6. 3 2 与 3 2 的等比中项是______1_____.
3 2 3 2
7.已知正数等比数列{an }中,a n a n 1 a n 2
5 1
对所有的自然数 n 都成立,则公比 q =_____2______.
8.(2014·广东高考)等比数列{an}的各项均为正数,且
a1a5=4,则 log2a1+log2a2+log2a3+log2a4+log2a5=
等比数列,则{can}(c为不等于0的常数)是公比为
qq{a的n2等}是比公数比列为,{qa2n的• 等bn比}是数公列比,数为列qq′abn的n 是等公比比数为列,
q' 的等比数列,数列 an 是公比为 q 的等比数列.
(7)数列
1 an
是公比为
1 q
的等比数列.
(8)在{an}中,每隔k(k∈N*)项取出一项,按原来顺序
或a4 2, a7 4, a4 4, a7 2 a1 8, a10 1 a1 a10 7, a4 2, a7 4 a10 8, a1 1 a1 a10 7.
2.如果-1,a,b,c,-9成等比数列,那么( B )
A.b=3,ac=9
B.b=-3,ac=9
C.b=3,ac=-9
等比 数列
an1 q(q为常数, an q 0)
a2 n 1
an
a n2
(n N *,an 0)
3.等比数列的性质: (1)an=amqn-m(n,m∈N*) (2)若m+n=p+q,则aman= apaq(m,n,p,q∈N*) (3)等比数列中,每隔k项取一项,按原来顺序排 列,所得的新数列仍为等比数列. (4)a1a2, a3a4, a5a6, …仍为等比数列. (5)在等比数列中,从第二项起,每一项都是它等 距离的前后两项的等比中项.