机械搅拌反应器搅拌釜式反应器资料
- 格式:ppt
- 大小:14.89 MB
- 文档页数:7
釜式反应器的结构
釜式反应器又称:槽型反应器或锅式反应器
一种低高径比的圆筒形反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。
反应器内常设有搅拌(机械搅拌、气流搅拌等)装置。
在高径比较大时,可用多层搅拌桨叶。
在反应过程中物料需加热或冷却时,可在反应器壁处设置夹套,或在器内设置换热面,也可通过外循环进行换热。
操作时温度、浓度容易控制,产品质量均一。
在化工生产中,既可适用于间歇操作过程,又可用于连续操作过程;可单釜操作,也可多釜串联使用;但若应用在需要较高转化率的工艺要求时,有需要较大容积的缺点。
通常在操作条件比较缓和的情况下,如常压、温度较低且低于物料沸点时,釜式反应器的应用最为普遍。
一、釜式反应器基本结构
釜式反应器的基本结构主要包括: 反应器壳体、搅拌装置、密封装置、换热装置、传动装置。
壳体结构:一般为碳钢材料,筒体皆为圆筒型。
釜式反应器壳体部分的结构包括筒体、底、盖(或称封头)、手孔或人孔、视镜、安全装置及各种工艺接管口等。
封头;反应釜的顶盖,为了满足拆卸方便以及维护检修。
平面形:适用于常压或压力不高时;
碟形:应用较广。
球形:适用于高压场合;
椭圆形:应用较广。
锥形:适用于反应后物料需要分层处理的场合。
手孔、人孔:为了检查内部空间以及安装和拆卸设备内部构件。
视镜:观察设备内部物料的反应情况,也作液面指示用。
工艺接管:用于进、出物料及安装温度、压力的测定装置。
反应釜的基础知识反应釜普遍应用于石泊化工、橡胶、农药、燃料、医药等工业,用来完成化工工艺过程的反应。
反应釜内进行化学反应的种类很多,操作条件差异特别大,物料的聚集状态也各不一样。
反应釜具备如下的特点:操作灵活方便。
可以按工艺要求进行间歇式、半间歇式及连续操作;温度易于控制。
根据生产需要,可以控制生产的时间,易于控制反应速率。
由于工艺条件,介质不同,反应釜的材料选择及结构也不一样,但基本组成是相同的,它包括釜体、工艺接管、传动装置等。
这里主要介绍机械釜式反应器的结构。
机械搅拌式反应器适用于各种物性和各种操作条件的反应过程,在工业生产工应用非常广泛。
搅拌反应器由搅拌器和搅拌机两大部分组成。
搅拌容器包括筒体、换热元件及内构件。
一、搅拌容器搅拌容器的作用是为物料反应提供合适的空间。
搅拌容器的筒体基本上是圆筒,封头常采用椭圆形封头、锥形封头和平盖,其中椭圆形封头应用最广。
根据工艺需要,容器上装有各种接管,以满足进料、出料、排气等要求。
设置外加套或内盘管,以便于加热物料或取走反应热。
上封头焊有凸缘法兰,用于搅拌容器与机架的连接。
容器上还设置有温度、压力传感器,测量反应物的温度、压力、成分及其他参数。
支座选用时应考虑容器的大小和安装位置,小型的反应器一般用悬挂式支座,大型的用裙式支座或支承式支座。
二、反应釜的传热元件反应釜的传热元件可以维持反应的最佳温度,反应釜设置夹套的换热面积能满足传热要求时,优先采用夹套,这样可减少容器内构件,便于清洗,不占用有效容积。
常用的换热元件有夹套和内盘管。
三、反应釜的夹套结构反应釜的夹套是在容器的外侧,用焊接或法兰连接的方式装设各种形状的钢结构,使其与容器外壁形成密闭的空间。
在此空间内通人加热或冷却介质,可加热或冷却容器内的物料。
反应釜夹套的主要结构型式有:整体夹套、型钢夹套、半圆管夹套和蜂窝夹套等。
11.2 化工CSTR系统动态特点分析釜式反应器是一种低高径比的圆筒形反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。
器内常设有搅拌(机械搅拌、气流搅拌等)装置。
在高径比较大时,可用多层搅拌桨叶。
在反应过程中物料需加热或冷却时,可在反应器壁处设置夹套,或在器内设置换热面,也可通过外循环进行换热。
釜式反应器按操作方式可分为:间歇釜式反应器(或称间歇釜)、连续釜式反应器(或称连续釜)、半连续釜式反应器。
本项目所研究的预报对象是连续釜式反应器。
连续搅拌釜式反应器(Continuous Stirred Tank Reactor,CSTR),操作方式为连续进料、连续反应、连续出料,为带有搅拌桨叶的槽式反应设备。
在稳态操作时,反应器同一部位的操作参数不随时间而变,有利于产品质量控制和过程自动控制。
与间歇反应器操作方式不同,没有装料、卸料、升温等不发生化学反应的辅助时间,因而生产能力较大,辅助劳动少。
适用于反应速度慢的液相反应,使用时可用单个反应槽(釜),也可把几个反应槽(釜)串联成一组。
CSTR是聚合化学反应中广泛使用的一种反应器,是过程工业中典型的、高度非线性的化学反应系统。
在化工生产的核心设备中占有相当重要的地位,在染料、医药试剂、食品及合成材料工业中,CSTR 得到了广泛的应用。
在CSTR中,反应原料以稳定的流速进入反应器,反应器的反应物料以同样稳定流速流出反应器。
由于强烈搅拌的作用,刚进入反应器的新鲜物料与已存留在反应器的物料在瞬间达到完全混合,使釜内物料的浓度和温度处处相等。
同样,在反应器出口处即将流出反应器的物料浓度也应该与釜内物料浓度一致,因此流出反应器的物料浓度与反应器内的的物料浓度相等。
连续搅拌釜式反应器中的反应速率即由釜内物料的温度和浓度决定。
CSTR系统模型如下图所示:图11-2 CSTR系统工作原理图由于CSTR系统大多进行的是高温、高压反应,原料、中间体和产品大多具有易燃、易爆等特性,稍有疏忽就很容易出现故障,发生事故。
机械搅拌反应器-搅拌釜式反应器资料CATALOGUE目录•机械搅拌反应器概述•搅拌釜式反应器的基本结构与工作原理•搅拌釜式反应器的设计与选型•搅拌釜式反应器的操作与维护•搅拌釜式反应器的改进与发展趋势•搅拌釜式反应器与其他反应器的比较CHAPTER机械搅拌反应器概述定义特点定义与特点化工生产制药行业食品行业030201机械搅拌反应器的应用范围历史发展机械搅拌反应器的历史与发展CHAPTER搅拌釜式反应器的基本结构与工作原理基本结构在反应过程中,物料在釜体中不断混合、分散和碰撞,促进反应的进行。
密封装置确保反应器内压力的稳定,使反应过程更加稳定和可控。
搅拌釜式反应器的工作原理是利用搅拌装置对反应物料进行混合和分散,同时通过加热/冷却装置控制反应温度。
工作原理搅拌釜式反应器的优缺点优点适用于多种化学反应,如聚合、缩合、氧化等。
010201020304CHAPTER搅拌釜式反应器的设计与选型明确设计目标确定搅拌釜式反应器的使用目的和工艺要求,如反应类型、物料特性、产能等。
根据使用目的和工艺要求,确定关键设计参数,如搅拌器形状、尺寸、转速,釜体直径、高度、材料等。
根据物料的特性,选择适宜的搅拌器类型和材质,以实现均匀混合、分散、防止沉降等效果。
根据工艺要求,选择适宜的传热方式,如夹套、内盘管等,确保反应过程的温度控制。
根据釜体直径和高度,选择适宜的支承和传动方式,确保设备的稳定性和运行可靠性。
确定设计参数确定传热方式确定支承和传动方式选择适宜的搅拌器设计原则与流程设备成本综合考虑设备购置、维护、使用等成本,选择性价比高的设备型号。
行业标准参照行业标准,选择符合环保、安全、质量等标准的设备型号。
工艺要求不同的工艺要求对设备的结构、材质、性能等有不同的要求,需根据具体情况进行选择。
物料特性物料的密度、粘度、腐蚀性等物理化学性质对搅拌釜式反应产能需求根据实际产能需求,选择适宜的设备型号,确保满足生产要求。
选型依据与标准设计实例一设计实例二搅拌釜式反应器设计实例CHAPTER搅拌釜式反应器的操作与维护操作步骤1. 检查设备是否处于安全状态,包括紧固件是否松动、设备是否清洁等。
反应器类型
反应器类型
1、管式反应器
由长径比较大的空管或填充管构成,可用于实现气相反应和液相反应。
2、釜式反应器
由长径比较小的圆筒形容器构成,常装有机械搅拌或气流搅拌装置,可用于液相单相反应过程和液液相、气液相、气液固相等多相反应过程。
用于气液相反应过程的称为鼓泡搅拌釜(见鼓泡反应器);用于气液固相反应过程的称为搅拌釜式浆态反应器。
3、有固体颗粒床层的反应器
气体或(和)液体通过固定的或运动的固体颗粒床层以实现多相反应。