机械搅拌反应器剖析
- 格式:ppt
- 大小:8.15 MB
- 文档页数:171
反应器结构及工作原理图解小7:这里给大家介绍一下常用的反应器设备,主要有以下类型:①管式反应器。
由长径比较大的空管或填充管构成,可用于实现气相反应和液相反应。
②釜式反应器。
由长径比较小的圆筒形容器构成,常装有机械搅拌或气流搅拌装置,可用于液相单相反应过程和液液相、气液相、气液固相等多相反应过程。
用于气液相反应过程的称为鼓泡搅拌釜(见鼓泡反应器);用于气液固相反应过程的称为搅拌釜式浆态反应器。
③有固体颗粒床层的反应器。
气体或(和)液体通过固定的或运动的固体颗粒床层以实现多相反应过程,包括固定床反应器、流化床反应器、移动床反应器、涓流床反应器等。
④塔式反应器。
用于实现气液相或液液相反应过程的塔式设备,包括填充塔、板式塔、鼓泡塔等(见彩图)。
一、管式反应器一种呈管状、长径比很大的连续操作反应器。
这种反应器可以很长,如丙烯二聚的反应器管长以公里计。
反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。
通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流。
分类:1、水平管式反应器由无缝钢管与U形管连接而成。
这种结构易于加工制造和检修。
高压反应管道的连接采用标准槽对焊钢法兰,可承受1600-10000kPa压力。
如用透镜面钢法兰,承受压力可达10000—20000kPa。
2、立管式反应器立管式反应器被应用于液相氨化反应、液相加氢反应、液相氧化反应等工艺中。
3、盘管式反应器将管式反应器做成盘管的形式,设备紧凑,节省空间。
但检修和清刷管道比较困难.4、U形管式反应器U形管式反应器的管内设有多孔挡板或搅拌装置,以强化传热与传质过程。
U形管的直径大,物料停留时间增长,可应用于反应速率较慢的反应。
5、多管并联管式反应器多管并联结构的管式反应器一般用于气固相反应,例如气相氯化氢和乙炔在多管并联装有固相催化剂的反应器中反应制氯乙烯,气相氮和氢混合物在多管并联装有固相铁催化剂的反应器中合成氨.性能特点:1、由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。
未能反应的丙烯气体通过冷凝的方式来进行回收,之后于反应器顶部喷洒液态丙烯作为急冷液,通过丙烯气化吸热来撤走反应系统所累计的大量热量,维持反应器温度在60~70 ℃的范围内。
在反应器底部通入混有丙烯,乙烯和氢气的循环气,使得整个床层保持接近流化的松动状态。
床层在具有特定结构搅拌桨叶的搅拌作用下缓慢地向反应器下游移动,在出口形成符合生产要求的聚丙烯颗粒。
本文将就Innovene 公司开发的高效的气相聚丙烯反应装置即卧式搅拌反应器中影响实际生产效果的主要流体力学性质进行介绍。
1 流动特性Innovene 气相法工艺最大的优势在于采用了流动模型接近于理想平推流的卧式搅拌反应器,其可以在节约设备制造成本,减小流程复杂程度的同时实现多级全混釜的串联[2]。
卧式搅拌反应器的停留时间分布(RTD)曲线比立式搅拌床(VSBR)窄,显示出HSBR 对比VSBR 的主要优势。
HSBR 中停留时间非常短或非常长的催化剂颗粒的比例明显降低,因此催化剂颗粒尺寸和聚合物性质更加均匀[3]。
在实际生产过程中,反应器内的流体由于各种原因会出现不同程度的停留时间分布现象。
一部分流体受到外界影响发生反向运动并在流场横截面上混合的返混现象是引起停留时间分布的一大因素,但是停留时间分布并不能成为我们推断返混0 引言气相法聚丙烯工艺是迄今为止最为先进的聚丙烯生产工艺之一,由于其消除了脱气和挥发性液相转移过程,使得聚丙烯可以作为流动的颗粒来直接进行生产和输送,进一步简化了本体法聚合的流程。
气相法工艺与传统的淤浆法与液相本体法相比,在调节产品性能来切换牌号、控制产物分子量和共聚单体含量、生产过程安全性和开停车操作简易程度等方面具有相当大的优势[1]。
随着聚丙烯工艺的快速发展,不同形式的气相法聚合反应器被越来越多的应用在聚丙烯生产过程当中。
Unipol 工艺采用了两台上部扩径的流化床反应器,丙烯气化后与循环气混合再从反应器底部通入,引入了气锁系统来防止原料随颗粒排出;Novolen 工艺通过两台双螺带搅拌的立式反应器来进行丙烯的聚合,液相丙烯与少量的气相丙烯从顶部和底部加入,聚丙烯颗粒借助压差来进入第二反应器;Spherizone 工艺的多区循环反应器使聚合物颗粒在上升区被原料气体流化上升,通过顶部旋风分离沉降到下降区,再循环至上升区,下降区排料;Innovene 工艺(又名BP-Amoco 工艺)采用两台具有特殊结构搅拌桨的卧式搅拌反应器,多点进料,循环气自底部均匀透过床层,达到所谓的“亚流化”状态。
机械搅拌反应器-搅拌釜式反应器资料CATALOGUE目录•机械搅拌反应器概述•搅拌釜式反应器的基本结构与工作原理•搅拌釜式反应器的设计与选型•搅拌釜式反应器的操作与维护•搅拌釜式反应器的改进与发展趋势•搅拌釜式反应器与其他反应器的比较CHAPTER机械搅拌反应器概述定义特点定义与特点化工生产制药行业食品行业030201机械搅拌反应器的应用范围历史发展机械搅拌反应器的历史与发展CHAPTER搅拌釜式反应器的基本结构与工作原理基本结构在反应过程中,物料在釜体中不断混合、分散和碰撞,促进反应的进行。
密封装置确保反应器内压力的稳定,使反应过程更加稳定和可控。
搅拌釜式反应器的工作原理是利用搅拌装置对反应物料进行混合和分散,同时通过加热/冷却装置控制反应温度。
工作原理搅拌釜式反应器的优缺点优点适用于多种化学反应,如聚合、缩合、氧化等。
010201020304CHAPTER搅拌釜式反应器的设计与选型明确设计目标确定搅拌釜式反应器的使用目的和工艺要求,如反应类型、物料特性、产能等。
根据使用目的和工艺要求,确定关键设计参数,如搅拌器形状、尺寸、转速,釜体直径、高度、材料等。
根据物料的特性,选择适宜的搅拌器类型和材质,以实现均匀混合、分散、防止沉降等效果。
根据工艺要求,选择适宜的传热方式,如夹套、内盘管等,确保反应过程的温度控制。
根据釜体直径和高度,选择适宜的支承和传动方式,确保设备的稳定性和运行可靠性。
确定设计参数确定传热方式确定支承和传动方式选择适宜的搅拌器设计原则与流程设备成本综合考虑设备购置、维护、使用等成本,选择性价比高的设备型号。
行业标准参照行业标准,选择符合环保、安全、质量等标准的设备型号。
工艺要求不同的工艺要求对设备的结构、材质、性能等有不同的要求,需根据具体情况进行选择。
物料特性物料的密度、粘度、腐蚀性等物理化学性质对搅拌釜式反应产能需求根据实际产能需求,选择适宜的设备型号,确保满足生产要求。
选型依据与标准设计实例一设计实例二搅拌釜式反应器设计实例CHAPTER搅拌釜式反应器的操作与维护操作步骤1. 检查设备是否处于安全状态,包括紧固件是否松动、设备是否清洁等。