不饱和聚酯树脂的固化
- 格式:doc
- 大小:125.50 KB
- 文档页数:10
不饱和聚酯树脂的固化 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】不饱和聚酯树脂的固化机理引言不饱和聚酯树脂(UPR)的固化似乎是从理论和实践上已研究得十分透彻的问题,但是因为影响固化反应的因素相当复杂,而在UPR的各种应用领域中,制品所出现的质量瑕疵在很大程度上几乎都与“固化”有关。
所以,我们有对UPR的固化进行较深入探讨的必要。
(探讨不饱和聚酯树脂的固化,首先应该了解与不饱和聚酯树脂固化有关的一些概念和定义)。
2.与不饱和聚酯树脂固化有关的概念和定义固化的定义液态UPR在光、热或引发剂的作用下可以通过线型聚酯链中的不饱和双键与交联单体的双键的结合,形成三向交联的不溶不熔的体型结构。
这个过程称为UPR的固化。
固化剂不饱和聚酯树脂的固化是游离基引发的共聚合反应,如何能使反应启动是问题的关键。
单体一旦被引发,产生游离基,分子链即可以迅速增长而形成三向交联的大分子。
饱和聚酯树脂固化的启动是首先使不饱和C—C双键断裂,由于化学键发生断裂所需的能量不同,对于C—C键,其键能E=350kJ/mol,需350-550℃的温度才能将其激发裂解。
显然,在这样高的温度下使树脂固化是不实用的。
因此人们找到了能在较低的温度下即可分解产生自由基的物质,这就是有机过氧化物。
一些有机过氧化物的O—O键可在较低的温度下分解产生自由基。
其中一些能在50-150℃分解的过氧化物对树脂的固化很有利用价值。
我们可以利用有机过氧化物的这一特性,选择其中的一些作为树脂的引发剂,或称固化剂。
固化剂的定义:不饱和聚酯树脂用的固化剂,是在促进剂或其它外界条件作用下而引发树脂交联的一种过氧化物,又称为引发剂或催化剂。
这里所说的“催化剂”与传统意义上的“催化剂”是不同的。
在传统的观念上,“催化剂”这个术语是为反应物提供帮助的,它们在促进反应的同时,本身并没有消耗。
而在UPR固化反应中,过氧化物必须在它“催化”反应以前,改变它本身的结构,因此对于用于UPR固化的过氧化物来说,一个较合适的名字应该叫做“起始剂”或“引发剂”。
不饱和聚酯树脂(UPR)的固化似乎是从理论和实践上已研究得十分透彻的问题,但是因为影响固化反应的因素相当复杂,而在UPR的各种应用领域中,制品所出现的质量瑕疵在很大程度上几乎都与“固化”有关。
所以,我们有对UPR 的固化进行较深入探讨的必要。
(探讨不饱和聚酯树脂的固化,首先应该了解与不饱和聚酯树脂固化有关的一些概念和定义)。
2.与不饱和聚酯树脂固化有关的概念和定义2.1固化的定义液态UPR在光、热或引发剂的作用下可以通过线型聚酯链中的不饱和双键与交联单体的双键的结合,形成三向交联的不溶不熔的体型结构。
这个过程称为UPR的固化。
2.2固化剂不饱和聚酯树脂的固化是游离基引发的共聚合反应,如何能使反应启动是问题的关键。
单体一旦被引发,产生游离基,分子链即可以迅速增长而形成三向交联的大分子。
饱和聚酯树脂固化的启动是首先使不饱和C—C双键断裂,由于化学键发生断裂所需的能量不同,对于C—C键,其键能E=350kJ/mol,需350-550℃的温度才能将其激发裂解。
显然,在这样高的温度下使树脂固化是不实用的。
因此人们找到了能在较低的温度下即可分解产生自由基的物质,这就是有机过氧化物。
一些有机过氧化物的O—O键可在较低的温度下分解产生自由基。
其中一些能在50-150℃分解的过氧化物对树脂的固化很有利用价值。
我们可以利用有机过氧化物的这一特性,选择其中的一些作为树脂的引发剂,或称固化剂。
固化剂的定义:不饱和聚酯树脂用的固化剂,是在促进剂或其它外界条件作用下而引发树脂交联的一种过氧化物,又称为引发剂或催化剂。
这里所说的“催化剂”与传统意义上的“催化剂”是不同的。
在传统的观念上,“催化剂”这个术语是为反应物提供帮助的,它们在促进反应的同时,本身并没有消耗。
而在UPR固化反应中,过氧化物必须在它“催化”反应以前,改变它本身的结构,因此对于用于UPR固化的过氧化物来说,一个较合适的名字应该叫做“起始剂”或“引发剂”。
说到过氧化物我们要有必要了解的两个概念是活性氧含量和临界温度。
不饱和聚酯树脂的固化机理引言不饱和聚酯树脂(UPR)的固化似乎是从理论和实践上已研究得十分透彻的问题,但是因为影响固化反应的因素相当复杂,而在UPR的各种应用领域中,制品所出现的质量瑕疵在很大程度上几乎都与“固化”有关。
所以,我们有对UPR的固化进行较深入探讨的必要。
(探讨不饱和聚酯树脂的固化,首先应该了解与不饱和聚酯树脂固化有关的一些概念和定义)。
2.与不饱和聚酯树脂固化有关的概念和定义2.1 固化的定义液态UPR在光、热或引发剂的作用下可以通过线型聚酯链中的不饱和双键与交联单体的双键的结合,形成三向交联的不溶不熔的体型结构。
这个过程称为UPR的固化。
2.2固化剂不饱和聚酯树脂的固化是游离基引发的共聚合反应,如何能使反应启动是问题的关键。
单体一旦被引发,产生游离基,分子链即可以迅速增长而形成三向交联的大分子。
饱和聚酯树脂固化的启动是首先使不饱和C—C双键断裂,由于化学键发生断裂所需的能量不同,对于C—C键,其键能E=350kJ/mol,需350-550℃的温度才能将其激发裂解。
显然,在这样高的温度下使树脂固化是不实用的。
因此人们找到了能在较低的温度下即可分解产生自由基的物质,这就是有机过氧化物。
一些有机过氧化物的O—O键可在较低的温度下分解产生自由基。
其中一些能在50-150℃分解的过氧化物对树脂的固化很有利用价值。
我们可以利用有机过氧化物的这一特性,选择其中的一些作为树脂的引发剂,或称固化剂。
固化剂的定义:不饱和聚酯树脂用的固化剂,是在促进剂或其它外界条件作用下而引发树脂交联的一种过氧化物,又称为引发剂或催化剂。
这里所说的“催化剂”与传统意义上的“催化剂”是不同的。
在传统的观念上,“催化剂”这个术语是为反应物提供帮助的,它们在促进反应的同时,本身并没有消耗。
而在UPR固化反应中,过氧化物必须在它“催化”反应以前,改变它本身的结构,因此对于用于UPR固化的过氧化物来说,一个较合适的名字应该叫做“起始剂”或“引发剂”。
不饱和聚酯树脂(UPR)的固化似乎是从理论和实践上已研究得十分透彻的问题,但是因为影响固化反应的因素相当复杂,而在UPR的各种应用领域中,制品所出现的质量瑕疵在很大程度上几乎都与“固化”有关。
所以,我们有对UPR 的固化进行较深入探讨的必要。
(探讨不饱和聚酯树脂的固化,首先应该了解与不饱和聚酯树脂固化有关的一些概念和定义)。
2.与不饱和聚酯树脂固化有关的概念和定义 2.1 固化的定义液态UPR在光、热或引发剂的作用下可以通过线型聚酯链中的不饱和双键与交联单体的双键的结合,形成三向交联的不溶不熔的体型结构。
这个过程称为UPR的固化。
2.2固化剂不饱和聚酯树脂的固化是游离基引发的共聚合反应,如何能使反应启动是问题的关键。
单体一旦被引发,产生游离基,分子链即可以迅速增长而形成三向交联的大分子。
饱和聚酯树脂固化的启动是首先使不饱和C—C双键断裂,由于化学键发生断裂所需的能量不同,对于C—C键,其键能E=350kJ/mol,需350-550℃的温度才能将其激发裂解。
显然,在这样高的温度下使树脂固化是不实用的。
因此人们找到了能在较低的温度下即可分解产生自由基的物质,这就是有机过氧化物。
一些有机过氧化物的O—O键可在较低的温度下分解产生自由基。
其中一些能在50-150℃分解的过氧化物对树脂的固化很有利用价值。
我们可以利用有机过氧化物的这一特性,选择其中的一些作为树脂的引发剂,或称固化剂。
固化剂的定义:不饱和聚酯树脂用的固化剂,是在促进剂或其它外界条件作用下而引发树脂交联的一种过氧化物,又称为引发剂或催化剂。
这里所说的“催化剂”与传统意义上的“催化剂”是不同的。
在传统的观念上,“催化剂”这个术语是为反应物提供帮助的,它们在促进反应的同时,本身并没有消耗。
而在UPR固化反应中,过氧化物必须在它“催化”反应以前,改变它本身的结构,因此对于用于UPR固化的过氧化物来说,一个较合适的名字应该叫做“起始剂”或“引发剂”。
不饱和聚酯树脂固化机理
首先,聚酯树脂与引发剂进行起始反应,将酸酐环与引发剂中的羟基反应生成酯键,并释放出引发剂中的酚类物质。
这一步是固化过程中最关键的步骤,也是影响固化速度和性能的重要因素之一
其次,酯化反应继续进行,聚酯树脂中的酸酐环与引发剂中的羟基进行反应生成酯键,同时进一步释放出引发剂中的酚类物质。
随着酯键的不断生成,聚酯树脂的分子量逐渐增大,黏度增大。
最后,由于产生的酯键具有较高的活性,会进一步与其他聚合物链进行反应,形成交联结构,实现树脂的固化。
交联反应的发生使得树脂分子链之间产生跨链结构,从而使得树脂的力学性能得到增强。
在固化过程中,温度和时间是影响固化速度和性能的重要因素。
一般情况下,增加温度可以加快酯化反应和交联反应的进行速度,同时缩短固化时间。
但过高的温度会导致固化过程中产生副反应,影响材料性能。
此外,催化剂的选择也是固化过程中的关键因素之一、催化剂可以提高酯化反应和交联反应的活性,缩短固化时间。
常用的催化剂有有机酸类催化剂和金属催化剂等。
总结起来,不饱和聚酯树脂固化机理涉及到酯化反应和交联反应。
酯化反应是固化过程中的首要反应,其反应产物酯键具有较高的活性,可以进一步与其他聚合物链发生反应,形成交联结构。
固化过程中的温度、时间和催化剂等因素都会影响固化速度和性能。
深入研究固化机理可以帮助我们更好地控制固化过程,改善材料性能。
不饱和聚酯树脂是一种常见的树脂材料,它广泛应用于涂料、粘合剂、复合材料等领域。
在固化过程中,分子间张力和表面张力是两个重要的物理现象,它们对固化后的树脂性能有着重要影响。
1. 不饱和聚酯树脂的分子间张力不饱和聚酯树脂在固化过程中,由于水平交联和垂直交联产生分子间张力。
水平交联使得树脂分子间拉伸,形成张力;而垂直交联则使得树脂分子之间产生交错叠加的张力。
这些分子间张力会影响树脂固化后的强度和韧性。
2. 不饱和聚酯树脂的表面张力固化后的不饱和聚酯树脂表面张力的大小直接影响着其表面的性能。
表面张力决定了树脂的粘附性、润湿性和耐腐蚀性。
较高的表面张力意味着树脂表面更难与其他材料发生作用,而较低的表面张力则可能导致树脂表面易受到外界影响。
总结与展望不饱和聚酯树脂固化后的分子间张力和表面张力是影响其性能的重要因素。
深入理解和控制这些张力,对于优化树脂的性能具有重要意义。
随着科学技术的不断进步,相信对于不饱和聚酯树脂张力的研究将会取得更多的突破,为其在各个领域的应用带来新的发展。
个人观点在我看来,对于不饱和聚酯树脂固化后的分子间张力和表面张力的研究,有助于提高树脂的性能和应用范围。
通过深入理解和控制这些张力,我们可以更好地设计合成新型树脂,推动树脂在涂料、粘合剂、复合材料等领域的发展和应用。
希望这篇文章能为你提供帮助,如果有任何问题或需要进一步了解的地方,欢迎随时向我沟通。
不饱和聚酯树脂是一种常见的树脂材料,由于其优良的性能特点,在涂料、粘合剂、复合材料等领域有着广泛的应用。
在固化过程中,不饱和聚酯树脂的分子间张力和表面张力对其固化后的性能起着重要的影响。
深入研究和控制这些张力,对于优化树脂的性能具有重要意义。
不饱和聚酯树脂在固化过程中,分子间张力起着至关重要的作用。
由于水平交联和垂直交联产生的张力,树脂分子间会产生拉伸和交错叠加的张力。
这些张力将直接影响树脂固化后的强度和韧性,进而影响其在各个领域的应用效果。
不饱和聚酯树脂的固化不饱和聚酯树脂是一种广泛应用于合成领域的重要材料,其具有优异的物理性能和化学稳定性,广泛应用于塑料、涂料、复合材料等领域。
而固化是不饱和聚酯树脂加工过程中的一个重要步骤,通过固化可以使不饱和聚酯树脂从液态转变为固态,从而赋予材料更好的力学性能和热稳定性。
不饱和聚酯树脂的固化是一个复杂的化学反应过程,需要适当的固化条件和催化剂的存在。
在固化过程中,聚酯树脂分子之间发生交联反应,形成网络结构,从而使材料由液态转变为固态。
固化过程包括初次固化和后固化两个阶段。
初次固化是指不饱和聚酯树脂在室温下与固化剂反应生成一定的交联结构,从而具有一定的硬度和力学性能。
初次固化的主要反应是单体的自由基聚合反应,其中单体包括不饱和酯、酸酐和交联剂等。
固化剂主要起催化作用,加速不饱和聚酯树脂的固化速度。
常用的固化剂有过氧化物、过硫酸盐和有机金属盐等。
后固化是指在初次固化后,通过升高温度或使用外加剂使得材料的固化程度进一步增加,从而获得更高的力学性能和热稳定性。
后固化的目的是改进材料的性能,如提高耐热性、耐化学性、机械性能等。
后固化的反应包括固化剂的活化和交联结构的增加。
常用的后固化方法有热固化和光固化两种。
热固化是通过升高材料的温度,使固化剂开始发生反应,从而引发材料的后固化。
温度的选择很重要,过高的温度会导致材料过早固化,而过低的温度则固化时间太长,不利于生产效率。
典型的热固化反应是通过过氧化物引发单体的聚合反应,生成交联结构。
光固化是通过使用紫外线或可见光等光源,使固化剂发生光敏反应,从而引发材料的后固化。
光固化具有反应速度快、节能环保等优点,常用于制备薄膜、涂层等需要快速固化的材料。
典型的光固化反应是通过光引发剂吸收光能,产生自由基,并引发单体的聚合反应。
不饱和聚酯树脂的固化过程受到多种因素的影响,如固化时间、温度、压力、固化剂种类和用量等。
其中固化时间是固化过程中最重要的参数之一,过短的固化时间会导致固化不完全,固化剂未完全发挥催化作用,从而降低材料的性能;而过长的固化时间则会增加生产成本和生产周期。
不饱和聚酯树脂(UPR)的固化似乎是从理论和实践上已研究得十分透彻的问题,但是因为影响固化反应的因素相当复杂,而在UPR的各种应用领域中,制品所出现的质量瑕疵在很大程度上几乎都与“固化”有关。
所以,我们有对UPR 的固化进行较深入探讨的必要。
(探讨不饱和聚酯树脂的固化,首先应该了解与不饱和聚酯树脂固化有关的一些概念和定义)。
2.与不饱和聚酯树脂固化有关的概念和定义 2.1 固化的定义液态UPR在光、热或引发剂的作用下可以通过线型聚酯链中的不饱和双键与交联单体的双键的结合,形成三向交联的不溶不熔的体型结构。
这个过程称为UPR的固化。
2.2固化剂不饱和聚酯树脂的固化是游离基引发的共聚合反应,如何能使反应启动是问题的关键。
单体一旦被引发,产生游离基,分子链即可以迅速增长而形成三向交联的大分子。
饱和聚酯树脂固化的启动是首先使不饱和C—C双键断裂,由于化学键发生断裂所需的能量不同,对于C—C键,其键能E=350kJ/mol,需350-550℃的温度才能将其激发裂解。
显然,在这样高的温度下使树脂固化是不实用的。
因此人们找到了能在较低的温度下即可分解产生自由基的物质,这就是有机过氧化物。
一些有机过氧化物的O—O键可在较低的温度下分解产生自由基。
其中一些能在50-150℃分解的过氧化物对树脂的固化很有利用价值。
我们可以利用有机过氧化物的这一特性,选择其中的一些作为树脂的引发剂,或称固化剂。
固化剂的定义:不饱和聚酯树脂用的固化剂,是在促进剂或其它外界条件作用下而引发树脂交联的一种过氧化物,又称为引发剂或催化剂。
这里所说的“催化剂”与传统意义上的“催化剂”是不同的。
在传统的观念上,“催化剂”这个术语是为反应物提供帮助的,它们在促进反应的同时,本身并没有消耗。
而在UPR固化反应中,过氧化物必须在它“催化”反应以前,改变它本身的结构,因此对于用于UPR固化的过氧化物来说,一个较合适的名字应该叫做“起始剂”或“引发剂”。
不饱和聚酯树脂的固化特征及表征(一)不饱和聚酯树脂的固化特征不饱和聚酯树脂在固化过程中同样有三个阶段,按照其成型工艺上的术语分为凝胶、定型和熟化三个阶段。
凝胶阶段是指从粘流态的树脂到失去流动性形成半固体凝胶阶段。
这一阶段对应于通常所说的A阶向B阶的过渡。
定型阶段是从凝胶到具有一定硬度的固定的形状,可从模具上取下为止,从树脂未完全固化这一点来说,与通常所说的B阶段相似,只是它不具有通常B阶段树脂那种加热软化等特性,实际上更接近C 阶段的特证,但由于此时性能还未稳定,而处于中间变化阶段,所以还不能称为C阶,确切地说是处于C阶前期。
熟化阶段是从表观上已变硬具有一定力学性能,经过后处理到具有稳定的化学与物理性能而供使用的阶段,大体上可称#阶,不过这一阶段比通常习用的#阶要长,这是不饱和聚酯树脂固化过程的一个特点。
(二)固化特征的表征一般研究聚酯固化特征,采用树脂固化时温度随时间变化的曲线,这种曲线称为放热曲线。
这是美国塑料工业协会应用最广泛的方法,简称SIP法,后又发展为“日本工业标准法”,简称JIS法,两种方法不同点是采用的温标不一样,前者采用华氏温标,恒温水浴为180F,而后者则采用摄氏温标,恒温水浴温度为80℃树脂固化过程是物理性质和化学性质发生变化的过程,放热曲线是这个过程中固化温度随时间变化的关系曲线,根据放热曲线能够确定树脂在固化过程中的几个物理量。
1、凝胶时间SIP法:在环境温度(浴温)为180F的条件下,试样的温度从150F升到190F所需要的时间定为凝胶时间。
JIS法:在环境温度(浴温)为C的条件下,试样的温度从65℃升到85℃时所需的时间定为凝胶时间。
2、最小固化的时间从150F或65℃到达最高放热温度时间。
3、最高放热温度———放热峰温度聚合热可达温度的最高值。
在诱导期,树脂中的阻聚剂消耗掉,由于热分解为自由基的引发剂,在诱导期的终点时,阻聚剂全部消耗完,于是引发剂分解产生的初级自由基引起了聚合作用,树脂的凝胶化和聚合反应的热效应证明了共聚合反应的开始。
不饱和聚酯树脂的固化不饱和聚酯树脂化1.外观:无色透明粘稠液体2.固体含量:62±3%3.粘度:40—60秒(涂4号杯,25℃)4.酸值:≤35mgKOH/克使用方法(参考配方):树脂引发剂(过氧化甲乙酮液) 0.8—2份(若过氧化环己酮糊1.5-4份) 促进剂(辛酸钴液) 0.5-3份(本型号产品已加入适量,可不必再加) 客户应根据使用时的天气温度情况和制作工艺要求,分别称取树脂(促进剂已加入,需要时可自行考虑补加量)、引发剂调和成均匀的树脂胶。
具有粘性的可流动的不饱和聚酯树脂,在引发剂存在下发生自由基共聚合反应,而生成性能稳定的体型结构的过程称为不饱和聚酯的固化。
发生在线型聚酯树脂分子和交联剂分子之间的自由基共聚合反应,其反应机理同前述自由基共聚反应的机理基本相同,所不同的它是在具有多个双键的聚酯大分子(即具有多个官能团)和交联剂苯乙烯的双键之间发生的共聚,其最终结果,必然形成体型结构。
固化的阶段性不饱和聚酯树脂的整个固化过程包括三个阶段:凝胶--从粘流态树脂到失去流动性生成半固体状有弹性的凝胶;定型--从凝胶到具有一定硬度和固定形状,可以从模具上将固化物取下而不发生变形;熟化--具有稳定的化学、物理性能,达到较高的固化度。
一切具有活性的线型低聚物的固化过程,都可分为三个阶段,但由于反应的机理和条件不同,其三个阶段所表现的特点也不同。
不饱和聚酯树脂的固化是自由基共聚反应,因此具有链锁反应的性质,表现在三个阶段上,其时间间隔具有较短的特点,一般凝胶到定型有时数个小时就可完成,再加上不饱和聚酯在固化时系统内无多余的小分子逸出,结构较为紧密,因此不饱和聚酯树脂和其他热固性树脂相比具有最佳的室温接触成型的工艺性能。
引发剂用于不饱和聚酯树脂固化的引发剂与自由基聚合用引发剂一样,一般为有机过氧化合物。
各类有机过氧化合物的特性,通常用活性氧含量,临界温度和半衰期等表示。
活性氧含量活性氧含量又称为有效氧含量。
几种不饱和聚酯树脂的固化体系
不饱和聚酯树脂的固化体系是一种热固性树脂,用于为各种产品提供极端附着力,耐气候以及耐腐蚀环境能力。
这些树脂通常由一种或多种不饱和聚酯(UP)制成,具有易操作性、热稳定性、良好的柔韧性和耐腐蚀性等特点。
以下将详细介绍几种不饱和聚酯树脂的固化体系。
第一种是热重组固化体系,它是一种热开发的固化体系,适用于不饱和聚酯树脂的特性和表面覆盖性的高性能涂料。
它主要由热重组剂、固化剂、增塑剂和表面活性剂组成,并通过热处理来实现固化。
优点是随着温度升高,它会快速重组和固化,从而有效缩短固化周期。
第二种是干燥固化体系,它是一种烘干固化的固化体系,主要由不饱和聚酯树脂、固化剂、溶剂和抗剥落剂组成。
它能够提供良好的流动性和均匀分布性,此外还能在耐久性和良好的抗气化方面表现出强大的热固性性能。
它的缺点是有很高的初溶剂含量,而且容易产生少量的表面毛刺。
最后一种是水性乳液固化体系,它是一种乳液形式的固化体系,主要由不饱和聚酯树脂、乳化剂、固化剂、水性颜料、抗剥落剂和溶剂等成分组成。
它具有耐腐蚀性、耐气候性、良好的硬度和抗腐蚀性和耐久性等特性,并能提供良好的工夫特性。
但它的缺点是制备时间长,非常耗时。
综上所述,不饱和聚酯树脂的固化体系强大的性能和可靠的处理方式使其成为高温UV、热重组和水性乳液应用的理想选择。
它们具有优良的耐蚀性、耐气候性、良好的柔韧性和耐久性等特点,以及易操作性、可用性高等特点,这使它们在各种表面保护方面受到广泛重视。
因此,不饱和聚酯树脂的固化体系应根据实际应用情况进行选择,以满足其实际需求。
不饱和聚酯树脂( UPR)的固化似乎是从理论和实践上已研究得十分透彻的问题,但是因为影响固化反应的因素相当复杂,而在UPR 的各种应用领域中,制品所出现的质量瑕疵在很大程度上几乎都与“固化”有关。
所以,我们有对 UPR的固化进行较深入探讨的必要。
(探讨不饱和聚酯树脂的固化,首先应该了解与不饱和聚酯树脂固化有关的一些概念和定义)。
2.与不饱和聚酯树脂固化有关的概念和定义 2.1 固化的定义液态 UPR 在光、热或引发剂的作用下可以通过线型聚酯链中的不饱和双键与交联单体的双键的结合,形成三向交联的不溶不熔的体型结构。
这个过程称为UPR 的固化。
2.2 固化剂不饱和聚酯树脂的固化是游离基引发的共聚合反应,如何能使反应启动是问题的关键。
单体一旦被引发,产生游离基,分子链即可以迅速增长而形成三向交联的大分子。
饱和聚酯树脂固化的启动是首先使不饱和 C—C 双键断裂,由于化学键发生断裂所需的能量不同,对于 C—C 键,其键能 E=350kJ/mol,需 350-550℃的温度才能将其激发裂解。
显然,在这样高的温度下使树脂固化是不实用的。
因此人们找到了能在较低的温度下即可分解产生自由基的物质,这就是有机过氧化物。
一些有机过氧化物的 O— O 键可在较低的温度下分解产生自由基。
其中一些能在50-150℃分解的过氧化物对树脂的固化很有利用价值。
我们可以利用有机过氧化物的这一特性,选择其中的一些作为树脂的引发剂,或称固化剂。
固化剂的定义:不饱和聚酯树脂用的固化剂,是在促进剂或其它外界条件作用下而引发树脂交联的一种过氧化物,又称为引发剂或催化剂。
这里所说的“催化剂”与传统意义上的“催化剂”是不同的。
在传统的观念上,“催化剂”这个术语是为反应物提供帮助的,它们在促进反应的同时,本身并没有消耗。
而在 UPR 固化反应中,过氧化物必须在它“催化”反应以前,改变它本身的结构,因此对于用于 UPR 固化的过氧化物来说,一个较合适的名字应该叫做“起始剂”或“引发剂”。
不饱和聚酯树脂的固化原理
不饱和聚酯树脂的固化是通过引发剂引发自由基连锁反应,使线性聚酯分子交联成三维网状结构的过程。
具体原理如下:
首先,不饱和聚酯树脂中的不饱和双键可以与引发剂中的自由基发生反应,形成单体自由基。
单体自由基可以继续引发其他不饱和双键进行反应,形成更多的自由基,从而使反应迅速扩展。
然后,这些自由基可以与不饱和聚酯树脂中的羧基或羟基发生反应,形成酯键或醚键,从而将线性聚酯分子交联成三维网状结构。
在这个过程中,由于自由基的存在,反应会不断加速,
直到所有的不饱和双键都被交联。
最后,随着反应的进行,体系的粘度逐渐增加,最终形成具有一定力学性能和耐化学性能的固化产物。
不饱和聚酯树脂的固化过程受温度、引发剂浓度、固化剂浓度等因素的影响。
在实际应用中,需要根据具体情况选择合适的固化条件,以获得最佳的固化效果。