热力管道保温散热计算表
- 格式:xlsx
- 大小:10.01 KB
- 文档页数:1
热水管道保温规范篇一:常用管道保温厚度表常用管道保温厚度表一、冷冻水管道(≥5℃)二、热水、冷热合用管(5~60℃)三、热水、冷热合用管(0~95℃)四、蓄冰管道(≥-10℃)五、空调凝结水管道六、空调风管道七、蒸汽管道九、制冷管道十、导热系数离心玻璃棉λ=0.031+0.00017tm W/m.K柔性泡沫橡塑λ=0.03375+0.000125 tm W/m.K 聚氨酯λ=0.0275+0.0009tm W/m.K聚氨酯硬质泡沫(直埋)λ=0.02+0.00014 tm W/m.K 岩棉或矿棉λ=0.0314+0.0002 tm W/m.Ktm-保冷层的平均温度℃,取管内冷热媒与管道周围空气平均温度。
篇二:《城镇直埋供热管道工程技术规范》1 总则1.O.1 为统一我国城镇直埋供热管道工程的设计、施工及验收标准,促进直埋管道技术的发展和推广,制定本规程。
1.O.2本规程适用于供热介质温度小于或等于150℃、公称直径小于或等于DN500mm的钢制内管、保温层、保护外壳结合为一体的预制保温直埋热水管道。
1.O.3在地震、湿陷性黄土、膨胀土等地区应遵守《室外给水排水和煤气热力工程抗震设计规范》(GB50032)、《湿陷性黄土地区建筑规范》(GBJ25)、《膨胀土地区建筑地基技术规范》(GBJ112)的规定。
1.O.4直埋供热管道工程设计、施工和验收除应符合本规程外,尚应符合《城市热力网设计规范》(CJJ34)、《城市供热管网工程施工及验收规范》(CJJ28)等国家现行有关标准的规定。
2术语和符号2.1术语2.1.1 屈服温差temperature difference of yielding 管道在伸缩完全受阻的工作状态下,钢管管壁开始屈服时的工作温度与安装温度之差。
2.1.2固定点fixpoint管道上采用强制固定措施不能发生位移的点。
2.1.3活动端free end管道上安装套筒、波纹管、弯管等能补偿热位移的部位。
序管道内径d n 热媒到管内壁放热系数αn 热媒到管内壁热阻R n号(m )(W/m 2·℃)(m·℃/W )10.53000.002120.453000.002430.43000.002740.353000.003050.33000.003560.253000.004270.23000.005380.153000.0071管道内径d n 管道外径d w管材的导热系数λg管壁热阻R g(m )(m )(W/m·℃)(m·℃/W )10.50.53480.0001920.450.48480.0002130.40.43480.0002140.350.38480.0002550.30.33480.0002760.250.27480.0003070.20.22480.0003080.150.16480.00015序管道外径d w 保温层外表面直径d z 保温材料导热系数λb保温材料热阻R b 号(m )(m )(W/m·℃)(m·℃/W )10.530.640.0330.884320.480.590.0330.966130.430.530.033 1.075840.380.480.033 1.209550.330.440.033 1.417860.270.390.033 1.667270.220.300.033 1.560280.160.240.033 2.0519序地表面到管中心线管材导热系数λt土壤放热系数αk 管子折算埋深H 号埋设深度h (W/m·℃)(W/m 2·℃)(m )(m )11.23 1.512.73备注热媒到管内壁热阻计算序号备注管壁热阻计算备注保温材料热阻计算备注管道埋深折算2 1.2 1.51 2.703 1.08 1.51 2.584 1.05 1.51 2.5550.93 1.51 2.4360.9 1.51 2.4070.76 1.51 2.2680.73 1.51 2.23序保温层外表面直径d z 管材导热系数λt 土壤热阻R t号(m )(W/m·℃)(m·℃/W )1 2.730.64 1.50.3022 2.700.59 1.50.3093 2.580.53 1.50.3144 2.550.48 1.50.3235 2.430.44 1.50.3296 2.400.39 1.50.3417 2.260.30 1.50.36082.230.24 1.50.384管子折算埋深H 双管距离b 管材导热系数λt 双管并行时附加热阻R c (m )(m )(W/m·℃)(m·℃/W )12.730.2 1.50.3512 2.700.2 1.50.3503 2.580.2 1.50.3454 2.550.2 1.50.3445 2.430.2 1.50.3396 2.400.2 1.50.3377 2.260.2 1.50.33182.230.21.50.330序热媒到管内壁热阻管壁热阻保温材料热阻土壤热阻供热管道总热阻号R n R g R b R t R i 10.00210.000190.88430.302 1.188220.00240.000210.96610.309 1.277630.00270.00021 1.07580.314 1.393140.00300.00025 1.20950.323 1.536150.00350.00027 1.41780.329 1.750960.00420.00030 1.66720.341 2.012570.00530.00030 1.56020.360 1.926380.00710.000152.05190.3842.4427备注供热管道(供、回水段)总热阻计算供热一次网供水段管道单位长度热损失计算管子折算埋深H (m )备注土壤热阻计算序号备注双管并行时的附加热阻计算序供水回水土壤地表总热阻R i 附加热阻R c 单位长度号温度t 1温度t 2温度t d·b (m·℃/W )(m·℃/W )耗热损失q供水(℃)(℃)(℃)(W/m )112060-5.1 1.18820.35197.62212060-5.1 1.27760.35090.77312060-5.1 1.39310.34583.34412060-5.1 1.53610.34475.75512060-5.1 1.75090.33966.75612060-5.1 2.01250.33758.38712060-5.1 1.92630.33160.93812060-5.12.44270.33048.50序供水回水土壤地表总热阻R i 附加热阻R c 单位长度号温度t 1温度t 2温度t d·b (m·℃/W )(m·℃/W )耗热损失q 回水(℃)(℃)(℃)(W/m )112060-5.1 1.18820.35125.94212060-5.1 1.27760.35026.09312060-5.1 1.39310.34526.08412060-5.1 1.53610.34425.42512060-5.1 1.75090.33924.26612060-5.1 2.01250.33722.56712060-5.1 1.92630.33123.32812060-5.12.44270.33020.10序热网分段供水段回水段一次网输送热损失小计Q 0号计算长度L (m )热损失Q 0供水(k W )热损失Q 0回水(k W )(kW )167597.6225.9465.8917.5183.40287590.7726.0979.4222.83102.25390083.3426.0875.0023.4898.48457575.7525.4243.5614.6258.175245066.7524.26163.5559.45223.006245058.3822.56143.0355.27198.30767560.9323.3241.1315.7456.87875048.5020.1036.3715.0851.45647.96223.97871.93745.15257.571002.72回水段单位长度耗热损失q 回水(W/m )小 计考虑直埋管道散热损失附加系数0.15后,热损失合计供热一次网热力输送损失计算供热一次网回水段管道单位长度热损失计算供水段单位长度耗热损失q 供水(W/m )项目实物量(GJ )比例项目实物量(GJ )比例采暖需要量2997730.1598.58%换热站损失29977.30.99%一级网损失13168.520.43%449.309902总供热量3040875.97100.00%总面积指标总功率负荷(m 2)(W/m 2)(kW)系数1单系统换热站(15座)2294.2549.1836480.752双系统换热站(11座)3045.35412.1836480.753三系统换热站(5座)180847.2336480.754合计7147.628.59运行数量(台)循环泵3061800.80.75补水泵0.756 4.50.80.7515万平方米循环泵5594950.80.75(9座)补水泵1.5913.50.80.7520万平方米循环泵3082400.80.75(4座)补水泵0.75860.80.7525万平方米循环泵3762220.80.75(3座)补水泵1.16 6.60.80.7530万平方米循环泵5584400.80.75(4座)补水泵1.58120.80.7535万平方米循环泵3762220.80.75(2座)补水泵1.16 6.60.80.75循环泵4562700.80.75补水泵 1.5690.80.75循环泵7532250.80.75补水泵 2.236.60.80.75合计2358.8总供热量3040876100%序号项目年工作时间(h)换热站类型设备名称单机功率(kW )运行功率(kW )需要系数负荷系数10万平方米(640万平方米(250万平方米(11建筑物照明电力能耗7.829.6125.102主要用电设备498.7612.901600.833输电线路损耗10.1312.4532.52516.65634.961658.45设备名称2460.825541560.810944490.8255427.590.810942480.825541580.8109429.660.8255418.560.810944480.8255427.580.8109429.660.8255418.560.810943660.8255422.560.810946030.8255437.530.810949 合计年用电量(万kW •h )折标准煤当量值(tce)折标准煤等价值(tce)年用电时间(h)需要系数总用电能耗合计序号额定功率(kW )运行台数(台)序号用电内容1循环水泵2循环水泵3循环水泵4循环水泵5循环水泵6循环水泵循环水泵8循环水泵30303755374575实际运行功率(kW)5570.056380330.064538520.06297480.074312030.080042710.090936990.090754360.04561051保温层厚度0.05320.18326653.20.05320.20021653.20.05320.22295653.70.05370.25066655.50.05550.29381756.50.05650.3455141.80.04180.3233441.60.04160.4252268.5930122872.839868.53462717.12764 2.8406939.2087312483.80073119.15427418.36301 2.9103389.6919609392.93410679.64023419.33219 2.96177210.5284889109.84907810.4808921.00938 3.04496911.146789123.25090511.1018422.24863 3.1022812.409514152.99603712.3691624.77867 3.209983 14.9372108222.12026814.903729.84091 3.39588 18.5678601343.76542918.5409137.10877 3.61385327.3746.2927.31831 3.3075572773027.01851 3.29652225.8666.6425.81937 3.25112525.5651.2525.5196 3.23944724.3591.4924.32057 3.1913222457724.02082 3.17892122.6511.7622.62211 3.11892822.3498.2922.32241 3.105591备注125.1148.642565.122.85796125.7845 1.288508125.1159.831965.122.7817137.0502 1.509883125.1174.27865.122.46797151.81 1.821639125.1192.162165.122.38726169.7749 2.241245125.1219.03765.122.05468196.9824 2.950862125.1251.764765.121.96898229.7957 3.936303125.1240.983465.121.55437219.429 3.601108125.1305.58465.121.46221284.1218 5.858183备注77.3511143.925233.42591 1.28850883.1739343.7786639.39528 1.50988390.6914343.1757747.51566 1.82163999.9980543.0206856.97737 2.241245113.983342.3815771.60173 2.950862131.014242.2168888.79734 3.936303125.403841.4201683.98368 3.601108159.020941.24304117.7779 5.858183135017501800115049004900135015001022.82548449.309902折标煤(当量)2.51 3.093.33 4.101.98 2.437.829.61364839.4018240.493648108.351824 1.48364852.5318240.66364848.5918240.72364896.311824 1.31364848.5918240.72364859.1018240.98364849.2518240.72509.20年运行时间(h )年耗电量(万kWh)年用电量29.42307.883080.915521.665539.233010.503036.29379.713771.925519.255536.29379.713744.134511.824536.78759.8575475.35年用电量(万kWh)。
1管道总传热系数管道总传热系数是热油管道设计和运行管理中的重要参数。
在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。
1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。
当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式:1112ln 111ln 22i i ne n w i L L D D D KD D D D a a l l -+轾骣犏琪桫犏=+++犏犏犏臌å (1-1)式中:K ——总传热系数,W /(m 2·℃);e D ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于无保温埋地管路可取沥青层外径);n D ——管道内直径,m ;w D ——管道最外层直径,m ;1α——油流与管内壁放热系数,W/(m 2·℃);2α——管外壁与周围介质的放热系数,W/(m 2·℃);i λ——第i 层相应的导热系数,W/(m·℃);i D ,1i D +——管道第i 层的内外直径,m ,其中1,2,3...i n =;L D ——结蜡后的管内径,m 。
为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径的导热热阻、管道外壁或最大外围至周围环境的放热系数2α。
(1)内部放热系数1α的确定放热强度决定于原油的物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示[47]。
在层流状态(Re<2000),当Pr 500Gr <时:1 3.65y d Nu a l== (1-2) 在层流状态(Re<2000),当Pr 500Gr >时: 0.250.330.430.11Pr 0.15Re Pr Pr y y y y y b d Nu Gr a l 骣琪==鬃琪桫(1-3) 在激烈的紊流状态(Re>104),Pr<2500时: 0.250.80.441Pr 0.021Re Pr Pr y y y b d l a 骣琪=鬃琪桫 (1-4)在过渡区(2000<Re<104)(1-5)式中:u N ——放热准数,无因次;——流体物理性质准数,无因次;——自然对流准数,无因次;——雷诺数;0(Re )f K f =——系数;d ——管道内径,m ;g ——重力加速度,g =9.81m/s 2;υ——定性温度下的流体运动粘度,m 2/s ;C ——定性温度下的流体比热容,J/(kg·K); v q ——流体体积流量,m 3/s ;ρ——定性温度下的流体密度,kg/m 3;β——定性温度下的流体体积膨胀系数,可查得,亦可按下式计算:(1-6)f λ——定性温度下的流体导热系数,原油的导热系数f λ约在0.1~0.16W/(m ·K)间,随温度变化的关系可用下式表示:(1-7)15f ρ——l5℃时的原油密度,kg/m 3;f t ——油(液)的平均温度,℃;b t ——管内壁平均温度,℃;204d ——20℃时原油的相对密度。
1管道总传热系数管道总传热系数是热油管道设计和运行管理中的重要参数。
在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。
1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。
当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式:(1-1)1112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+⎡⎤⎛⎫ ⎪⎢⎥⎝⎭=+++⎢⎥⎢⎥⎢⎥⎣⎦∑式中:——总传热系数,W /(m 2·℃);K ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于e D 无保温埋地管路可取沥青层外径);——管道内直径,m ;n D ——管道最外层直径,m ;w D ——油流与管内壁放热系数,W/(m 2·℃);1α ——管外壁与周围介质的放热系数,W/(m 2·℃);2α ——第层相应的导热系数,W/(m·℃);i λi ,——管道第层的内外直径,m ,其中;i D 1i D +i 1,2,3...i n =——结蜡后的管内径,m 。
L D 为计算总传热系数,需分别计算内部放热系数、自管壁至管道最外径K 1α的导热热阻、管道外壁或最大外围至周围环境的放热系数。
2α(1)内部放热系数的确定1α放热强度决定于原油的物理性质及流动状态,可用与放热准数、自然1αu N 对流准数和流体物理性质准数间的数学关系式来表示[47]。
r G r P 在层流状态(Re<2000),当时:500Pr <⋅Gr(1-2)1 3.65y dNu αλ==在层流状态(Re<2000),当时:500Pr >⋅Gr(1-3)0.250.330.430.11Pr 0.15Re Pr Pr y y y y y b d Nu Gr αλ⎛⎫==⋅⋅⎪⎝⎭在激烈的紊流状态(Re>104),Pr<2500时:(1-4)0.250.80.441Pr 0.021Re Pr Pr y y y b d λα⎛⎫=⋅⋅ ⎪⎝⎭在过渡区(2000<Re<104)(1-5)25.043.001Pr Pr (Prbf ffd K ⋅λα=式中:——放热准数,无因次;u N ——流体物理性质准数,无因次;λρυC =Pr ——自然对流准数,无因次;()υβw f t t g d Gr -=3——雷诺数;υπρd q vdv4Re ==——系数;)(Re 0f f K =——管道内径,m ;d ——重力加速度,=9.81m/s 2;g g ——定性温度下的流体运动粘度,m 2/s ;υ——定性温度下的流体比热容,J/(kg·K);C ——流体体积流量,m 3/s ;v q ——定性温度下的流体密度,kg/m 3;ρ——定性温度下的流体体积膨胀系数,可查得,亦可按下式计算:β(1-6)tdd-+-=2042045965634023101β——定性温度下的流体导热系数,原油的导热系数约在0.1~0.16f λf λW/(m ·K)间,随温度变化的关系可用下式表示:(1-7)153/)1054.01(137.0f t f t ρλ-⨯-=——l5℃时的原油密度,kg/m 3;15f ρ——油(液)的平均温度,℃;f t——管内壁平均温度,℃;b t ——20℃时原油的相对密度。
常用保温材料的导热系数与蓄热系数计算取值表什么样的保温材料耐高温绝热保温性能好1,绝热保温材料概述根据设备及管道保温技术通则,绝热材料是指在平均温度等于或小于623K(350摄氏度)时,热导率小于0.14W/(m*K)的材料。
绝热材料通常具有质轻、疏松、多孔、导热系数小的特点。
一般用来防止热力设备及管道热量散失,或者在冷冻(也称普冷)和低温(也称深冷)下使用,因而在我国绝热材料又称为保温或保冷材料。
同时,由于绝热材料的多孔或纤维状结构具有良好的吸声功能,因而也被广泛应用于建筑行业。
1.1分类方法绝热材料种类繁多,一般可按材质、使用温度、形态和结构来分类。
按材质可分为有机绝热材料、无机绝热材料和金属绝热材料三类。
热力设备及管道用的保温材料多为无机绝热材料。
这类材料具有不腐烂、不燃烧、耐高温等特点。
例如:石棉、硅藻土、珍珠岩、玻璃纤维、泡沫玻璃混凝土、硅酸钙等。
普冷下的保冷材料多用有机绝热材料,这类材料具有极小的导热系数、耐低温、易燃等特点。
例如:聚苯乙烯泡沫塑料、聚氯乙烯泡沫塑料、氨酯泡沫塑料、软木等。
按形态又可分为多孔状绝热泪盈眶材料、纤维状绝热泪盈眶材料、粉末状绝热和层状绝热材料四种。
多孔状绝热材料又叫泡沫绝热材料,具有质量轻、绝热性能好、弹性好、尺寸稳定、耐稳性差等特点。
主要有泡沫塑料、泡沫玻璃、泡沫橡胶、硅酸钙、轻质耐火材料等。
纤维状绝热材料可按材质分为有机纤维、无机纤维、金属纤维和复合纤维等。
在工业上用作绝热泪盈眶材料的主要是无机纤维,目前用得最广的纤维是石棉、岩棉、玻璃棉、硅酸铝陶瓷纤维、晶质氧化铝纤维等。
粉末状绝热材料主要有硅藻土、膨胀珍珠岩及其制品。
这些材料的原料来源丰富,价格便宜,是建筑和热工设备上应用较广的高效绝热材料。
1.2性能指标和一般选用原则(1)导热系数:作为绝热泪盈眶材料,导热系数应越小越好,一般应选用导热系数小于0.14W/m*K,作为保冷的绝热材料,对导热系数的要求更高。
直埋热力管道保温材料及热损失计算分析《江西能源》肖平华1999年第01期32页摘要本文介绍了目前国内外直埋保温管道预制保温管的技术性能;并通过计算分析得出采用此类保温材料要比采用地沟敷设的常规保温材料热损失减少40%左右,而且节约投资并缩短施工周期,建议有条件的供热工程应采用预制保温管直埋敷设。
关健词直埋技术预制保温管热损失热阻前言国内外直埋技术的发展,已经有60余年的历史,早在30年代,原苏联最初采用泥作保温材料,40年代又改用浇灌泡沫混凝土作直埋管道的保温材料。
实践证明,这些保温材料吸水率大,直埋管道腐蚀严重。
50年代初的美国、丹麦和加拿大等国的各大公司研制了预制保温管,即“管中管”技术,从而使管道直埋技术发展到了一个新水平。
国内在50年代曾采用过浇灌泡沫混凝土的管道直埋敷设方式,70年代开始研究沥青珍珠岩保温材料的直埋热力管,取得了很大成绩,80年代我国出现了两种新型预制保温管:一类是天津大学根据国外经研制的保温结构为“氰聚塑”型式的预制保温管;另一种是引进国外生产线的“管中管”型式的预制保温管。
目前这种型式的预制保温管已先后在天津、北京、郑州等地进行大批量生产并广泛用于城市热力管网。
2直埋预制保温管技术性能国内外部份厂家生产的预制保温技术性能(见表1)表1国内外部分厂家生产的预制保温管技术性能氰聚塑直埋保温管是用硬质聚氨脂泡沫塑料作保温材料,外部用玻璃钢作防护外壳,钢管外壁刷一层“氰凝”作防腐层。
通用型适用于120℃以下介质的热力管网。
高温型适用于250℃以下介质的热力管网,其保温材料为硅酸镁发泡聚氨脂复合保温材料,保护外壳为玻璃钢。
第二种类型是“管中管”预制保温管,其保温材料为聚氨脂硬质泡沫塑料,保护外壳为高密度聚乙烯外套管,适用于120℃以下部介质的热力管网。
3保温层厚度及热损失计算保温层厚度应根据热损失法或经济厚度计算后并经综合经济效益比较后确定。
直埋管道的设计结构如图1所示。
图1直埋保温管结构示意图1热力管2主保温层3保温层4土壤5地面直埋管道的保温计算其原理与一般保温管道相同,但一般热力管的表面散热由外界空气吸收,而直埋管道由周围土壤来吸收,一般管道属于无限空间放热,直埋管道放热与管道埋设深度有关。
54热力管道的保温设计、施工及优化陈 文江苏省节能工程设计研究院有限公司 江苏 南京 210007摘 要:热管是指蒸汽或热水管道的输送。
大型加热装置或发电厂企业的热管总长度可达几十公里甚至几十公里。
因此,保温设计和施工对企业的能源消耗和经济效益有着重要的影响。
合理保温材料的选择。
目前,大力推进“节能减排”的情况,已越来越受到企业的关注。
在此基础上,本文将重点对保温设计和施工技术进行分析,以期对今后的实际工作起到一定的参考和借鉴。
关键词:热力管道;保温;优化中图分类号:G322 文献标识码:B正文:1、热力管道保温的主要结构组成热力网及设备的保温设计,按国家现行的《设备及管道保温技术通则》GB4272、《设备和管道保温设计导则》GBJ8175执行。
根据规范要求,绝缘材料的选择应满足以下主要技术性能:良好的绝缘性能,在不同温度下的热导率测试数据,或有一个明确的热导率方程或热导率计。
工作时的平均温度等于或小于350度,导热绝缘材料,用于保温层和文章的导热系数不大于0.10w/(m,k)。
使用温度不低于中温;保温材料应具有一定的机械强度,耐振性;无燃料,无腐蚀性金属,吸水率低,施工方便。
在蒸汽管道目前是先进的高温玻璃棉具有良好的性能和复合硅酸盐材料,同时根据绝缘材料的表面温度不同,耐热铝箔反射层和普通铝箔反射层的适当运用,该绝缘层外包长热传输网络专用双气球反射器束的外层,最后加彩钢板作为防护层。
图1 热力管道保温结构层构成2、热力管道主要保温材料性能2.1、保温材料性能复合硅酸铝镁保温材料是以坡缕石、海泡石、膨润土、无机材料如陶瓷纤维为主要原料,应用范围广,安全性能高,收缩率低,广泛应用于石油储备,各个领域的化工厂、民用建筑、天然气等。
复合型硅酸镁导热系数方程的研究:λ(t)=2.538Xt^(2)X10 ^(-7)+4.797XtX10 ^(-5)+3.302X10 ^(-2),复合硅酸镁由于其高温性能(温度达800°C),在蒸汽管道,但由于其昂贵的价格和高密度的特点,一般只有一到两层外包装;高温绝缘材料制成的玻璃棉。
1管道总传热系数管道总传热系数就是热油管道设计与运行管理中得重要参数。
在热油管道稳态运行方案得工艺计算中,温降与压降得计算至关重要,而管道总传热系数就是影响温降计算得关键因素,同时它也通过温降影响压降得计算结果。
1、1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递得热量,它表示油流至周围介质散热得强弱。
当考虑结蜡层得热阻对管道散热得影响时,根据热量平衡方程可得如下计算表达式: 1112ln 111ln 22i i n e n w i L L D D D KD D D D a a l l -+轾骣犏琪桫犏=+++犏犏犏臌å (1-1)式中:K ——总传热系数,W /(m 2·℃);e D ——计算直径,m ;(对于保温管路取保温层内外径得平均值,对于无保温埋地管路可取沥青层外径);n D ——管道内直径,m ;w D ——管道最外层直径,m ;1α——油流与管内壁放热系数,W/(m 2·℃);2α——管外壁与周围介质得放热系数,W/(m 2·℃);i λ——第i 层相应得导热系数,W/(m·℃);i D ,1i D +——管道第i 层得内外直径,m ,其中1,2,3...i n =;L D ——结蜡后得管内径,m 。
为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径得导热热阻、管道外壁或最大外围至周围环境得放热系数2α。
(1)内部放热系数1α得确定放热强度决定于原油得物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 与流体物理性质准数r P 间得数学关系式来表示[47]。
在层流状态(Re<2000),当Pr 500Gr <g 时:1 3.65y d Nu a l== (1-2) 在层流状态(Re<2000),当Pr 500Gr >g 时: 0.250.330.430.11Pr 0.15Re Pr Pr y y y y y b d Nu Gr a l 骣琪==鬃琪桫(1-3) 在激烈得紊流状态(Re>104),Pr<2500时: 0.250.80.441Pr 0.021Re Pr Pr y y y b d l a 骣琪=鬃琪桫 (1-4)在过渡区(2000<Re<104)(1-5)式中:u N ——放热准数,无因次;——流体物理性质准数,无因次; ——自然对流准数,无因次;——雷诺数;0(Re )f K f =——系数;d ——管道内径,m ;g ——重力加速度,g =9、81m/s 2;υ——定性温度下得流体运动粘度,m 2/s ;C ——定性温度下得流体比热容,J/(kg·K); v q ——流体体积流量,m 3/s ;ρ——定性温度下得流体密度,kg/m 3;β——定性温度下得流体体积膨胀系数,可查得,亦可按下式计算:(1-6)f λ——定性温度下得流体导热系数,原油得导热系数f λ约在0、1~0、16 W/(m ·K)间,随温度变化得关系可用下式表示:(1-7)15f ρ——l5℃时得原油密度,kg/m 3;f t ——油(液)得平均温度,℃;b t ——管内壁平均温度,℃;204d ——20℃时原油得相对密度。