高数函数极限练习题
- 格式:docx
- 大小:28.39 KB
- 文档页数:5
高数极限基础练习题一、选择题(每题3分,共15分)1. 极限 \(\lim_{{x \to 0}} \frac{\sin x}{x}\) 的值为:A. 0B. 1C. 2D. 无穷2. 函数 \( f(x) = x^2 \sin(\frac{1}{x}) \) 在 \( x = 0 \) 处的极限为:A. 0B. 1C. 无定义D. \( \frac{\pi}{2} \)3. 函数 \( g(x) = \frac{\sin x}{x} \) 在 \( x = \pi \) 处的极限为:A. 0B. 1C. \(\frac{1}{\pi}\)D. \(-1\)4. 极限 \(\lim_{{n \to \infty}} \frac{n^2}{e^n}\) 的值为:A. 0B. 1C. 无穷D. \(\frac{1}{2}\)5. 函数 \( h(x) = \frac{1}{1+x^2} \) 在 \( x = 2 \) 处的极限为:A. \(\frac{1}{5}\)B. \(\frac{1}{4}\)C. \(\frac{1}{3}\)D. \(\frac{1}{2}\)二、填空题(每空2分,共20分)6. 极限 \(\lim_{{x \to 1}} (x^2 - 1)\) 等于______。
7. 函数 \( f(x) = \frac{\ln(x)}{x} \) 在 \( x = e \) 处的极限为______。
8. 极限 \(\lim_{{x \to \infty}} \frac{\sin x}{x}\) 存在,其值为______。
9. 函数 \( g(x) = x - \tan^{-1}(x) \) 在 \( x = 1 \) 处的极限为______。
10. 极限 \(\lim_{{x \to 0}} \frac{e^x - 1}{x}\) 的值为______。
三、计算题(每题10分,共30分)11. 计算极限 \(\lim_{{x \to 0}} \frac{\ln(1+x)}{x}\)。
随堂练习 一第一章 函数与极限一、填空题1、432lim23=-+-→x kx x x ,则k= 。
2、函数xxy sin =有间断点 ,其中 为其可去间断点。
3、若当0≠x 时 ,xxx f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。
4、=++++∞→352352)23)(1(limx x x x x x 。
5、3)21(lim -∞→=+e nknn ,则k= 。
6、函数23122+--=x x x y 的间断点是 。
7、当+∞→x 时,x1是比3-+x 8、当0→x 时,无穷小x --11与x 相比较是 无穷小。
9、函数xe y 1=在x=0处是第 类间断点。
10、设113--=x x y ,则x=1为y 的 间断点。
11、已知33=⎪⎭⎫⎝⎛πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。
12、设⎪⎩⎪⎨⎧>+<=0)1(02sin )(1x ax x xxx f x 若)(lim 0x f x →存在 ,则a= 。
13、设⎩⎨⎧>≤+=0,cos 0,)(x x x a x x f 在0=x 连续 ,则常数a= 。
二、计算题1、计算下列极限 (1))2141211(lim n n ++++∞→ ; (2)2)1(321lim nn n -++++∞→ ;(3)35lim 22-+→x x x ; (4)112lim 221-+-→x x x x(5))12)(11(lim 2xx x -+∞→ ; (6)x x x 1sin lim 20→ ;(7)xx x x +---→131lim21; (8))1(lim 2x x x x -++∞→ ;2、计算下列极限 (1)x wx x sin lim0→ ; (2)xxx 5sin 2sin lim 0→ ; (3)x x x cot lim 0→ ;(4)x x x x )1(lim +∞→ ; (5)1)11(lim -∞→-+x x x x ; (6)x x x 1)1(lim -→ ; 3、比较无穷小的阶(1)32220x x x x x --→与,时 ; (2))1(21112x x x --→与,时 ; (3)当0→x 时 , 232-+xx与x 。
考研高数极限试题及答案模拟试题:一、选择题(每题3分,共15分)1. 极限 \(\lim_{x \to 0} \frac{\sin x}{x}\) 的值是多少?A. 0B. 1C. -1D. \(\frac{1}{2}\)2. 函数 \(f(x) = \frac{x^2 - 1}{x - 1}\) 在 \(x = 1\) 处的极限是多少?A. 2B. 1C. 0D. 不存在3. 极限 \(\lim_{x \to +\infty} \frac{x^2}{e^x}\) 存在吗?A. 是B. 否4. 函数 \(g(x) = \begin{cases}x^2 & \text{if } x \neq 0 \\0 & \text{if } x = 0\end{cases}\) 在 \(x = 0\) 处的右极限是多少?A. 0B. 1C. \(\frac{1}{2}\)D. 不存在5. 极限 \(\lim_{x \to 1} (x^2 - 1)\) 等于多少?A. 0B. 1C. 2D. 3二、计算题(每题10分,共40分)6. 计算极限 \(\lim_{x \to 2} \frac{x^2 - 4}{x - 2}\)。
7. 计算极限 \(\lim_{x \to 0} \frac{\cos x - 1}{x}\)。
8. 计算极限 \(\lim_{x \to +\infty} \frac{\sin x}{x}\)。
9. 计算极限 \(\lim_{n \to \infty} \frac{1}{n^2} +\frac{1}{n^3}\)。
三、解答题(每题20分,共40分)10. 证明 \(\lim_{x \to 0} x \sin \frac{1}{x} = 0\)。
11. 已知 \(\lim_{x \to 2} f(x) = 3\),证明 \(\lim_{x \to 2} [f(x)]^2 = 9\)。
大一高数求极限的例题一、引言极限是大学高等数学中的重要概念,它是分析数学和微积分的基础。
在大一的高数课程中,学生常常会遇到求取极限的例题。
通过解答这些例题,不仅可以帮助学生理解极限的概念和性质,还可以提升他们的计算能力和思维逻辑能力。
本文将给出一些典型的大一高数求取极限的例题,以帮助读者更好地理解和掌握这一知识点。
二、例题一:求极限$\\lim_{x \\rightarrow 0}\\frac{\\sin{2x}}{x}$解析:我们可以利用极限的基本性质来求解该例题。
首先,我们注意到当$x$接近于0时,$\\sin{2x}$也随之接近于0,而分母$x$始终不会取0。
因此,我们可以将该极限转换为另一个形式:$\\lim_{x \\rightarrow 0} \\frac{2\\sin{x}\\cos{x}}{x}$。
接下来,我们可以继续变形,使用三角恒等式$\\sin{2x} =2\\sin{x}\\cos{x}$,将分子中的$\\sin{2x}$化简为$2\\sin{x}\\cos{x}$。
然后,我们可以进一步将极限变为$\\lim_{x \\rightarrow 0} \\frac{2\\sin{x}\\cos{x}}{x} = 2\\lim_{x\\rightarrow 0} \\frac{\\sin{x}}{x}\\lim_{x \\rightarrow0}\\cos{x}$。
其中,$\\lim_{x \\rightarrow 0}\\cos{x}$显然等于1。
而$\\lim_{x \\rightarrow 0} \\frac{\\sin{x}}{x}$则是一个常数,它的数值为1。
因此,最终的结果为$2 \\times 1 \\times 1 = 2$。
即$\\lim_{x \\rightarrow 0} \\frac{\\sin{2x}}{x} = 2$。
三、例题二:求极限$\\lim_{x \\rightarrow +\\infty} \\left(1 +\\frac{a}{x}\\right)^x$解析:为了求解该例题,我们可以利用极限的定义和性质。
高数函数与极限练习题一、函数的基本概念1. 判断下列函数的单调性:(1) f(x) = 3x + 4(2) g(x) = 2x^2 + 5x + 1(3) h(x) = e^x x2. 求下列函数的定义域:(4) f(x) = √(x^2 9)(5) g(x) = 1 / (x 2)(6) h(x) = ln(x^2 4)3. 判断下列函数的奇偶性:(7) f(x) = x^3 3x(8) g(x) = sin(x) + cos(x)(9) h(x) = e^x e^(x)二、极限的计算4. 计算下列极限:(10) lim(x→0) (sin(x) / x)(11) lim(x→1) (x^2 1) / (x 1)(12) lim(x→+∞) (1 / x^2 1 / x)5. 讨论下列极限的存在性:(13) lim(x→0) (sin(1/x))(14) lim(x→0) (x^2 / sin(x))(15) lim(x→+∞) (x ln(x))6. 计算下列极限:(16) lim(x→0) (e^x 1) / x(17) lim(x→+∞) (x^2 + x + 1) / (2x^2 + 3x 1)(18) lim(x→∞) (x^3 + 3x^2 + 2x + 1) / (x^4 + 4x^3 + 3x^2)三、无穷小与无穷大7. 判断下列表达式的无穷小性质:(19) sin(x) x(20) 1 cos(x)(21) e^x 1 x8. 判断下列表达式的无穷大性质:(22) 1 / (x 1)(23) ln(1 / x)(24) x^2 e^x (x > 0)四、连续性与间断点9. 讨论下列函数的连续性:(25) f(x) = |x 1|(26) g(x) = { x^2, x < 0; 1, x ≥ 0 }(27) h(x) = { sin(x), x ≠ 0; 1, x = 0 }10. 求下列函数的间断点:(28) f(x) = 1 / (x^2 1)(29) g(x) = √(1 cos(x))(30) h(x) = ln|x^2 4|五、综合题11. 设函数f(x) = x^2 2x + 3,求lim(x→+∞) f(x)。
高数极限经典60题分步骤详解1.求极限lim(sinn+1-sinn)/(n→∞)。
为了解决这个问题,我们需要运用三角函数和差化积公式,将式子进行转化,然后求出极限。
具体过程如下:sinn+1-sinn=2cos(n+1+n)/(sin^2(n+1)+sin^2(n))2cos(n+1+n)/(sin^2(n+1)+sin^2(n))(sin()/sin())2cos(n+1+n)/(sin^2(n+1)+sin^2(n))(n→∞)2cos因为当n→∞时,sin()/n+1+n→0,而cos是有界函数,有界函数与无穷小的乘积仍然是无穷小,所以原式极限为0.2.令Sn=∑(k/(k+1)!),求极限limSn(n→∞)。
我们可以将Sn的式子变形,得到Sn=1-1/(n+1)。
然后求出极限即可。
具体过程如下:k/(k+1)!)=1/(k!)-1/((k+1)!)k/(k+1)!)=1/1!-1/2!+1/2!-1/3!+。
+1/n!-1/(n+1)!1-1/(n+1)!因此,limSn=lim(1-1/(n+1!))=1.3.求极限lim(1+2q+3q^2+4q^3+。
+nq^(n-1)),其中q<1且q≠0.我们可以将Sn的式子变形,得到qSn=1q+2q^2+3q^3+。
+(n-1)q^(n-1)+nq^n1-q)Sn=(1+q+q^2+q^3+。
+q^(n-1))-nq^n1-q)Sn=(1-q^n)/(1-q)-nq^nSn=[(1-q)/(1-q)^2]-nq^n/(1-q)当q<1且n→∞时,q^n→0,1+q+q^2+q^3+。
+q^(n-1)→1/(1-q),因此limSn=lim[(1-q)/(1-q)^2]-lim(nq^n/(1-q))1/(1-q)^2因此,极限为1/(1-q)^2.注:关于lim(1+2q+3q^2+4q^3+。
+nq^(n-1))/(q→0),当n→∞时,q^n→0,1+2q+3q^2+4q^3+。
超级难的高数极限题高等数学是大学数学的重要组成部分,其中极限是数学分析的基础。
极限是指函数在某一点趋近于某一值的过程,是数学中非常重要的概念。
而高数极限题则是考验学生数学思维和解题能力的重要题型之一。
下面将介绍一些超级难的高数极限题。
1. $lim_{xto 0} frac{sin x}{x}$这道题是高数极限题中最经典的一道题,也是最基础的一道题。
它的解法是利用极限的定义,即当$x$趋近于$0$时,$frac{sinx}{x}$趋近于$1$。
这个结论可以用泰勒公式证明。
2. $lim_{xto +infty} left(1+frac{1}{x}right)^x$这道题需要用到自然对数$e$的定义,即$lim_{xto +infty}left(1+frac{1}{x}right)^x=e$。
我们可以通过变形将这个式子转化为$lim_{xto 0} left(1+xright)^{frac{1}{x}}=e$,然后利用极限的定义求解。
3. $lim_{xto 0} frac{e^x-1}{sin x}$这道题需要用到泰勒公式的展开式,即$e^x=1+x+frac{x^2}{2!}+frac{x^3}{3!}+...$和$sinx=x-frac{x^3}{3!}+frac{x^5}{5!}-frac{x^7}{7!}+...$。
将这两个展开式代入原式中,我们可以得到$lim_{xto 0}frac{1+frac{x}{2!}+...}{x-frac{x^3}{3!}+...}$,然后利用洛必达法则求解。
4. $lim_{nto infty}left(frac{n}{n^2+1^2}+frac{n}{n^2+2^2}+...+frac{n}{n^2+n^2} right)$这道题需要用到积分的思想,即$int_0^1frac{1}{1+x^2}dx=frac{pi}{4}$。
我们可以将原式转化为$lim_{nto infty} frac{1}{n}sum_{k=1}^{n} frac{1}{1+(frac{k}{n})^2}$,然后利用积分的思想求解。
高数极限经典60题分步骤详解1. 求数列极限)sin 1(sin lim n n n -+→∞本题求解极限的关键是运用三角函数和差化积公式,将算式进行转化,进而求出极限,过程如下:n n sin 1sin -+=21sin 21cos2nn n n -+++ =)1121sin(21cos2n n nn n n n n ++++⋅-+++ =)121sin(21cos2nn n n ++++)(0∞→→n ∴ )sin 1(sin lim n n n -+→∞=0这是因为,当∞→n 时,0)1(21sin→++n n ,而21cos n n ++是有界函数,有界函数与无穷小的乘积仍然是无穷小,所以原式极限为0。
2. 令Sn =∑=+nk k k1)!1( ,求数列极限Sn n ∞→lim 解:)!1(1!1)!1(+-=+n n n n ∴∑=+nk k k 1)!1(=))!1(1!1()!1)!1(1()!41!31()!31!21()!21!11(+-+--++-+-+-n n n n =1)(1)!1(1∞→→+-n n 所以, Sn n ∞→lim =[lim →∞n 1)!1(1+-n ]=13. 求数列极限)4321(lim 132-→∞+++++n n nq q q q ,其中1<q 且0≠q 。
解:令Sn =1324321-+++++n nq q q q ,将等式两边同时乘以q ,得到Sn q ⋅=n n nq q n q q q q +-+++++-1432)1(4321 将以上两式相减,可得(1-q )·Sn =n n nq q q q q -+++++-)1(132 上面的算式两边同时除以1-q ,得到Sn =q nq q q q q q nn ---+++++-111132当1<q 且时∞→n ,0→n nq (注:证明附后), 1321-+++++n q q q q →q-11, ∴ Sn n →∞lim =2)1(1q --q nq n n -→∞1lim =2)1(1q -即 )4321(lim 132-→∞+++++n n nqq q q =2)1(1q -附注:关于0lim =∞→nn nq 的证明 若1<q 且0≠q ,当∞→n 时,0→nq 。
练习题1. 极限xx x x x x x x xx x x x x x 1lim)4(11lim)3(15865lim )2(31lim )1(2312232---+-+-+++-∞→→→∞→(5) 已知011lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x , 求常数a , b .(6) x x x x sin 1sin lim 20→ (7) 211lim 22x x x x ⎪⎪⎭⎫⎝⎛+-∞→(8) xx x21lim 0-→ (9)x x x sin )31ln(lim 0-→(10)⎪⎪⎭⎫⎝⎛-∞→1lim 1xx e x2. 函数的连续性(1) 确定b 的值, 使函数⎩⎨⎧<≥+==-002)(1x e x b x x f y x 在x =0点连续.(2) 确定a , b 的值, 使函数1lim)(2212+-+==-∞→nn n x bxax xx f y 在整个实数轴上连续.(3) 讨论下列函数的连续性, 并判断其间断点的类型.①x xx f sin )(=② ⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f xx3. 连续函数的性质 (1) 设1)(1-+++=-x xx x f n n ,证明:)(x f 有一个不大于1的正根.(2) 若),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.2. 函数的连续性(1) 确定b 的值, 使函数⎩⎨⎧<≥+==-002)(1x ex b x x f y x在x =0点连续.解:1)(lim )(lim )0(-→→====-+e x f b x f f x x(2) 确定a , b 的值, 使函数1lim)(2212+-+==-∞→nn n x bxax xx f y 在整个实数轴上连续.解:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=++-=-+<->==121121111)(2x b a x ba x bx ax x x x f yb a x f x f b a f x x -====-+=-+→→)(lim 1)(lim 21)1(11 b a x f x f b a f x x +==-==++-=--→-→-)(lim 1)(lim 21)1(_111,0-==b a(3) 讨论下列函数的连续性, 并判断其间断点的类型.①x x x f sin )(=解: x =0为可去间断点.②⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f xx解:1)(lim 1)(lim 0-=≠=-+→→x f x f x x , x =0为跳跃间断点.3. 连续函数的性质 (1) 设1)(1-+++=-x xx x f n n ,证明:)(x f 有一个不大于1的正根.解: 若n=1, 则显然有解x =1. 若n>1, 则01)1(,01)0(>-=<-=n f f , 由零点定理可知在(0, 1)内至少有一个根..(2) 若),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.解: 由A x f x =∞→)(lim 可知: 0>∃X , 当X x >时, 1)(<-A x f , 故1)(+<A x f由),()(∞+-∞∈C x f 可知]1,1[)(+--∈X X C x f , 故01>∃M ,当1+<X x 时, 1)(M x f <取}1,max{1+=A M M 即可.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.证明: 若A x f ≡)(, 则显然结论成立.设存在A x f >)(0, 则存在X >0, 当X x ≥时, 有2)()(0Ax f A x f -<- 于是: )(2)()(00x f A x f x f <+< 由],[)(X X C x f -∈, 可知存在],[X X -∈ξ{})(],[:)(max )(0x f X X x x f f ≥-∈=ξ从而),()(∞+-∞在x f 内有最大值)(ξf .对于任意的C , )(ξf C A <<, 存在X 1>0, 当1X x ≥时, 有 C AC x f <+<2)( 于是有CAC X f <+<±2)(1. 分别在闭区间],[],,[11X X ξξ-上使用介值定理即可得结论2º.。
高数极限基础练习题一、数列极限1. 计算下列数列的极限:(1) $\lim_{n \to \infty} \frac{1}{n}$(2) $\lim_{n \to \infty} \frac{n+1}{2n+3}$(3) $\lim_{n \to \infty} \frac{n^2 1}{n^2 + 1}$(4) $\lim_{n \to \infty} \frac{\sqrt{n^2 + n}}{n + 1}$ 2. 判断下列数列极限是否存在,若存在,求出其极限值:(1) $\lim_{n \to \infty} (1)^n$(2) $\lim_{n \to \infty} \sin(n\pi)$(3) $\lim_{n \to \infty} \frac{n!}{n^n}$二、函数极限1. 计算下列函数的极限:(1) $\lim_{x \to 0} \frac{\sin x}{x}$(2) $\lim_{x \to 1} \frac{x^2 1}{x 1}$(3) $\lim_{x \to \infty} \frac{1}{x}$(4) $\lim_{x \to 0} \frac{e^x 1}{x}$2. 判断下列函数极限是否存在,若存在,求出其极限值:(1) $\lim_{x \to 0} \frac{\sin 3x}{x}$(2) $\lim_{x \to \infty} \frac{\ln x}{x}$(3) $\lim_{x \to \infty} (1 + \frac{1}{x})^x$三、无穷小与无穷大1. 判断下列表达式是否为无穷小:(1) $\frac{1}{x^2}$ 当 $x \to \infty$(2) $\sin \frac{1}{x}$ 当 $x \to \infty$(3) $e^{x}$ 当 $x \to \infty$2. 判断下列表达式是否为无穷大:(1) $x^3$ 当 $x \to \infty$(2) $\ln x$ 当 $x \to \infty$(3) $\frac{1}{\sqrt{x}}$ 当 $x \to 0^+$四、极限运算法则1. 利用极限运算法则计算下列极限:(1) $\lim_{x \to 0} (3x^2 + 2x 1)$(2) $\lim_{x \to 1} \frac{x^3 3x^2 + 2x}{x^2 2x + 1}$(3) $\lim_{x \to \infty} (x^3 2x^2 + 3)$2. 利用极限的性质,计算下列极限:(1) $\lim_{x \to 0} \frac{\sin x}{x} \cdot\frac{1}{\cos x}$(2) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x + 1}$(3) $\lim_{x \to 0} \frac{e^x e^{x}}{2x}$五、复合函数极限1. 计算下列复合函数的极限:(1) $\lim_{x \to 0} \frac{\sin(\sqrt{x^2 + 1})}{x}$(2) $\lim_{x \to \infty} \frac{\ln(x^2 + 1)}{x}$(3) $\lim_{x \to 0} \frac{e^{x^2} 1}{x^2}$2. 判断下列复合函数极限是否存在,若存在,求出其极限值:(1) $\lim_{x \to 0} \frac{\sin(\tan x)}{x}$(2) $\lim_{x \to \infty} \frac{\ln(e^x + 1)}{x}$(3) $\lim_{x \to 0} \frac{1 \cos(\sqrt{x})}{x}$六、极限的应用1. 计算下列极限问题:(1) 设 $f(x)2. 已知函数 $f(x) = \frac{x^2 1}{x 1}$,求 $\lim_{x \to 1} f(x)$。
函数、极限与连续 第一节 函数一、单项选择题3.若2sin 2cos 2θθ+=-,则cos θ=( ) A.1B.12C.12-D.1-4.函数ln 1x y +=) A.()1,-+∞B.()1,+∞C.[)1,-+∞D.[)1,+∞5.函数21x y e -的定义域是( )A.()3,+∞B.(],2-∞-C.[]3,4-D.(][),23,-∞-⋃+∞6.函数()121arccos13x y x --=+-的定义域是( ) A.[)(]1,11,2-⋃ B.()()1,11,2-⋃ C.[]1,2-D.()1,2-7.函数()23,401,03x x f x x x --≤≤⎧=⎨+<≤⎩的定义域是( )A.43x -≤≤B.40x -≤≤C.03x <≤D.43x -<< 二、填空题3.函数2log x y -=_______.4.函数()3sin1xf x x=+的定义域是__________. 5.设()f x 的定义域为(]0,1,则函数()sin f x 的定义域为_________. 6.设函数()2y f x =的定义域为[]0,2,则()f x 的定义域是_______.第二节 极限一、单项选择题4.设1f x x ⎛⎫=+ ⎪⎝⎭,则()lim x f x →∞=( ) A.-1B.0C.1D.不存在5.03sin lim2x xx→=( )A.23B.1C.32D.36.下列各式中正确的是( ) A.()23sin lim1x x x →=B.()21limcos 10x x →-=C.1lim sin1x x x→∞= D.01sinlim1x x x→=7.下列各式中正确的是( )A.31lim 13xx e x →∞⎛⎫-= ⎪⎝⎭B.()1lim 1x x x e →∞+= C.()10lim 12xx x e →+=D.()130lim 1xx x e +→+=8.函数()223,1,0,1,1,1,x x f x x x x ⎧+<⎪==⎨⎪->⎩,则()1lim x f x →=( ) A.0 B.2 C.5 D.不存在9.()21sin 1lim1x x x →-=-( )A.1B.0C.2D.1210.)lim x x →+∞=( )A.0B.1C.2D.∞11.22lim sin 1x xx x →∞=+( ) A.12B.0C.∞D.212.下列极限不能用洛必达法则的是( )A.201lim tan xx e x→-B.2121lim 1x x x x→---C.11lim 1x x x →-- D.()lim 0xm x e m x→+∞> 13.极限limx xx e e x-→+∞-=( ) A.0B.1C.2D.+∞14.若0a >,则极限()ln ln lim ex x x x →+∞=( )A.+∞B.2C.1D.022.设函数()1sin ,0,1,0,x f x xx ⎧≠⎪=⎨⎪=⎩,则当0x →时,()f x 是( ) A.无穷小B.无穷大C.既不是无穷大,也不是无穷小D.极限存在但不是023.当0x →时,下列四个无穷小中,比其他三个更高阶的无穷小是( ) A.2xB.1cos x -1D.tan x x -24.当0x +→)A.1-B.1D.1-二、填空题1.设()lim 2x f x →∞=,()()lim5x f x g x →∞=,则()lim x g x →∞=________2.2112lim 11x x x →⎛⎫-=⎪--⎝⎭_________.3.20lim2x x x→=+__________.4.极限12lim 1x x x +→∞⎛⎫-= ⎪⎝⎭__________.5.()10lim 1sin 2xx x →-=__________. 6.21lim arctan x x x+→=__________. 7.011lim sinsin x x x x x →⎛⎫+= ⎪⎝⎭__________. 8.()222sin 4lim6x x x x →-=+-__________.9.cos x x →=___________.10.()()2013sin coslim1cos ln 1x x x x x x →+=++ __________. 11.22limtan2x x nππ→∞= __________. 12.221limxx x e →+∞-= __________.一元函数微分学 第一节 导数的概念一、单项选择题1.设()f x 在点x a =处可导,则()()2limh f a h f a h→--=( )A.()f a 'B.()2f a 'C.()2f a '-D.()f a '-2.设()f x 在点0x =处可导,则()()3lim2h f h f h h→--=( )A.()302f ' B.()203f 'C.()20f 'D.()0f '3.设()11f '=,则()()211lim1x f x f x →-=-( )A.-1B.0C.12D.14.设函数()()()()12f x x x x x n =---,其中n 为正整数,则()1f '=( )A.()()111!n n --- B.()()11!nn --C.()11!n n --D.()1!nn -5.若()f x 在x a =处可导,则下列选项不一定正确的是( ) A.()()lim x af x f a →=B.()()lim x af x f a →''=C.()()limh f a h f a h h→--+D.()()limx af a f x x a→--6.设函数()f x 在0x =处可导,且()00f =,()00f '≠,则下列极限存在且为零的是( )A.()01limln 1h f h h →-⎡⎤⎣⎦ B.)201lim1h f h → C.()201lim tan h f h h→D.()()01lim 2h f f h f h h→-⎡⎤⎣⎦ 7.设函数()()21f x x x ϕ=-,其中()x ϕ在点1x =处连续,则()10ϕ=是()f x 在点1x =处可导的( )A.充分必要条件B.充分但非必要条件C.必要但非充分条件D.既非充分又非必要条件8.设()f x 在0x 处有定义,但()0lim x x f x →不存在,则( ) A.()0f x '必存在B.()0f x '必不存在C.()f x 必连续D.()()00lim x x f x f x →=9.设()y f x =在点1x =处可导,且()1lim 2x f x →=,则()1f =( )A.2B.1C.12D.010.下列函数中,在点0x =处可导的是( ) A.y x =B.y =C.3y x =D.ln y x =11.设()322,13,1x x f x x x ⎧≤⎪=⎨⎪>⎩,则()f x 在1x =处的( )A.左、右导数都存在B.左导数存在,但右导数不存在C.左导数不存在,但右导数存在D.左、右导数都不存在12.函数()1sin ,00,0x x f x xx ⎧≠⎪=⎨⎪=⎩在点0x =处( ) A.连续且可导B.连续但不可导C.不连续D.不仅可导,导数也连续二、填空题1.设函数()()2log 0f x x x =>,则()()0limx f x x f x x∆→-∆-=∆________. 2.设()()()00001lim03x f x k x f x f x x ∆→+∆-'=≠∆,则k =_________.3.当0h →时,()()0032f x h f x h --+是h 的高阶无穷小量,则()0f x '=_______.4.设()2,1cos ,12ax b x f x x x x π⎧+≥⎪=⎨⎛⎫< ⎪⎪⎝⎭⎩且()f x 在1x =处可导,则a =________,b =________. 5.设函数()1,010,02,01x x xx e f x x x x e ⎧<⎪⎪+⎪==⎨⎪⎪>+⎪⎩,则()0f '=________.6.设曲线()y f x =和2y x x =-在点()1,0处有相同的切线,则()f x 在该点的切线斜率为________.7.曲线32116132y x x x =+++在点()0,1处的切线与x 轴的交点坐标为________. 8.设()y f x =由方程()2cos 1x y e xy e +-=-所确定,则曲线()y f x =在点()0,1处的法线方程为________.9.曲线2223131at x t at y t ⎧=⎪⎪+⎨⎪=⎪+⎩在2t =的对应点处的切线方程为________. 10.曲线sin 2t,cos t tx e y e t⎧=⎪⎨=⎪⎩在点()0,1处的法线方程为________.第二节 一元导数的求导法则一、单项选择题1.设()2f x e =()f x '=( )A.xe2.设函数()2x f x e -=,则()f x '=( ) A.22x e--B.22x e-C.22x xe--D.22x xe-3.若函数()sin f x x x =,则2f π⎛⎫'= ⎪⎝⎭( ) A.12B.1C.2πD.2π4.若()211f x x -=-,则()f x '=( ) A.22x +B.()1x x +C.()1x x -D.21x -5.设函数()f x 满足()22sin cos f x x '=,且()00f =,则()f x =( )A.21cos cos 2x x +B.21sin sin 2x x - C.2112x x -+ D.212x x -6.设()211xf e x =+,则()f x '=( ) A.()222ln 1ln x x x -+ B.()222ln 1ln xx -+ C.()2221xx -+D.()2211x -+7.设()2420y x x x =-+>,则其反函数()x y ϕ=在点2y =处的导数是( )A.14B.14-C.12D.12-8.设函数()g x 可微,()()1g x h x e +=,()11h '=,()12g '=,则()1g =( ) A.ln31- B.ln31--C.ln21--D.ln21-二、填空题 1.设()ln 11x y x+=+,则0x y ='=__________.2.设()24sin y x =,则dydx=___________.3.设3210.1sin 3y x x π=-+,则y '=__________.4.设()2cos 31arctan x xy x x e=-+,则y '=__________. 5.设cos2xy e =,则y '=__________.6.设ln y x =,则y '=__________.7.设()arctan y f x =,其中()f x 为可导函数,则y '=__________. 8.已知()arcsin 12y x =-,则y '=__________. 9.已知2cos 2y ex π-=,则y '=__________.10.已知(ln y x =,则y '=__________. 11.设()12xf x x e=,而()h t 满足条件()03h =,()2sin 4h t t π⎛⎫'=+⎪⎝⎭,则()0t d f h t dt==⎡⎤⎣⎦__________. 12.已知211d f dx x x⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦,则12f ⎛⎫'= ⎪⎝⎭__________. 第四节 隐函数及由参数方程所确定的函数的导数一、单项选择题1.已知方程2290y xy -+=确定了函数()y y x =,则dydx=( ) A.y x y- B.x x y- C.x y x -D.y y x-2.已知()y f x =由方程()cos ln 1xy y x -+=确定,则()2lim 0n n f f n →∞⎡⎤⎛⎫-=⎪⎢⎥⎝⎭⎣⎦( ) A.2B.1C.-1D.-23.已知1xy x =,则dydx=( ) A.21ln x x -B.()121ln xxx --C.()111ln xxx --D.()12ln 1xxx --4.已知函数()y y x =由参数方程sin cos 2x t y t=⎧⎨=⎩确定,则2t dydx π==( )A.-B.C.5.设()ln 111x t y t =+⎧⎪⎨=⎪+⎩,则22d y dx =( ) A.1B.11t+ C.11t-+ D.11t-+ 二、填空题1.设函数()y y x =由方程()23ln sin x y x y x +=+所确定,则0x dy dx==________.2.设函数()y y x =由方程2cos xye y x +=所确定,则dydx=________. 3.设函数()y y x =由方程1yy xe =+所确定,则y ''=________.4.设()y y x =由()()21ty f t x f e =⎧⎪⎨=-⎪⎩所确定,其中f 可导,且()00f '≠,则0t dy dx ==________. 5.若函数()y y x =由参数方程cos sin x at t y at t =⎧⎨=⎩所确定,则2t dydx π==________. 6.若由参数方程ln cos sec x t y a t=⎧⎨=⎩所确定的函数()y y x =满足x dyy e dx -=+,则常数a =________.7.设函数()y y x =由参数方程()32ln 1x t t y t t⎧=-+⎪⎨=+⎪⎩所确定,则22d y dx =________.三、计算题1.设函数()y y x =由方程()222sin 0x x y e xy ++-=所确定,求dy dx2.设函数()y f x =由方程()f y yxee =所确定,其中f 具有二阶连续导数,且1f '≠,求22d ydx3.已知方程224x xy y ++=所确定的隐函数为()y y x =,求dy dx 与22d ydx4.求幂指函数()ln xy x =的导数5.设()0,01x a x a y x x a a x a a =+++>>≠且,求dy dx6.设()1cos 1x y x =+,求y '7.已知(()214xx y x e+=+y ' 8.设()y y x =由21cos ,sin x t y t =+⎧⎨=⎩所确定,求dydx 9.设()y y x =由方程22e 13t x t y t t⎧=+⎨=-⎩所确定,求1x dydx =10.设()y y x =由()()()x f t y tf t f t '=⎧⎪⎨'=-⎪⎩所确定,()f t ''存在且()0f t ''≠,求22d y dx第五节 函数的微分一、单项选择题1.若函数()y f x =有()012f x '=,则当0x ∆→时,该函数在点0x x =处的微分dy 是( )A.与x ∆等价的无穷小B.与x ∆同阶非等价的无穷小C.比x ∆低阶的无穷小D.比x ∆高阶的无穷小2.设函数()y f x =在点0x 处可导,当自变量x 由0x 增加到0x x +∆,记y ∆为()f x 的增量,dy 为()f x 的微分,则0lim x y dyx∆→∆-=∆( )A.-1B.0C.1D.∞3.函数()f x 在点0x x =处可微是它在点0x x =处连续的_________条件 A.必要而不充分 B.充分而不必要 C.充分必要 D.无关4.已知y =4x dy ==( )A.24eB.24e dxC.22eD.22e dx 5.下列等式中不正确的是( ) A.()6d x dx =B.()1cos 2sin 22xdx d x = C.()222x x xe dx d e=D.()arccos d x =6.已知()y y x =是由方程0ye xy e --=确定的函数,则dy=( ) A.yydx e x-+B.yydx e x+ C.yydx e x-- D.yydx e x- 二、填空题1.?e dx =_________()?d e (n 为正整数)2.已知函数()f x 满足()()arcsin 2f x d x =⎡⎤⎣⎦,则()f x =_________.3.设函数()43y x =-,则dy =_________.4.已知arcsin2xy x =+dy =_________. 5.设1xe y x=+,则dy =_________.6.已知()y y x =是由方程tan y x y =+确定的函数,则dy =_________.7.设2arccos 2xy =,则dy =_________.第六节 微分中值定理三、证明题1.设()f x 在[]1,e 上可导,且()10f =,()1f e =,证明:()1f x x'=在()1,e 内至少有一个实根2.设()f x 在[],a b 上二阶可导,且恒有()0f x ''<,证明:若方程()0f x =在(),a b 内有根,则最多有两个根3.设函数()f x 在区间[]0,2上连续,在区间()0,2内可导,且()()020f f ==,()12f =,证明:至少存在一点()0,2ξ∈,使得()f ξξ'=4.设函数()f x 在区间[]0,1上连续,在区间()0,1内可导,且()1lim01x f x x →=-,证明:至少存在一点()0,1ξ∈,使得()()cos sin 0f f ξξξξ'⋅+⋅=5.若()f x 在[]0,1上有三阶导数,且()()010f f ==,设()()3F x x f x =,证明:在()0,1内至少存在一点ξ,使()0F ξ''=6.设()f x 在[],a b 上可导,且()()0f a f b ==,证明:至少存在一点(),a b ξ∈,使()()0f f ξξ'+=7.设函数()f x 在[]0,1上连续,在()0,1内可导,且()00f =,k 为正整数,证明:存在一点()0,1ξ∈,使得()()()f kff ξξξξ''+=8.设()f x 在[]0,2上连续,在()0,2内可导,且()()014f f +=,()22f =,证明:必存在一点()0,2ξ∈,使()0f ξ'=10.已知()f x 在[]1,3上连续,在()1,3内可导,且()()120f f <,()()230f f <,证明:至少存在一点()1,3ξ∈,使得()()0f fξξ'-=11.设()f x 在[]0,1上连续,在()0,1内可导,且()00f =,()11f =,证明:对任意给定的正数a 和b ,在(0,1)内必存在不相等的1x ,2x ,使()()12a ba b f x f x +=+'' 12.设01a b <<<,证明不等式arctan arctan 2b a b a ab--<13.设函数()f x 在[],a b 上连续,在(),a b 内可导,且()()f a f b =,证明:若()f x 不恒为常数,则至少存在一点(),a b ξ∈,有()0f ξ'>第七节 导数的应用三、计算题8.求函数()ln f x x x =-在1,e e -⎡⎤⎣⎦上的最值9.设函数2ln 5y a x bx x =++在1x =处取极值且12x =为其拐点横坐标,求常数a ,b 的值 10.设1x =±是()32f x x ax bx =++的两个极值点,求函数()f x 的拐点11.试确定曲线()3216f x ax bx cx =+++中的a 、b 、c ,使得()f x 在点2x =-处有水平切线,()1,10-为()f x 的拐点五、证明题1.设()f x 在[)0,+∞上连续,()00f =,()f x ''在()0,+∞内恒大于零,证明:()()f x g x x=在()0,+∞内单调递增2.证明:当0x >时,有不等式()()1ln 1arctan x x x ++>3.证明:当0x >时,11ln 11x x⎛⎫+> ⎪+⎝⎭4.证明:当0x >时,(1ln x x +>5.证明:当02x π<<时,sin tan 2x x x +>6.证明:方程31arctan 0x x --=在区间()0,1内有唯一实根7.证明:方程3310x x -+=有且仅有三个实根8.证明方程1ln 02x x e -+=在()0,+∞内有且仅有两个实根 9.设函数()()21ln 12f x x x x =+-+,证明:(1)当0x →时,()f x 是比x 高阶的无穷小量; (2)当0x >时,()0f x > 10.设函数()ln ln a x x af x x-=,(),x e ∈+∞(1)证明:()f x 在区间(),e +∞内单调递减; (2)设a b e >>,比较ba 与ab 的大小,并说明理由 11.已知11arctan F x x ⎛⎫=-⎪⎝⎭,0x >, (1)求()F x ;(2)证明当0x >时()0F x =恒成立一元函数积分学第一节 不定积分一、单项选择题2.函数sin 2x 在(),-∞+∞内的导函数与一个原函数分别是( )A.cos 2,sin 2x xB.12cos 2,cos 22x x C.12cos 2,cos 22x x - D .12cos 2,cos 22x x - 3.已知函数tan 2y a x =的一个原函数为()2ln cos 23x ,则a =( )A.23-B.43-C.32D.344.设()f x 的一个原函数为2x ,则()f x '=( )A.313xB.2xC.2xD.25.若()f x 的导函数是sin x ,则函数()f x 有一个原函数是( ) A.1sin x +B.1sin x -C.1cos x +D.1cos x -16.不定积分()2x xe dx --+=⎰( )A.1xx e C ---++ B.1xx e C ----+C.212xx e C ----+D.313xx e C ---+ 17.不定积分32x x e dx =⎰( )A.3213x x e C +B.323xx e C +C.313x e C + D.33xe C +18.若()()ln 1f x dx x x C =++⎰,则()0limx f x x→=( ) A.2B.-2C.-1D.119.不定积分=( )A.C -B.CC.CD.C -20.不定积分()2f x dx '=⎰( )A.()122f x C +B.()2f x C +C.()22f x C +D.()12f x C + 21.设()()21ln 12f x dx x C =++⎰,则()1f x dx x=⎰( )A.arctan x C +B.cot arc x C +C.()21ln 12x C x ++D.1C x-+ 二、填空题 4.不定积分()221x dx -=⎰____________.5.()2d df x =⎰____________.6.不定积分223x x dx =⎰____________.7.不定积分21y -=____________.8.若()()f x dx F x C =+⎰,则()ln f x dx x=⎰____________. 9.d____________dx =10.2cos 1sin xdx d x=+ ____________. 11.不定积分()5201ln x dx x+=⎰____________.12.不定积分11sin dx x =+⎰____________.13.不定积分2sec 1tan x dx x ⎛⎫= ⎪+⎝⎭⎰____________.14.不定积分3x=⎰____________.15.不定积分()2xf ax b dx '+=⎰____________.()0a ≠ 三、计算题1.求不定积分327d 3x x x --⎰2.计算不定积分d x ⎰ 3.计算不定积分2x4.计算不定积分sin cos sin cos x x dx x x -+⎰ 5.计算不定积分4sin cos d 1sin x xx x+⎰ 6.计算不定积分3sin d x x ⎰7.计算不定积分6sec d x x ⎰8.计算不定积分2sec 2sec 1tdt t -⎰9.计算不定积分x ⎰10.求不定积分x e xedx +⎰11.求不定积分2100d (1)x x x -⎰ 12.设()22sin cos 2tan f x x x '=+,求()f x ,其中01x << 第二节 定积分的概念与计算 二、填空题 5.设0()xf x t dt =⎰,则()f x '=____________.6.设()223x t t x F x xe dt +=⎰,则()F x '=____________.7.极限24sin limx x tdt x →=⎰____________.8.已知当0x →时,sin 20xt dt ⎰与a x 是同阶无穷小,则常数a =____________.9.已知()230341xf t dt x =+⎰,则()12f =____________.10.函数()2x t f x e dt -=⎰的极值为____________.11.如果()f x 有一阶连续导数,()5f b =,()3f a =,则()baf x dx '=⎰____________.12.已知函数()1xf x x=+,则定积分211f dx x ⎛⎫= ⎪⎝⎭⎰____________. 13.定积分21x dx -=⎰____________.14.设()xf x e -=,则()21ln f x dx x'=⎰____________. 15.设()1,20,1,01,2,12x f x x x x x -≤<⎧⎪=+≤≤⎨⎪<≤⎩,则()22f x dx -=⎰____________.16.定积分21x xe dx =⎰____________.三、计算题1.计算31⎰2.计算)21x dx -⎰3.求(211x dx -⎰4.计算11ln ex dx x +⎰5.计算220sin cos x xdx π⎰6.计算1⎰7.求114⎰8.求21⎰9.求11-⎰10.求111.求112.已知()1,011,01xx xf x x e ⎧>⎪⎪+=⎨⎪≤⎪+⎩,求()11f x dx -⎰第四节 定积分的应用三、应用题1.求曲线xy e -=与直线0y =之间位于第一象限的平面图形的面积2.计算由抛物线21y x =-与27y x =-所围成的平面图形的面积3.求由曲线sin y x =,cos y x =与直线0x =,2x π=所围成的平面图形的面积4.曲线()20y ax xa =->与x 轴围成的平面图形被曲线()20y bxb =>分成面积相等的两部分,求a ,b 的值5.求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线所围成的平面图形的面积最小6.已知曲线)0y a =>与曲线y =在点()00,x y 处有公共切线,求:(1)常数a 及切点()00,x y(2)两曲线与x 轴围成的平面图形的面积S7.求由曲线()31y x =-,x 轴和直线2x =所围成的图形绕x 轴旋转所得的旋转体的体积 8.计算由抛物线2y x =和直线2y x =所围成的平面图形绕y 轴旋转一周所成的旋转体的体积9.求曲线24y x x =-和直线y x =围成的平面图形绕x 轴旋转一周所得立体的体积 10.已知曲线()30y xx =≥,直线2x y +=以及y 轴围成一平面图形D ,求平面图形D 绕y轴旋转一周所得旋转体的体积11.求曲线()243y x =--与x 轴所围成的平面图形分别绕x 轴、y 轴旋转而成的立体体积x V 、y V 。
1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a nn =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫ ⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2022020=⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅==-→→→x x x x x x x x x8、 01sin lim lim 1sinlim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00l i m 1l i m00-=--→x x x ,=+→xx x 00lim 1lim 00=+→x xx ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则(1)()x e f 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是(,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭ ); (3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x(3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n n x n n x n x n n n n =⋅==∞→∞→∞→sinlim sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x xx ,则=a ( 1 ),=b ( 21-). ∵()b ax x x x --+-+∞→1lim2()()()bax x x b ax x x b ax x x x +++-+++---+-=+∞→111lim222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()2211212112lim lim lim 1x x x b ab ab x b ab a →+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ).11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ).()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→xxx sin lim( 0 ),=∞→xx x 1s i nlim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim =⋅=∞→∞→x x x x x x 111sin lim1sin lim ==∞→∞→xx x x x x ()[]1)1(11)(1lim 1lim --⋅-→→=-+=-e x x xx x x kkx x kx x e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、lim sin(arctan )x x →∞=( 不存在 ),l i ms i n (a r c c o t )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列 2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa ()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界 5、函数()x f x-=11在( c )条件下趋于∞+.a .1→xb .01+→xc .01-→x 6、设函数()x f xx sin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xxx x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。
高数期末练习题推荐一、极限与连续1. 计算下列极限:(1) lim(x→0) (sinx/x)(2) lim(x→1) (1 cosx)/x^2(3) lim(x→+∞) (1 + 1/x)^x2. 判断下列函数在指定点的连续性:(1) f(x) = |x| 1,在x = 1处(2) f(x) = (x^2 1)/(x 1),在x = 1处(3) f(x) = sqrt(1 x^2),在x = 0处3. 讨论函数f(x) = (x^2 1)/(x 1)的连续性。
二、导数与微分1. 求下列函数的导数:(1) y = x^3 3x + 2(2) y = ln(x^2 + 1)(3) y = e^x sinx2. 求下列函数的微分:(1) y = sqrt(1 + x^2)(2) y = arctan(x)(3) y = x^2 e^x3. 求曲线y = x^3 3x在点(2, 2)处的切线方程。
三、积分与不定积分1. 计算下列不定积分:(2) ∫(e^x sinx)dx(3) ∫(1/x)dx2. 计算下列定积分:(1) ∫(从0到π) sinx dx(2) ∫(从1到e) (1/x) dx(3) ∫(从0到1) x e^x dx3. 求曲线y = x^2在x轴上方的面积。
四、级数1. 判断下列级数的收敛性:(1) Σ(从n=1到∞) 1/n(2) Σ(从n=1到∞) (1)^n / n(3) Σ(从n=1到∞) n / (n^2 + 1)2. 求幂级数Σ(从n=0到∞) x^n的收敛区间。
五、多元函数微分法1. 求函数z = x^2 + y^2在点(1, 2)处的偏导数。
2. 求函数z = e^(x^2 + y^2)在点(0, 0)处的全微分。
3. 求函数z = ln(x + y)在点(1, 1)处的梯度。
六、向量与空间解析几何1. 计算向量a = (2, 1, 1)与向量b = (1, 1, 2)的模和夹角。
高数极限题目一 选择题1.已知9)(lim =-+∞→x x ax a x ,则=a ( )。
A.1; B.∞; C.3ln ; D.3ln 2。
2.极限:=+-∞→x x x x )11(lim ( ) A.1; B.∞; C.2-e ; D.2e3.极限:∞→x lim 332x x +=( ) A.1; B.∞; C.0; D.2.4.极限:xx x 11lim 0-+→=( ) A.0; B.∞; C 21; D.2.5. 极限:)(lim 2x x x x -+∞+→=( ) 6.0; B.∞; C.2; D.21.7.极限: x x x x 2sin sin tan lim 30-→=( ) A.0; B.∞; C.161; D.16. 二 填空题8.极限12sin lim 2+∞→x x x x = . 9. lim 0→x x arctanx =_______________.10. 若)(x f y =在点0x 连续,则)]()([lim 0→-0x f x f x x =_______________; 11. =→xx x x 5sin lim0___________; 12. =-∞→n n n )21(lim _________________; 13. 若函数23122+--=x x x y ,则它的间断点是___________________ 14. 绝对值函数 ==x x f )(⎪⎩⎪⎨⎧<-=>.0,;0,0;0,x x x x xx 其定义域是 ,值域是()()x x x x f 25lg 12-+-+=15. 符号函数 ==x x f sgn )(⎪⎩⎪⎨⎧<-=>.0,1;0,0;0,1x x x其定义域是 ,值域是三个点的集合16. 无穷小量是 17. 函数)(x f y =在点x0 连续,要求函数y f (x) 满足的三个条件是三. 计算题18.求).111(lim 0xe x x x --+-→ 19.设f(e 1-x )=3x-2,求f(x)(其中x>0);20.求lim 2 x →(3-x)25--x x ;21.求lim ∞→ x (11-+x x )x ; 22.求lim 0 x →)3(2tan sin 22x x x x + 23.已知9)(lim =-+∞→x x ax a x ,求a 的值; 24.计算极限n n n n 1)321(lim ++∞→ 25.求它的定义域。
‰高等数学(Ⅰ)练习 第一章 函数、极限与连续________系_______专业 班级 姓名______ ____学号_______习题一 函数一.选择题 1.函数216ln 1x xx y -+-=的定义域为 [ D ] (A )(0,1) (B )(0,1)⋃(1,4) (C )(0,4) (D )4,1()1,0(⋃] 2.3arcsin 2lgxx x y +-=的定义域为 [ C ] (A ))2,3(]3,(-⋃-∞ (B )(0,3) (C )]3,2()0,3[⋃- (D )),3(+∞- 3.函数)1ln(2++=x x y 是 [ A ](A )奇函数 (B )非奇非偶函数 (C )偶函数 (D )既是奇函数又是偶函数 4.下列函数中为偶函数且在)0,(-∞上是减函数的是 [ D ](A )222-+=x x y (B ))1(2x y -= (C )||)21(x y = (D ).||log 2x y =二.填空题1. 已知),569(log )3(22+-=x x x f 则=)1(f 22. 已知,1)1(2++=+x x x f 则=)(x f3. 已知xx f 1)(=,x x g -=1)(, 则()=][x g f4. 求函数)2lg(1-+=x y 的反函数5. 下列函数可以看成由哪些基本初等函数复合而成 (1) x y ln tan 2=:(2) 32arcsin lg x y =:__________ _____________________三.计算题1.设)(x f 的定义域为]1,0[, 求)(sin ),(2x f x f 的定义域21x x -+1102()x y x R -=+∈11x -2,tan ,ln ,y u u v v w w ====23,lg ,arcsin ,y v v w w t t x =====2()[11](sin )[2,2]()f x f x k k k Z πππ-+∈的定义域为,的定义域为2.设⎪⎩⎪⎨⎧<<-≤-=2||111||1)(2x x x x x ϕ , 求)23(),21(),1(ϕϕϕ-, 并作出函数)(x y ϕ=的图形.4.已知水渠的横断面为等腰梯形,斜角40=ϕ(图1-22)。
函数与极限练习题
直禅IS
□ >肖时"用减JE)在冠ttK恵Ifr的盘守呦.削下刮式于中楠课的业€5
C ■ •^r,)+oU* )=€<■*)D: d(x) + XJt:)=^)
I 二 e =]
(2> ^#/(>)=—的可去间斷底的牛妆为f
;r(x 十1)L1 蓋I
B) 1
Q> n-aaftbm^"31?3111=F・扁冲乱r 舸擒巒・B.c *=», m <
B> 2.^«—
'4 I I '.2、H T J「忘廿jl*:= 5T1[1Y-llIl沁'•才r/苇八七目小・眄
“让=7
■3 a
f€>- □-町可E THf J;旳个枝为
曲充H
C7> =^i /(JI)- j-suiflrl3jti)=i1尤曲也Nl
(B)昶* = 1 - t=—
6
:CI ff = -1.
B •- 1
C .■ ijl+^Jx — L
tD、1—COS-^I
= e=1 »AW*W«X «*®
a,b 为 __
Ixdsinfx —21
请数门工)=
_-—— 在尸列券个区阖内有界一
z(x-l)(x-2J
(A> (-1,0) (B> (OJ) CO (12) (D> (23)
(19)下列riNffliE 踊的是
(A)若1诃/X®工1曲> S 当Q q 窗―旺K 占时fW 土 g(r)
星 T J
^
Jt —►齐
CB)®3(f >O h ttO<r-^忙方时且伽才⑴二心!!™呂⑴二心均日■
则忌》氏*
(C> #35>O 3ttO<|x-i o K^0f/(<)>£(x}=>lim/(jr)>]im£(r). gXt g 如 (D)若 lira /(r) > Um g(R =耳必 > Q 当0 q 龙-无 |< 占时冇 /■何 >g(r)
if
宀片
C1L )设Fh)展连慈聃《tf (幻的一牛原曲載,哪必有
(A) FWJtlSS»«f{B )是奇««.
CB> FG)足奇函敦O £3足偶画蠡.
(€) FW 是舄期由数O 虫<!)是罔期函軌
(D) P(x)盘单iH 函鑒O 舟3建单谒函数
十 X 3 +3^+1 ..
、
lim
;—(EinJC4- cog 耳}=
十 r+Jt 3
C13) limf^-f-j^—+- + ^—)
n 2+2 n 2+n
=1-则/(0)=
1
(15)着Hf 0时,(1-™3)*-!与工曲工是辱儘无男4 则沖 ________________________
X 2 +匕网<c
2 , , )内连渎,■<: =
41空割
(16)
⑶川Im ®"祝叭L 求応曲⑴
2
<33)或FO) ■ ®十卩
E"在匿间卜f 町上的何断点.井指明类型。
T (e* -e )
三.
-is
加:中土畀土亟1 Xjl +血工一工
-24'.
.?3 <30 -
-^sinx 工
l±m ---------
十
——
f 1 - cosJx )加佗呼
J 」
円 xln(l+x)
十
1 . sinr
kHpln ---------
7 X' x
巳知呱竺毕竺也二芳恥呱
I'
灼阳讨论帝散 畑=辰込團■屮〉(工> 0)的连摊怜 若科间斷点’
刿别其类型.
1-** H
| A. I <2
f(x)-J2(x-l),2<x<5<
A + 3.X > S
L
Q 讨论刃飢巧)陶癌境浴 若有同睡点・井指明类lh
::,〔烈八—L 海V ・ 廿门加 A Ji ■叫巴虞*V.
⑷血函散『E- £⑴征匕期卜建睦口在开区啊(口上)内存在相黑的用丈昨.工八7) "叭JW
ff (b )t 证明,存在厂他莎快帚兀町■岸伺”
,苑 己知JTO 疣[工可i ■可/ f 如他八.『3 仙"
畑存從舟亡®,6). ^/© = 0
-3门试询圮九片-(?的:i ・使毎巴(1十矗+&1)工1 一占+底工)切」D 『)肚P XT 0 时
tth 品口门无旁小一
t3& %散列{嘉}审足0<:咼 C 臥£-i =^in\(n = L 2h - )
f 1、iF 氓lull 兀朴在*井朮谗撥农
i
—_rk»
<34 > f(x) = ^
J 2
. I <1
1^A ;X> 1
答案
1、遶揺冏:
D C D C C C A B A D A
二,加空豹:
-2.th在13. 114. 2 氐-416< 1 17^. a—e ^―■柑计率翻:
111619.-U 121. 2 H 丄-—
」J < -1^ J lb
241 3
2亍12 2 7心
25, -M
]
・訂
浪-1 29. 1 30. a^lb=-対,4
3 6 2 3 32. 丁・0为第一类跳瓯耐点* r-LA-±y^r第二类耐点.
弟,函越住定2域I■连律・无同斯点°
34,g(T)业社连续.而才(工萤不过续
®/(g(r»在x = l址为第一类黑飯间哥点在v= 1蚯为第一类躊旣间斷点
12 1
环A=1 3 = ~. C=4
J 5 0
3S. (1) UO-CJ^-fiifi^ <1<JT.
W推得0<x J^=sini-^1<^ZS =L2T^*.刖li列辽八右界
T 星2T4=^?5L<1F I 闵当丫 a 耐,sin 尤€JTh JW 石*7 瓷H ・
X"E T '
BTftft列{兀}单■采少.故曲单调确少有下界敕死必有枫隈知槻限巴斤存在.
设liflijr =1+崔工,= smx帖过事MT丈*得/ = sin/・鮮得1 = 0*即limY =0. H—*刘
”」障—■令f =耳・则冲—ct』一>0+巾:
1111
1
i=L。