 2 15. 设函数 f xa xa 0, a 1 ,求 lim12 ln f 1 f 2 L f n .nn优选文库12 e x sin x6. lim4xx 01 e x7. lim1cosx x 01cos x四、确立以下极限中含有的参数(每题5 分,共 10 分)1. limax 22x b 2x 1x2x22. lim xax 2 bx 2 1xa xb x五、议论函数 f ( x)x , x在 x 0 处的连续性, 若(a 0,b 0, a 1,b 1)0,x不连续,指出该中断点的种类. (此题 6 分)优选文库sin t 六、设 f ( x)limt x sin xxsin tsin x,求 f ( x) 的中断点并判断种类.(此题7分)七、设 f ( x) 在 [0,1]上连续,且 f (0) f (1).证明:必定存在一点0,1,使得2f ( ) f1. (此题6分)2第二章自测题一、填空题(每题 3 分,共 18 分)1.设2.设4.设5.设f (x) 在 x0可导,且 f ( x0 ) 0, f ( x0 )f1cos x2,则 f ( x). 3.xy f (e sin x ) ,此中 f ( x) 可导,则 dyy1.arccos x ,则 y21,则 lim hf1.x0h hx.1dx dx2.6. 曲线xy 1 x sin y 在点1 ,的切线方程为.二、单项选择题(每题 3 分,共 15 分)1. 以下函数中,在x0 处可导的是.2.设 y f (x) 在 x0处可导,且 f ( x0 )2,则lim f ( x02Vx) f ( x0Vx).VxV x0A. 6B.6C.1D.1 663.设函数 f ( x) 在区间 (,) 内有定义,若当 x(,) 时恒有 | f ( x) |x2,则 x0 是f ( x) 的.A. 中断点B.连续而不行导的点C. 可导的点,且 f (0)0D.可导的点,且 f (0)04.sin x, x00处 f ( x) 的导数.设 f ( x)x,则在 xx2 ,0A. 0B.1C.2D.不存在5.设函数 f (u) 可导, y f (x2 ) 当自变量 x 在x 1 处获得增量 Vx时,相应的函数增量 Vy 的线性主部为,则 f(1).A. 1B.C.1D.三、解答题(共67 分)1.求以下函数的导数(每题 4 分,共16 分)(1) y ln e x 1 e2 x(2) y x 111 xa a x(3)y x a a x a a(4)y (sin x)cos x2. 求以下函数的微分(每题 4 分,共 12 分)(1) y x ln x sin x2cot21(2)y e x(3) y x21x 1x3. 求以下函数的二阶导数(每题 5 分,共 10 分)(1)y cos2x ln x1 x(2)y1 x4. 设 f ( x)e x , x 1在 x 1可导,试求 a 与 b . (此题 6分)ax b, x15. 设 f ( x)sin x , x 0 ,求 f ' ( x) . (此题 6 分)ln(1 x), x 026. 设函数 yy( x) 由方程 lnxxy 2 1所确立,求 dy . (此题 6 分)y7. 设 yx a ln tan tcost2y(x) 由参数方程2,求 dy , d y 2 . (此题 6 分)y a sin tdx dxx1 tt 38. 求曲线在 t1处的切线方程和法线方程 . (此题 5 分)3y 1 2t 22t第三章 自测题一、填空题(每题 3 分,共 15 分)3若 a0, b0 均为常数,则 lim a x b x x1..2x02.lim11.x2x tan xx 03.lim arctan x x.3x 0ln(1 2x )4.曲线 y e x2的凹区间,凸区间为.5.若 f ( x)xe x,则 f ( n ) ( x) 在点 x处获得极小值 .二、单项选择题(每题 3 分,共 12 分)1.设 a,b 为方程 f ( x)0 的两根, f ( x) 在 [ a,b] 上连续, (a, b) 内可导,则 f (x)0 在(a,b) 内.A. 只有一个实根B.起码有一个实根C. 没有实根D.起码有两个实根2.设 f (x) 在 x0处连续,在x0的某去心邻域内可导,且x x0时, ( x x0 ) f ( x)0 ,则f ( x0 ) 是.A. 极小值B.极大值C. x0为f ( x)的驻点D.x0不是 f ( x) 的极值点3.设 f (x) 拥有二阶连续导数,且f(0)0 , lim f( x) 1 ,则.x 0| x |A. f (0)是 f (x) 的极大值B. f (0)是 f (x) 的极小值C.(0, f (0))是曲线的拐点D.f(0) 不是 f (x) 的极值, (0, f (0))不是曲线的拐点4.设 f (x) 连续,且 f(0)0 ,则0,使.A. f ( x)在(0, )内单一增添 .B. f ( x) 在 (,0) 内单一减少.C.x(0,) ,有 f (x) f (0)D.x (,0) ,有 f ( x) f (0) .三、解答题 ( 共 73 分)1. 已知函数f ( x)在[0,1]上连续,(0,1)内可导,且f (1)0 ,优选文库证明在 (0,1) 内起码存在一点f ( )使得 f ( ). (此题 6 分)tan2. 证明以下不等式(每题 9 分,共 18 分)(1)当 0a b 时,b alnbb a .ba a(2)当 0 x时,2x sin x x .23. 求以下函数的极限(每题8 分,共 24 分)( 1) lim e x e x2xx 0xsin x优选文库12( 2)lim(cos x)sin xx 01( 3)lim(1 x) x exx 04. 求以下函数的极值(每题 6 分,共 12 分)12( 1)f ( x) x3(1 x)3x2x , x0( 2)f ( x)x 1 , x05. 求y2x. (此题 6 分)的极值点、单一区间、凹凸区间和拐点ln x16. 证明方程x ln x0 只有一个实根.(此题7分)e第一章自测题一、填空题(每题 3 分,共 18 分)1. 2.3.4.5.水平渐近线是,铅直渐近线是6.二、单项选择题(每题 3 分,共 18分)1. C2. D3. D4. A5. D 6. C三、求以下极限(每题 5 分,共 35分)解: 1.. 2.. 3.,又. 4.. 5.. 6.,,因此,原式.7..四、确立以下极限中含有的参数(每题 5 分,共 10 分)解: 1.据题意设,则,令,令得,故.2.左边,右边故,则.五、解:,故在处不连续,所以为六、解:,而,故,的间断点,,故为的第一类(可去)中断点,均为的第二类中断点.七、证明:设,明显在而,,,故由零点定理知:必定存在一点,使,即优选文库第二章自测题一、填空题(每题 3 分,共 18 分)1. 2.3. 4.5.6.或二、单项选择题(每题 3 分,共 15 分)1. D2. A3. C4. D5. D三、解答题(共67 分)解: 1.(1).(2).(3).(4)两边取对数得,两边求导数得,.2. 求以下函数的微分(每题 4 分,共 12 分)(1).(2).(3).优选文库3. 求以下函数的二阶导数(每题 5 分,共 10 分)(1).(2),.4.首先在处连续,故,故,。
高等数学试题(一)(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
第1—10题,每小题1分,第11—20小题,每小题2分,共30分) 1.函数y=5-x +ln(x -1)的定义域是( )A. (0,5]B. (1,5]C. (1,5)D. (1,+∞) 2. limsin 2x xx →∞等于( ) A. 0 B. 1 C.12D. 23.二元函数f(x,y)=ln(x -y)的定义域为( ) A. x -y>0 B. x>0, y>0 C. x<0, y<0 D. x>0, y>0及x<0, y<04.函数y=2|x |-1在x=0处( ) A.无定义 B.不连续 C.可导 D.连续但不可导5.设函数f(x)=e 1-2x,则f(x)在x=0处的导数f ′(0)等于( ) A. 0 B. e C. –e D. -2e 6.函数y=x -arctanx 在[-1,1]上( ) A.单调增加 B.单调减少 C.无最大值 D.无最小值7.设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f ′(x)>0,则( ) A. f(0)<0 B. f(1)>0 C. f(1)>f(0) D. f(1)<f(0) 8.以下式子中正确的是( ) A. dsinx=-cosx B. dsinx=-cosxdx C. dcosx=-sinxdx D. dcosx=-sinx 9.下列级数中,条件收敛的级数是( )A. n nn n =∞∑-+111()B. n nn =∞∑-11()C.n nn=∞∑-111()D.n nn=∞∑-1211()10.方程y ′—y=0的通解为( )A. y=ce xB. y=ce -xC. y=csinxD. y=c 1e x +c 2e -x11.设函数f(x)=x x x kx +-≠=⎧⎨⎪⎩⎪4200,,在点x=0处连续,则k 等于( )A. 0B. 14C.12D. 212.设F(x)是f(x)的一个原函数,则∫e -x f(e -x )dx 等于( ) A. F(e -x )+c B. -F(e -x )+c C. F(e x )+c D. -F(e x )+c13.下列函数中在区间[-1,1]上满足罗尔中值定理条件的是( ) A. y=1xB. y=|x|C. y=1-x 2D. y=x -1 14.设f t dt x ()0⎰=a 2x -a 2,f(x)为连续函数,则f(x)等于( )A. 2a 2xB. a 2x lnaC. 2xa 2x -1D. 2a 2x lna 15.下列式子中正确的是( )A. e dx edx xx112⎰⎰≤B.e dx edx xx112⎰⎰≥C.e dx edx xx0112⎰⎰=D.以上都不对16.下列广义积分收敛的是( ) A. cos 1+∞⎰xdxB. sin 1+∞⎰xdxC.ln xdx1+∞⎰D.121xdx+∞⎰17.设f(x)=e x --21,g(x)=x 2,当x →0时( ) A. f(x)是g(x)的高阶无穷小 B. f(x)是g(x)的低阶无穷小C. f(x)是g(x)的同阶但非等价无穷小D. f(x)与g(x)是等价无穷小18.交换二次积分dy f x y dx yy (,)⎰⎰01的积分次序,它等于()A. dxf x y dyxx(,)⎰⎰1B. dxf x y dy xx (,)201⎰⎰C.dxf x y dy xx (,)⎰⎰1D.dxf x y dy xx(,)21⎰⎰19.若级数n n u =∞∑1收敛,记S n =i i u =∞∑1,则( )A. lim n n S →∞=0B.lim n n S S→∞=存在C.lim n nS →∞可能不存在D. {S n }为单调数列20.对于微分方程y ″+3y ′+2y=e -x ,利用待定系数法求其特解y *时,下面特解设法正确的是( )A. y *=ae -xB. y *=(ax+b)e -xC. y *=axe -xD. y *=ax 2e -x 二、填空题(每小题2分,共20分)1. lim x x x →∞+-⎛⎝ ⎫⎭⎪=121______。
高等数学复习题一、选择题1、已知函数)2arctan(2)(-+-=x x x f ,则函数)(x f 的定义域为 ( ) ①)2,1(-, ②]3,1(-, ③]2,1[, ④]2,(-∞.2、已知函数)(x f 的定义域为[0,1],则函数)2(x f -的定义域为 ( ) ①]2,(-∞, ②(1,2), ③[0,1], ④[1,2].3、已知函数|1|arcsin )(-=x x f ,则函数)(x f 的定义域为 ( ) ①]1,1[-, ②]1,1(-, ③)2,0(, ④]2,0[.4、=∞→xx x πsinlim ( )① 1 ② π ③不存在 ④ 0 5、下列函数中为奇函数的是( )①)1(log 2++x x a , ②2xx e e -+, ③x cos , ④x 2.6、下列函数中是相同函数的是 ( ) ① 1)(,)(==x g xxx f ② 33341)(,)(-=-=x x x g x x x f ③ 2)()(,)(x x g x x f == ④ x x g x x f lg 2)(,lg )(2== 7、=→xxx 3sin lim0 ( )①1 ② 2 ③ 3 ④ ∞8、()=+→xx x 121lim ( )①2-e , ②2e , ③2, ④+∞. 9、=→xx x arcsin 0lim( )①0, ②1, ③2, ④不存在.10、=⎪⎭⎫⎝⎛+∞→xx x 21lim ( )①2-e , ②2e , ③2, ④+∞.11、=++--∞→103422lim 22x x x x x ( ) ①0, ②1, ③2, ④不存在.12、=⎪⎭⎫ ⎝⎛+∞→xx x x 2lim ( )①2-e , ②2e , ③2, ④+∞. 13、=∞→x xx arctan lim ( )① 0, ② 1, ③ 2, ④不存在. 14、()=+→xx x 1021lim( )①2-e , ②2e , ③2, ④+∞.15、当0→x 时,下列函数为无穷小量的是 ( ) ①x x sin ②x x 1sin 2 ③)1ln(1+x x ④x11+ 16、当x x 2tan 0时,与→等价的无穷小量是 ( ) ①x -, ②x , ③2x , ④2x .17、下列函数在指定变化趋势下是无穷小量的是 ( )①1,ln →x x , ②+→0,ln x x , ③∞→x e x ,, ④+∞→x e x ,.18、下列函数在指定变化趋势下不是无穷小量的是 ( )①1,ln →x x , ②0,cos →x x , ③∞→x x,sin 1, ④+∞→-x e x ,. 19、当x x 2sin 0时,与→等价的无穷小量是 ( ) ①x -, ②x , ③2x , ④2x . 20、点0=x 是函数⎩⎨⎧≥-<=0,10,)(x e x x x f x的 ( ) ①连续点 ②可去间断点③第二类间断点 ④第一类间断点,但不是可去间断点 21、函数)(x f y =由参数方程0sin cos ≠⎩⎨⎧==a ta y ta x ,则 =dx y d ( )①t sin - ② t tan ③ t cot - ④t sec22、设==dy e y x 则, ( ) ①dx e x x, ②dx e x, ③xdx e x 2, ④xdx e x23、设==-dy e y x则,1( )①dx e x1-, ②dx e xx 121--, ③dx e x x 121-, ④dx e x x 11--24、设,sin 2x y = 则=dy ( ) ① x x cos sin 2 ② xdx cos 2 ③ xdx sin 2 ④xdx 2sin25、设函数||)(x x f = 则在0=x 点处 ( ) ①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导. 26、设函数||cos )(x x f = 则在0=x 点处( )①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导. 27、设函数x x f =)(,则)(x f 在点0=x 处 ( ) ①可导 ②不连续③连续,但不可导 ④可微28、设21,1,()31,1x x f x x x ⎧+<=⎨-≥⎩,则f (x )在x =1处 ………………………………( )①既可导又连续 ②可导但不连续 ③不连续也不可导 ④连续但不可导 29、函数x y sin =,则 =)12(y ( ) ①x cos ② x cos - ③ x sin ④x sin -30、曲线26322-+=x x y 在点(3,1)处的切线的斜率=k ( ) ①3 ②1 ③15 ④ 0 31、设'0000(2)()()limh f x h f x f x h→+-=存在,则 ………………………..….. ( )①'0()f x ②'0()f x h - ③'02()f x h - ④'02()f x32.设函数3)(x x f = , 则在0=x 是函数的 ( ) ① 驻点与极值点; ②不是驻点与极值点; ③极值点; ④驻点. 33、设函数()f x 区间[0,1]满足罗尔定理的是 ( ) ①|5.0|)(-=x x f , ②⎩⎨⎧≥-<=5.0225.02)(x x x xx f , ③)sin()(x x f π=, ④ x x f =)( 34、设函数()f x 在0x 的()00f x '=,则()f x 在0x ( ) ① 一定取极大值 ② 一定 取极小值 ③ 一定 不取极值 ④ 极值情况不确定 35、设函数)(x f 在0x 处具有二阶导数,且0)(0='x f ,0)(0<''x f ,则)(0x f 为 ① 最小值 ②极小值 ③最大值 ④极大值36、⎰='])([dx x F d ( ) ①dx x F )(', ②)(x F , ③dx x F )(, ④. )(x F '37、设x sin 是)(x f 的一个原函数,则⎰=dx x f )( ( ) ①C x +sin ② C x +cos③C x x ++cos sin ④C x x +sin 38、⎰=-dx xx 212 ( )①C x +arcsin , ②C x +-21, ③C x +--212, ④C x +2arcsin 2139、⎰=+dx x x212 ( ) ①C x +arctan , ②C x +2arctan 21, ③C x +2, ④C x ++)1ln(240、下列函数中,为)(222x x e e y --=的原函数的是………………………….( ) ① x x e e 22-- ②)(2122x x e e -- ③x x e e 22-+ ④)(2122x x e e -+ 41、dx x x e⎰+1)ln 1(1= ( )① 12ln + ②C +2ln ③2 ④2ln 42、=⎰badad dx x f )( ( )① )()(a f b f - ②)(a f - ③ f(b ) ④ 043、=⎰21sin xdx x dxd( )① x sin x ②0 ③2 ④3 44、=⎰badbd dx x f )( ( )① )()(a f b f -, ② f(b ), ③)(a f -, ④ 0. 二、填空题1、 若)(x f 的定义域为)0,(-∞,则)(ln x f 的定义域为 ;2、 已知函数291)(xx f -=,则函数)(x f 的定义域为 。
高数一复习资料参考答案一、选择题 1-5: DABAA 6-10:DBCDD 11-15: BCCBD 16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰2. 求dx x⎰.解:13(43ln )(ln )x d x =+⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则a r c t a n a r c t a n (a r cx d x x x x dx =-⎰⎰ 2arctan 1xx x dx x =-+⎰ 21arctan ln(1)2x x x C =-++.4. 求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰223e 6e 6e 3e 6e 6e t t t t t t t t dt t t C =-+=-++⎰2)C =+. 5. 求2356x dx x x +-+⎰.解:由上述可知23565623x x x x x +-=+-+--,所以 2356()5623x dx dx x x x x +-=+-+--⎰⎰115623dx dx x x =-+--⎰⎰5ln 26ln 3x x C =--+-+.6.求定积分8⎰解t =,即3x t =,则23dx t dt =,且当0x =时,0t =;当8x =时,2t =,于是28222000313ln(1)3ln312t dt t t t t ⎡⎤==-++=⎢⎥+⎣⎦⎰⎰. 7. 计算.解:令2u x =,cos dv xdx =,则2du xdx =,sin v x =,于是2220cos sin (sin )2sin 2sin x xdx x d x x x x xdx x xdx πππππ==-=-⎰⎰⎰⎰.再用分部积分公式,得2000cos 2cos 2(cos )cos x xdx xd x x x xdx ππππ⎡⎤==-⎢⎥⎣⎦⎰⎰⎰02(cos )sin 2x x x πππ⎡⎤=-=-⎣⎦.8. 求2128dx x x +-⎰.解:221113(1)(1)ln 28(1)963(1)x dx d x C x x x x -+=+=++-+-++⎰⎰ 12ln 64xC x-=++. 9.求解:令u =32x u =-,23dx u du =,从而有22311311u u du du uu -+==++⎰⎰⎰ 20cos x xdx π⎰213(1)3(ln 1)12u u du u u C u =-+=-++++⎰ 11. 求2212x xe dx -⎰解:2222222411112x x x xedx edx ee e -----===-⎰⎰12.求3x⎰解:333223(3)(3)3x x x C =--=--+⎰13. 求21ln exdx x⎰解:22111ln 111ln (ln )ln ln 333eee x dx xd x x e x ====⎰⎰14.求⎰解:3322222121(3)(3)(3)233x x C x C =--=-⋅-+=--+⎰三、解答题1.若(1lim 36x x →∞=,求a解:因为223x =,所以9a =否则极限不存在。
考研高数1试题及答案一、选择题(每题5分,共20分)1. 已知函数 \( f(x) = x^3 + 2x^2 - 5x + 1 \),下列选项中,\( f(x) \) 的导数正确的是:A. \( 3x^2 + 4x - 5 \)B. \( x^3 + 2x^2 - 5 \)C. \( 3x^2 + 2x - 5 \)D. \( 3x^3 + 4x^2 - 5x \)答案:A2. 设 \( A \) 是 \( 3 \times 3 \) 矩阵,\( \det(A) = 2 \),则\( \det(2A) \) 的值是:A. 4B. 8C. 16D. 32答案:B3. 计算极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是:A. 0B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{3} \)答案:B4. 已知 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. 1D. 2答案:A二、填空题(每题5分,共20分)1. 求定积分 \( \int_{0}^{1} (2x - 1) dx \) 的值是 _______。
答案:\( \frac{1}{2} \)2. 函数 \( y = \ln(x) \) 的定义域是 _______。
答案:\( (0, +\infty) \)3. 函数 \( y = e^x \) 的导数是 _______。
答案:\( e^x \)4. 已知 \( \lim_{x \to 0} \frac{\sin 2x}{x} = 2 \),则\( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是 _______。
答案:1三、解答题(每题10分,共60分)1. 求函数 \( f(x) = x^3 - 3x \) 在 \( x = 1 \) 处的切线方程。
《高等数学〔一〕》一、选择题1、极限)x x →∞的结果是 〔 C 〕〔A 〕0 〔B 〕 ∞ 〔C 〕12〔D 〕不存在 2、方程3310x x -+=在区间(0,1)内 〔 B 〕 〔A 〕无实根 〔B 〕有唯一实根 〔C 〕有两个实根 〔D 〕有三个实根 3、)(x f 是连续函数, 则⎰dx x f )(是)(x f 的 〔 C 〕〔A 〕一个原函数; (B) 一个导函数; (C) 全体原函数; (D) 全体导函数; 4、由曲线)0(sin π<<=x x y 和直线0=y 所围的面积是 〔 C 〕〔A 〕2/1 (B) 1 (C) 2 (D) π5、微分方程2x y ='满足初始条件2|0==x y 的特解是 ( D )〔A 〕3x 〔B 〕331x + 〔C 〕23+x 〔D 〕2313+x 6、以下变量中,是无穷小量的为〔 A 〕 (A) )1(ln →x x (B) )0(1ln +→x x (C) cos (0)x x → (D) )2(422→--x x x 7、极限011lim(sinsin )x x x x x→- 的结果是〔 C 〕 〔A 〕0 〔B 〕 1 〔C 〕 1- 〔D 〕不存在 8、函数arctan xy e x =+在区间[]1,1-上 〔 A 〕〔A 〕单调增加 〔B 〕单调减小 〔C 〕无最大值 〔D 〕无最小值 9、不定积分⎰+dx x x12= 〔 D 〕(A)2arctan x C + (B)2ln(1)x C ++ (C)1arctan 2x C + (D) 21ln(1)2x C ++ 10、由曲线)10(<<=x e y x和直线0=y 所围的面积是 〔 A 〕〔A 〕1-e (B) 1 (C) 2 (D) e 11、微分方程dyxy dx=的通解为 〔 B 〕〔A 〕2xy Ce = 〔B 〕212x y Ce= 〔C 〕Cx y e = 〔D 〕2xy Ce=12、以下函数中哪一个是微分方程032=-'x y 的解( D ) 〔A 〕2x y = 〔B 〕 3x y -= 〔C 〕23x y -= 〔D 〕3x y = 13、 函数1cos sin ++=x x y 是 〔 C 〕(A) 奇函数; (B) 偶函数; (C)非奇非偶函数; (D)既是奇函数又是偶函数. 14、当0→x 时, 以下是无穷小量的是 〔 B 〕 〔A 〕 1+x e(B) )1ln(+x (C) )1sin(+x (D) 1+x15、当x →∞时,以下函数中有极限的是 〔 A 〕 〔A 〕211x x +- (B) cos x (C) 1xe (D)arctan x16、方程310(0)x px p ++=>的实根个数是 〔 B 〕 〔A 〕零个 〔B 〕一个 〔C 〕二个 〔D 〕三个17、21()1dx x '=+⎰〔 B 〕 〔A 〕211x + 〔B 〕211C x++ 〔C 〕 arctan x 〔D 〕 arctan x c + 18、定积分()baf x dx ⎰是 〔 C 〕〔A 〕一个函数族 〔B 〕()f x 的的一个原函数 〔C 〕一个常数 〔D 〕一个非负常数19、 函数(ln y x =+是〔 A 〕〔A 〕奇函数〔B 〕偶函数〔C 〕 非奇非偶函数 〔D 〕既是奇函数又是偶函数20、设函数()f x 在区间[]0,1上连续,在开区间()0,1内可导,且()0f x '>,则( B ) (A)()00f < (B) ()()10f f > (C) ()10f > (D)()()10f f < 21、设曲线221x y e-=-,则以下选项成立的是〔 C 〕 (A) 没有渐近线 (B) 仅有铅直渐近线 (C) 既有水平渐近线又有铅直渐近线 (D) 仅有水平渐近线 22、(cos sin )x x dx -=⎰( D )〔A 〕 sin cos x x C -++ 〔B 〕 sin cos x x C -+〔C 〕 sin cos x x C --+ 〔D 〕 sin cos x x C ++23、数列})1({nn n-+的极限为〔 A 〕 〔A 〕1(B) 1-(C) 0(D) 不存在24、以下命题中正确的选项是〔 B 〕〔A 〕有界量和无穷大量的乘积仍为无穷大量〔B 〕有界量和无穷小量的乘积仍为无穷小量 〔C 〕两无穷大量的和仍为无穷大量 〔D 〕两无穷大量的差为零 25、假设()()f x g x ''=,则以下式子肯定成立的有〔 C 〕 (A)()()f x g x = (B)()()df x dg x =⎰⎰(C)(())(())df x dg x ''=⎰⎰(D)()()1f x g x =+ 26、以下曲线有斜渐近线的是 ( C )(A)sin y x x =+ (B)2sin y x x =+ (C)1sin y x x =+ (D)21sin y x x=+ 二、填空题 1、 201cos limx x x →-= 122、 假设2)(2+=xe xf ,则=)0('f 23、131(cos 51)x x x dx --+=⎰24、 =⎰dx e t te x C +5、微分方程0y y '-=满足初始条件0|2x y ==的特解为 2xy e =6、224lim 3x x x →-=+ 0 7、 极限 =---→42lim 222x x x x 438、设sin 1,y x x =+则()2f π'= 19、11(cos 1)x x dx -+=⎰210、231dx x +⎰ 3arctan x C +11、微分方程ydy xdx =的通解为 22y x C =+ 12、1415x dx -=⎰213、 sin 2limx x xx→∞+= 1 14、设2cos y x =,则dy 22sin x x dx - 15、设cos 3,y x x =-则()f π'= -1 16、不定积分⎰=x x de eC x+2e 21 17、微分方程2xy e-'=的通解为 212xy e C -=-+ 18、微分方程x y ='ln 的通解是 xy e C =+ 19、xx x3)21(lim -∞→= 6e-20、,x y x y '=设函数则x21、)21(lim 222nnn n n +++∞→ 的值是 1222、3(1)(2)lim 23x x x x x x →∞++=+- 1223、,x y x dy =设函数则x24、 20231lim 4x x x x →-+=+1425、假设2()sin6xf x eπ=-,则=)0('f 226、25(1sin )a ax dx π++=⎰2π ().a 为任意实数27、设ln(1)xy e =-,则微分dy =______1xxe dx e -__________. 28、 3222(cos )d 1x x x x ππ-+=-⎰ 2 三、解答题1、〔此题总分值9分〕求函数y =的定义域。
高等数学(1)(专科)复习题(一)一、填空题)1、设f(x)的定义域为(0,1),则)x 1(f 2-的定义域为0<|x|<1。
解:0<2x 1-<1⇒0<1-x 2<1⇒0<x 2<1⇒0<|x|<12、当x →0时,无穷小量1-cosx 与mx n 等价(其中m,n 为常数),则m=21,n=23、曲线y=xe -x 的拐点坐标是(2,2e -2)4、⎰-+-2121dx x 1x1ln =05、设⎰dx )x (f =F(x)+C ,则⎰--dx )e (f e x x =-F(e x )+C 。
解:⎰--dx )e (f e x x =C )e (F de )e (f x x x +-=----⎰二、计算下列极限1、⎪⎭⎫⎝⎛-→x sin x 1x 1sin x lim 0x =-12、求极限220x x tan )x sin 1ln(lim +→解:1x xsin lim x tan )x sin 1ln(lim220x 220x ==+→→3、4n412n 1lim 4n )n 21(lim 22n 22n =+⎪⎭⎫ ⎝⎛-=+-∞→∞→ 4、e x x x xx x x =⎪⎭⎫⎝⎛-=--∞→∞→11lim )1(lim三、求导数与微分1、设x arccos y =,求dy 解:dx xx 21dx x21x 11x d x11x arccos d dy 2--=⋅--=--==2、设y=e 2x sinx+e 2,求y ''.解:y '=2e 2x sinx+e 2x cosx,y "=4e 2x sinx+2e 2x cosx+2e 2x cosx+e 2x (-sinx)=e 2x (3sinx+4cosx) 3、求由方程ysinx-cos(x+y)=0所确定的隐函数y=y(x)的导数y '.解:0)dx dy1)(y x sin(x cos y x sin dx dy =++++)y x sin(x sin ))y x sin(x cos y (dx dy ++++-=4、设y=(1+x 2)sinx ,求dxdy 解:y=(1+x 2)sinx =)x 1ln(x sin 2e +⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+++=+22x sin 222)x 1ln(x sin x 1x sin x 2)x 1ln(x cos )x 1(x 1x 2x sin )x 1ln(x cos e dx dy 2四、计算下列积分 1、C )x x (tan 21dx )1x (sec 21dx x 2cos 1x cos 122++=+=++⎰⎰2、求⎰π+20xdx cos )x cos 1(⎰⎰⎰ππππ++=+=202020220dx 2x2cos 1x sin x dx cos x dx cos =1+4π3、求⎰dx x sec x tan 25.解:⎰dx x sec x tan 25=C x tan 61x tan d x tan 65+=⎰[][]139444)42()24(|42||42|4245222025225225=+=-+-=-+-=-+-=-⎰⎰⎰⎰⎰x x x x dx x dx x dx x dx x dx x 、五、确定函数y=(x-1)3+1在其定义域内的增减性及凹凸区间,并求拐点坐标。
高等数学(一)复习题参考答案一、选择题1A 2B 3C 4C 5C 6A 7B 8C 9A 10A 二、填空题1、x>32、e x-23、-2xsinx 44、-cos (x+5)5、36、67、2x+y+3z=0 三、计算解答题1、1、f (x )在x=0处有定义,且f (0)=0,(x 0=0,Δx=x )当x →0时,Δy=f (x )-f (0)=(x )αsin x 1只有当α>0时,有0lim →x Δy=0,故当α>0时f (x )在x=0处连续;又当x →0时,x y x ∆∆→∆0lim=x α-1sin x1只有当α>1时,x y x ∆∆→∆0lim =x α-1sin x1存在,故当α>1时f (x )在x=0处连续可导。
2、原式=5406sin 2lim xx x x →=313、原式=20sin 2lim x e e x x x -+-→=20cos 2lim x x e e x x x -→-=2220sin 4cos 2lim x x x e e x x x -+-→=14、由于x 1→时,1-x 0→,故0lim21=++→)(b ax x x ∴a=-b-1,代入原极限有:511lim21=-+--+→xbx b x x )( 即511lim1=----→xb x x x ))((解得:b=6,a=-75、由x 2-5x+6=0得x 1=2,x 2=3为其间断点在x=2处,)(x f x 2lim →=))((322lim 2---→x x x x =-1在x=3处,)(x f x 2lim →=))((322lim 2---→x x x x =∞∴x=2为可去间断点,x=3为无穷型间断点补充定义:f (2)=-1,则f (x )在x=2处连续6、y '=221a x x ++(x+22a x +)ˊ=221ax x ++(1+221ax +)=221ax +7、提示:1。
一、单选题(共86题,86分)
1、
A、 0
B、 1
C、 2
D、 3
E、 4
2、
A、 1
B、 0
C、 2
D、 3
E、 4
3、
A、 0
B、 2
C、 3
D、 1
E、 4 4、
A、 0
B、 1
C、 2
D、 e
E、 3 5、
A、 0
B、 1
C、 2
D、 3
E、 4
6、
A、 1
B、 0
C、 2
D、 3
E、 4
7、
A、 ln3
B、 ln2
C、 0
D、 1
E、 2
8、
A、 1
B、 0
C、 2
D、 3
E、 4
9、
A、 1-ex
B、 e
C、 ex+e
D、 0
E、 1
10、
A、连续但偏导不存在
B、偏导存在但不连续
C、连续且偏导存在
D、既不连续偏导也不存在
11、
A、 0
B、 1
C、 2
D、 3
E、 4
12、
A、 1
B、 0
C、 2
D、 3
E、 4
13、
A、 1
B、 2
C、 3
D、 4
E、 0
14、
A、 0
B、 1
C、 2
D、 3
E、 e
15、
A、 0
B、 2
C、 3
D、 4
E、 1
16、
A、 e
B、 1
C、 2
D、 4
E、 3
17、
A、 ln3
B、 ln2
C、 1
D、 2
E、 3
18、
A、 1
B、 0
C、 2
D、 3
E、 4
19、
A、 1-ex
B、 ex+e
C、 e
D、 0
E、 1
20、
A、连续但偏导不存在
B、偏导存在但不连续
C、既不连续偏导也不存在
D、连续且偏导存在
21、下列关于多元函数连续、偏导及可微说法正确的是()
A、若可微,则偏导存在
B、若连续,则偏导存在
C、若偏导存在,则连续
D、若偏导存在,则可微
22、
A、
B、
C、
D、23、
A、 dx+2dy+dz
B、 dx+dy+dz
C、 2dx+dy+dz
D、 2dx+2dy+dz
24、
A、 1
B、 -1
C、 0
D、 2
25、
A、
B、
C、
D、26、
设u=cos(xy),则du=( ).
A、 -cos(xy)(ydx+xdy)
B、 -sin(xy)(ydx+xdy)
C、 cos(xy)(ydx+xdy)
D、 sin(xy)(ydx+xdy)
27、
A、 2
B、 4
C、 -2
D、 1
28、
A、 2
B、 0
C、 1
D、 3
29、
A、 3
B、 2
C、 1
D、 0
30、
A、
B、C、 y
D、
31、A、B、
C、
D、
32、
A、 2x+2y-z=0
B、 2x+2y-z-1=0
C、 2x+2y-z-2=0
D、 2x+y-z-2=0
33、
A、必要条件但非充分条件
B、充分条件但非必要条件
C、既非必要条件也非充分条件
D、充要条件
34、
A、 4
B、 8
C、 6
D、 10
35、
A、 x+y-8z=116
B、 x-y-8z=120
C、 x-y+8z=110
D、 x+y+8z=140
36、
A、 2
B、 1
C、 3
D、 4
37、
A、 4,0
B、 1,2
C、 0,4
D、 2,1
38、
A、 -2
B、 2
C、 -4
D、 4
39、
A、 (1,1)
B、 (1,2)
C、 (1,-1)
D、 (2,1)
40、
A、 1
B、 2
C、 0
D、 3
41、
A、 3
B、 6
C、 9
D、 0
42、
A、 1+sin1
B、 1-cos1
C、 1-sin1
D、 0
43、
A、 4
B、 5
C、 -4
D、 -5
44、
A、 2
B、 3
C、 1
D、 4
45、
A、 3S
B、 2S
C、 S
D、 4S
46、
A、 2
B、 3
C、 1
D、 0
47、
A、 2
B、 1
C、 0
D、 4
48、
A、 1
B、 0
C、 2
D、 -1
49、
A、大于0
B、等于0
C、无法确定
D、小于0
50、
A、
B、
C、 0
D、 1
51、
A、 1
B、 2
C、 3
D、 0
52、
A、 a
B、 abc
C、 b
D、 0
53、
A、 22π
B、 21π
C、 20π
D、 25π
54、
A、 2π
B、 4π
C、 0
D、 8π
55、
A、π
B、π/2
C、 0
D、 2
56、
A、 13/9
B、 14/9
C、 1
D、 0
57、
A、 0
B、
C、 2
D、 1
58、
A、 2π
B、 4π
C、π
D、 3π
59、
A、 2
B、 1
C、 0
D、 3
60、A、
B、
C、
D、61、
B、 16
C、 8
D、 10
62、
A、 3
B、 1
C、 0
D、 4
63、
A、I=J
B、I<J
D、无法判断I,J大小
64、
A、4π
B、0
C、2
D、2π
65、
A、0
B、4π
C、2
66、
A、-2
B、4
C、-4
D、2
67、
A、π
B、2π
C、π/2
D、4π
68、
A、10
B、8
C、-8
D、-10
69、
A、1
B、2
C、4
D、0
70、
A、dx
B、dx+dy
C、-dy
D、dy
71、
A、(0,0)不是函数的极小值点
B、(0,0)是函数的极大值点
C、(0,0)是函数的极小值点
D、(0,0)不是函数的极值点
72、
A、{4,4,8}
B、{2,4,4}
C、{4,4,12}
D、{2,2,4}
73、
A、B、C、
D、74、
A、
B、2
C、/2
D、1
75、
A、B、
C、
D、76、
A、连续
B、极限不存在
C、极限存在但不连续
D、没有定义
77、
A、 0
B、1
C、 2
D、 3
78、
A、1
B、2
C、-2
D、0
79、
A、1
B、-1
C、2
D、 3
80、
A、48π
B、16π
C、24π
D、π
81、A、
B、
C、
D、82、
A、0
B、1
C、2
D、3
83、
A、B、C、
D、
84、
A、e+1
B、e-1
C、-e-1
D、e
85、
设C为一条平面闭曲线,方向为逆时针,则下面可表示所围区域D面积的是( )
A、B、C、
D、86、
A、
B、
C、
D、
二、判断题(共18题,18分)
1、
√2、
×
3、√
4、
5、
是否正确?√
6、质心与形心两个概念没有任何区别.
7、
8、
9、
偏导存在且连续可以推出函数可微√
10、
计算空间体的体积只有二重积分和三重积分两种方法,其他类型的积分不能处理体积的问题.×11、
二元函数在某点极值存在,且该点处偏导存在,则偏导数一定为零.
12、
二元函数在开区域内部如果只有一个极值点,则该极值点为最值点.
13、
二元函数在某点极限存在当且仅当沿任何方向任意路径趋近于该点处极限均存在且相等.
14、
偏导存在能推出连续,连续不能推出偏导存在×
15、
二重积分的几何意义是曲顶柱体体积的代数和.√
16、
质心与形心两个概念是有所不同的.√
17、
方向导数是一个数,梯度是一个向量√
18、
×
19、函数f(x,y,z)在有界闭区Ω上连续时,f(x,y,z)在Ω三重积分必存在。
√。