9.2一元一次不等式(第二课时)教学设计
- 格式:doc
- 大小:136.00 KB
- 文档页数:4
9.2 一元一次不等式(2)教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。
知识重点寻找实际问题中的不等关系,建立数学模型。
教学过程2002年北京空气质量良好(二级以上)的天数与全年天数比达55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。
设置开放性问题,为学生开放性思维提供时间和空间,可极大调动学生的创造积极性.应把握学生的创新潜能,使不同层次的学生都能得到发展。
这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质.引导学生用数学眼光去观察周围的生活现象,思考能否用数学知识、方法、观点和思想去解决所遇到的问题.问题2:在一次知识竞赛中,有10道抢答题,答对一题得10分,答错一题扣5分,不答得0分,小玲一道题没有答,成绩仍然不低于60分,她至少答对几道题?分析:答对题得的分数-答错题扣的分数≥60分解:设小玲答对的题数是x,则答错的题数是9-x,根据题意,得10x-5(9-x) ≥60解这个不等式,得x ≥7答:她至少答对7道题提问:小玲有几种答题可能?总结归纳由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案.让学生在积极愉快的气氛中温习本节课学到的知识和技能,体会收获的喜悦。
小结与作业布置作业习题9.2第5、6、7题。
课题:9.2实际问题与一元一次不等式教材:人教版义务教育课程标准实验教科书七年级下册【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题.2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3.情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
【重点难点】:重点:一元一次不等式在实际问题中的应用。
难点:在实际问题中建立一元一次不等式的数量关系。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。
注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。
在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。
问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。
本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。
让学生充分进行讨论交流,在活动中体会不等式的应用。
在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式)观察探讨,实际操作选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动问题2:甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.我们选择商店购物才获得更大优惠?分析:这个问题较复杂,从何处入手呢?甲商店优惠方案的起点为购物款达___元后;乙商店优惠方案的起点为购物款过___元后.启发提问:我们是否应分情况考虑?可以怎样分情况呢?(1)如果累计购物不超过50元,则在两店购物花费有区别吗?(2)如果累计购物超过50元,则在哪家商店购物花费小?为什么?关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。
一元一次不等式组第二课时教案
一、教学内容
本节课的主要内容是一元一次不等式组。
二、教学目标
1、学习解决一元一次不等式组的方法。
2、熟练掌握解决一元一次不等式组的步骤。
3、能够应用一元一次不等式组解决实际问题。
三、教学重点
熟练掌握解决一元一次不等式组的方法。
四、教学难点
能够熟练解决一元一次不等式组的具体问题。
五、教学过程
(一)让学生复习一元一次方程,了解一元一次不等式和一元一次方程的区别,并了解一元一次不等式的表示法和意义。
(二)给学生出布尔不等式的例题,要求学生解决,了解不等式的性质,了解正月小的性质和特点,以及不等式有哪些常用知识点的应用。
(三)学生自学解决不等式组的解法,同时要求学生先用图像法,再求解此不等式组的解,并把图片和答案结合起来。
(四)给学生出一些一元一次不等式组的题目,要求学生自己解决,让学生能够熟悉解决一元一次不等式组的步骤,给学生提出一些疑难问题,给出适当的指导,使学生能够解决一元一次不等式组的具
体问题。
(五)给学生出一些实际问题,要求学生结合一元一次不等式组的方法,给出解决方案,使学生能够更好的应用一元一次不等式组解决实际问题。
六、教学材料
例题:
2x>5
解:
由2x>5可得,x>5/2,即x≥3。
《一元一次不等式》教学设计第2课时【教学方案】一、教学目标1.能根据实际问题中的数量关系,列一元一次不等式求解.2.初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验.3.结合具体问题,了解不等式的意义,初步体会一元一次不等式的应用价值.4.发展学生分析问题、解决问题的能力;体会数学建模思想,提升应用数学知识解答实际问题的兴趣与能力.二、教学重难点重点:能根据实际问题中的数量关系,列一元一次不等式求解.难点:找不等关系,列不等式.能从所得到的不等式的解集中确定符合题意的解.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计⑤132362x x -+-<⑥ x +xy ≥y 2⑦ x >0A.5个B.4个C.6个D.3个 预设答案:A问题3:一元一次不等式的解法: 解一元一次不等式,要根据不等式的性质,将不等式逐步化为x >a (x ≥a )或x <a (x ≤a )的形式.其一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1(注意不等号方向是否改变).问题4:应用一元一次方程解实际问题的步骤:【探究】竞赛中,小明的得分为优秀(85分或85分以上),小明至少答对了几道题?提问:此实际问题中的不等关系是什么? 预设答案:不等关系是:小明的得分≥85 追问:设小明答对了 x 道题,则他答错和不答的共有多少道题?预设答案:答错和不答的共有(25-x )道题. 解:设小明答对了 x 道题,则他答错和不答的共有(25-x )道题.根据题意,得 4x -1×(25-x )≥85. 解这个不等式,得 x ≥ 22. 所以,小明至少答对了22道题. 【归纳】利用不等式来解决实际问题的步骤:【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1 一辆客车从甲地开往乙地,出发 10min 后,一辆轿车也从甲地开往乙地,轿车的速度是 120 km/h ,轿车出发 30 min 内就超过了客车,则客车的速度小于多少?分析:客车速度×103060+<轿车速度×3060. 解:设客车的速度是x km/h ,根据题意,得 103030120.6060x +<⨯思维导图的形式呈现本节课的主要内容:。
《一元一次不等式》教学设计课标要求:能解数字系数的一元一次不等式,并能在数轴上表示出解集,能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
学情分析:七年级上学期学生已掌握了一元一次方程的解法,并且在上节课学生已掌握了不等式的基本性质,会进行不等式的简单变形,为这节课的学习打下了坚实的基础。
教学目标:(1)知识技能:掌握一元一次不等式的概念且要会解一元一次不等式,能在数轴上表示一元一次不等式的解集。
(2)数学思考:通过用不等式表述数量关系的过程,体会模型思想,建立符号意识。
(3)问题解决:通过学生观察,推理,类比,分析.得到一元一次不等式的概念,用数形结合的方法理解一元一次不等式的解集。
(4)情感态度:初步认识一元一次不等式的应用价值,发展学生分析问题,解决问题的能力;初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验。
教学重点:掌握一元一次不等式的概念。
教学难点:会解一元一次不等式,并能把解准确地表示在数轴上。
教学方法:讨论法,探究法,类比法。
教学准备:多媒体课件。
教学过程:(一)温故知新,铺垫新知先复习不等式的基本性质:(提问学生回答,教师板书)1. 若a<b ,b<c ,则a<c.(传递性)2. 如果a>b ,那么a+c>b+c,a-c>b-c;如果a<b ,那么a+c<b+c,a-c<b-c.3.如果a>b ,且c>0,那么ac>bc,如果a>b ,且c<0,那么ac<bc 。
(二)创设情境,探索新知1、 出示思考题:某次知识竞赛共有20道题,每答对一题得10分,答错或不答都要扣5分,小明要得80分,他要答对几题?若要得分超过80分,他至少要答对多少题呢?那我们又该怎么样列式解决问题呢?由思考题引入本课一元一次不等式。
2、出示多媒体课件, 给出四个式子火眼金睛:(1)x>4 (2)3y>302312)3(x x <+ (4)1.5a+12≤0.5a+1观察不等式有什么共同点,与一元一次方程进行比较,进而引出一元一次不等式的概念,根据给出定义让学生概括特点,并板书3、出示六道小题,检验学生对一元一次不等式概念的掌握情况。
《一元一次不等式的解法(第 2 课时)》教课方案教课目的1进一步娴熟掌握一元一次不等式的解法;2掌握不等式解集在数轴上的表示方法,能正确的表示出解集。
教课要点、难点要点:娴熟的解一元一次不等式,并把解集表示在数轴上。
难点:在数轴上正确的表示不等式的解集。
教课过程一创建情境,导入新课1 解以下不等式(1)7(4-x ) -2(4-3x)<4x3x 8 2 10 x (2)x-1272解一元一次不等式的依照是什么?有哪些步骤?与解一元一次方程有哪些同样之处和不一样之处?3在数轴上表示:(1) -3 ( 2)大于 3 的数(3)不大于 3 的数,(4)小于 5 的数(5)大于 -2 而不大于 4 的数( 1)( 2)-4-3-2-1 0 1 2 34-4-3-2-1 0 1 2 34( 3)( 4 )-4-3-2-1 0 1 2 34-4-3-2-1 0 1 2 34(5)-4-3-2-1 0 1 2 34数能够用数轴上的点来表示,数轴上的点能够表示数,这样数和形就密切的联合起来了,,一元一次不等式的解集可否用数轴上的点来表示呢?下边我们来研究这个问题。
二合作沟通,研究新知。
1用数轴上的点来表示不等式的解集动脑筋:(1 )不等式 3x>6 的解集是什么?解:两边同除以_____,得: x________(2)不等式 3x>6 的解集有多少个?包含 3 吗?( 3)散布在数轴上的什么地点?( 4)如何在数轴上表示 3x>6 的解呢?( 5)把 3x>6 改为 3x≥6,如何在数轴上表示其解集呢?( 6)把3x>6 改为 3x<6 在数轴又如何表示其解集呢?( 7)有上可知,在数轴上表示不等式的解集时是如何差别“>”与“≥”?如何区>别”“与<“”的呢?-4-3-2-10 1 2 34-4-3-2-10 1 2 34-4-3-2-10 1 2 342考考你:(1)把以下不等式的解集在数轴上表示出来:①x>-1; ②x≥ -1;③ x<4;④ x≤4 , ⑤ -2<x≤4,⑥ 0≤x<3-4 -3 -2 -1012 3 4-4-3-2-1 0 1 2 34-4-3-2-1 0 1 2 34 -4 -3 -2 -1012 3 4-4-3-2-1 0 12 34-4-3-2-1 0 1 2 34(2)依据图示写出不等式的解集①0②-4-3-2-1 0 1 2 34-4-3-2-1 0 1 2 34三应用迁徙,稳固提升1解不等式例 1 解以下不等式 12-6x ≥2(1-2x ),并把解集在数轴上表示出来2实践应用例2当 x 取什么值时,代数式1 x2的值小于或等于0?并把解集在数轴上表示出来。
9.2 一元一次不等式第1课时 解一元一次不等式教学目的知识与技能1.体会一元一次不等式的形成过程.2.会解简单的一元一次不等式,并能在数轴上表示出解集.教学重点在一元一次不等式建立模型的根底上,理解什么是一元一次不等式.教学的过程中,要让学生通过回忆、观察、考虑,归纳出一元一次不等式的概念,并与以前学过的一元一次方程等概念加以比拟,进一步加深对这些概念的理解.教学难点体会不等式的作用,训练解不等式的技能.教学过程一、情景导入前面我们已经学习了不等式及其相关概念,下面请同学们完成下面的题目.1.写出以下各不等式的解集.(1)x +3>6; (2)x +5≥9;(3)x +7<15; (4)x -1≤9.2.化简:(1)3x ≤4________(不等式的性质________);(2)x -7≥-3________(不等式的性质________).二、新课教授师:观察以下不等式:x -7>26,3x <2x -1,23x>50,-4x>3.它们有哪些共同特征? 生:它们都只含有一个未知数,并且未知数的次数是1.师:答复得很好.类似于一元一次方程,含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.通过前面的学习,同学们知道不等式x -7>26的解集是多少吗? 生:x>33.师:是怎么解的呢?生:这个解集是通过“不等式两边都加7,不等号的方向不变〞得到的.这相当于由x -7>26得x>26+7,这就是说,解不等式时也可以“移项〞,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.师:一般地,利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.【例】 解以下不等式,并在数轴上表示解集:(1)2(1+x)<3; (2)2+x 2≥2x -13. 解:(1)去括号,得2+2x <3.移项,得2x <3-2.合并同类项,得2x <1.系数化为1,得x <12. 这个不等式的解集在数轴上的表示如下图.(2)去分母,得3(2+x)≥2(2x -1).去括号,得6+3x ≥4x -2.移项,得3x -4x ≥-2-6.合并同类项,得-x ≥-8.系数化为1,得x ≤8.这个不等式的解集在数轴上的表示如下图.三、稳固练习解以下不等式,并在数轴上表示它们的解集.1.2(1-x)<x -2.2.11-3x ≥2(x -2).3.x -4≥3(x +2).【答案】 数轴略 1.x >432.x ≤33.x ≤-5. 四、课堂小结在本节课的教学过程中,让学生通过与一元一次方程的解法进展类比,主动探求一元一次不等式的解法.结合等式与不等式根本性质的差异,找出方程与不等式解法中的不同之处,对于不等式的解有无数多个,学生不易理解,教学中给学生足够的时间进展交流和讨论,帮助学生理解,用数轴表示不等式的解集是数形结合的详细表达.教学反思本节课的教学重点是探求一元一次不等式的解法,并能准确地在数轴上表示不等式的解集.在技能形成初期,我让学生按照一般步骤,按照标准的格式做一些标准练习,养成良好的解题习惯,使他们认识到在数轴上表示不等式的解集时,要标准空心圈与实心点的使用,理解它们在表示不等式解集时的差异.第2课时 一元一次不等式的应用教学目的知识与技能1.会从实际问题中抽象出数学模型.2.会用一元一次不等式解决实际问题.教学重点寻找实际问题中的不等关系,建立数学模型.教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式.教学过程一、情景导入我们知道,在消费和生活中存在大量的等量关 系,与此同时,我们也看到在消费和生活中存在着大 量的不等关系,解决这些问题,用不等式比拟方便. 某学校方案购置假设干台电脑,现从两家商店理解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.假如你是校长,你会怎么考虑? 如何选择?二、新课教授1.分组活动.先让学生独立考虑,理解题意.再在 组内交流,发表自己的观点.最后小组汇报,派代表论 述理由.2.在学生充分发表意见的根底上,师生共同归纳 出以下三种采购方案:(1)什么情况下,到甲商场购置更优惠?(2)什么情况下,到乙商场购置更优惠?(3)什么情况下,两个商场收费一样?3.我们先来考虑方案(1):设购置x 台电脑时,到甲商场购置更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的根底上,老师归纳并板书如 下:解:设购置x 台电脑时,到甲商场购置更优惠, 那么6000+6000(1-25%) (x -1)<6000(1-20%)x ,去括号,得6000+4500x -4500<4800x ,移项、合并同类项,得-300x<-1500,不等式两边同除以-300,得x>5.∴购置5台以上的电脑时,甲商场更优惠.4.让学生自己完成方案(2)与方案(3),并汇报完 成的情况,老师最后做适当点评.三、例题讲解【例1】 去年某市空气质量良好(二级以上)的天数与全年天数(365)之比到达60%,假如明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数要比去年至少增加多少?分析:“明年这样的比值要超过70%〞指出了这个问题中蕴含的不等关系,转化为不等式,即明年空气质量良好的天数明年天数>70%. 解:设明年比去年空气质量良好的天数增加了x ,去年有365×60%天空气质量良好,明年有(x +365×60%)天空气质量良好,并且x +365×60%365>70%. 去分母,得x +219>255.5.移项、合并同类项,得x >36.5.由x 应为正整数,得x ≥37.∴明年要比去年空气质量良好的天数至少增加37,才能使这一年空气质量良好的天数超过全年天数的70%.【例2】甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的局部按90%收费;在乙商场累计购物超过50元后,超出50元的局部按95%收费.顾客到哪家商场购物花费少?分析:在甲商场购物超过100元后享受优惠,在乙商场购物超过50元后享受优惠.因此,我们需要分三种情况讨论:(1)累计购物不超过50元;(2)累计购物超过50元而不超过100元;(3)累计购物超过100元.解:(1)当累计购物不超过50元时,在甲、乙两商场购物都不享受优惠,且两商场以同样价格出售同样的商品,因此到两商场购物花费一样.(2)当累计购物超过50元而不超过100元时,享受乙商场的购物优惠,不享受甲商场的购物优惠,因此到乙商场购物花费少.(3)当累计购物超过100元时,设累计购物x(x>100)元.①假设到甲商场购物花费少,那么50+0.95(x-50)>100+0.9(x-100).解得x>150.这就是说,累计购物超过150元时,到甲商场购物花费少.②假设到乙商场购物花费少,那么50+0.95(x-50)<100+0.9(x-100).解得x<150.这就是说,累计购物超过100元而不到150元时,到乙商场购物花费少.③假设50+0.95(x-50)=100+0.9(x-100).解得x=150.这就是说,累计购物为150元时,到甲、乙两商场购物花费一样.四、课堂小结用一元一次不等式解决实际问题与用一元一次方程解决实际问题一样,要将实际问题通过列一元一次不等式转化为数学问题,然后通过解决数学问题来解决实际问题.教学反思本节课通过丰富的实际情境,让学生体会到现实生活中存在着大量的不等关系,并理解到在解决某些问题时,用不等式较方便.教学中,利用例题让学生掌握了从实际问题中抽象出数学模型的方法,从而让学生认识到一元一次不等式在实际生活中的应用价值.。
9.2一元一次不等式的解法(第二课时)
【教学目标】
1.进一步熟练求解一元一次不等式,能正确地在数轴上表示不等式的解集,会求符合条件的特殊解.
2.经历会解一元一次不等式过渡到能熟练解一元一次不等式,并能在数轴上表示一元一次不等式的解集的探究过程,进一步培养学生解题的能力,并给数形结合的思想打下坚实的基础.
3.能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,通过对解决问题过程的反思,获得解决问题的经验.
【教学重点、难点】
重点:正确地解一元一次不等式及把它的解集在数轴上表示出来.
难点:结合具体情景发现提出数学问题,并解决.
【教学过程设计】
一、前置学习:
1.解一元一次不等式的步骤是什么?它与解一元一次方程有什么异同点?
2.解不等式,并把解集在数轴上表示出来
(1)3x -1 > 2(2-5x ) (2)10-4(x -4)≤2(x -1)
(3) (4)125164
y y +--≥ 答案:(1)x>513;(2)x 143
≥;(3)x ≤8;(4)54y ≤ 设计意图:通过题目训练对上节课所学的一元一次不等式的定义及一元一次不等式的解法进行了重点复习,以题带知识能更好的掌握和应用.
二、范例分析
(一)辨析正误
1.下列解不等式过程是否正确,如果不正确请给予改正.
解:不等式 去分母得 6x -3x +2(x+1)<6-x +8
去括号得 6x -3x +2x+2 <6-x +8
移项得 6x -3x +2x-x <6+8+2
合并同类项得 4x <16 系数化为1,得 x <4
答案:错误的,结果是x <23
- 2.解不等式 解: (1)
(2)
(3) 2155,34x x -≥-6
81312+-<++-x x x x 1122361126662363322247
7
4
x x x x x x x x x x x --++≥---+-⨯-⨯≥-∙-----≥+-≥≤-
(4)
请指出上面的解题过程中,有什么地方产生了错误.
答:在第①步中两边同乘-6,不等号没有变号,在第②步中去分母时,应加括号,在第③步中移项没有变号,在第④步中正确.
设计意图:此2个例子是辨析一元一次不等式解法的对与否,从步骤中的每一步需要注意事项进行考查分析,这样训练有利于学生能更好的明白算理,能更好的掌握不等式的解法,能更准确的解不等式.
(二)不等式的特殊解问题
例:当x 取什么值时,代数式 13-
x +2的值大于或等于0?先把它的解集在数轴上表示出来,然后求出它的正整数解. 解:由题意得:13
- x +2≥0解这个不等式得:x ≤6
满足条件的正整数解为:1,2,3,4,5,6
巩固练习:
1.适合不等式3(2+x )>2x 的最小负整数是______________
2.不等式3(1-x) ≤2(x+9)的负整数解是_________________.
通过练习总结:此类问题的解决思路:先求不等式的解集,画数轴,在数轴上找出特殊解 答案:1、-5; 2、-3,-2,-1
(三)列不等式并求解
例:x 取什么值时,代数式 382
x -的值: (1)大于 7–x (2)不大于 7–x
解:(1)由题意得:382x ->7–x (2)由题意得 382
x -≤7–x 解得:x>6 解得:x ≤6
巩固练习:
1.当x 取何值时,代数式
43x +与312x -的差大于1? 2.x 为何值时,代数式2151132x x -+--的值是非负数. 答案:1、 2、x ≤-1 通过练习总结:此类问题先根据题意先列出不等式,再去解一元一次不等式,为您提得到解决.
设计意图:通过题组训练更好的去掌握一元一次不等式的解法,从会解过渡到熟练解一57x
<
元一次不等式.三个题组三个类型,引导学生从不同角度寻求解决问题的方法,并能有效地解决问题.引导学生对解决问题过程的反思,获得解决问题的经验.
三.学后反思
1.你 学 会 的 ( 知 识 、方 法)有:
2.有哪些地方值得我们注意?
设计意图:引导学生从数学知识和数学思想方法方面进行总结,提升对本节课所研究内容的认识.
四、达标测试:
1.解不等式,并把解集在数轴上表示出来
(1)2(2x -3) <5(x -1) (2)10-4(x -3) ≤2(x-1)
(3)
145-2x 61x +≥+ (4)515264
x x +--> 2.112123
x x ++≤+的最小负整数解是____________ 3.a 取什么值时,式子416a +表示正数;a 取什么值时,式子416
a +表示小于-2的值;a 取什么值时,式子416
a +表示不小于-2的值 答案:1.(1)x>-1;(2)x ≥4;(3) 54x ≤;(4)x>1 2.-5;3.a >14-;a<94-;94a ≥-
【反思与评价】
本节课重点是复习一元一次不等式的解法,灵活的应用知识解决问题,设计了三个题组,通过多媒体呈现节省大量的时间,充分利用了宝贵的课堂45分钟.课堂中通过学生自我训练、小组互帮和教师释疑,成功地解决问题,达到了巩固一元一次不等式的解法的目的.尽管培养学生乐于探索的学习品质不是一朝一夕的事,但本节课在这方面也发挥了积极的作用;对知识的综合、迁移和应用等能力也起到了潜移默化的功效.
【拓展资料】
中考中的一元一次不等式
1.(2013年广东省)不等式5215+>-x x 的解集在数轴上表示正确的是( )
2.(2013台湾、12)解一元一次不等式12﹣(2x﹣5)≥7x﹣3,得其解的范围为何?()
A.x≥B.x≥C.x≤D.x≤
3.(2013•包头)不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.
4.(2013•白银)不等式2x+9≥3(x+2)的正整数解是_____ .。