公式化简最小项表达式
- 格式:ppt
- 大小:487.00 KB
- 文档页数:37
逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。
但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。
运用卡诺图法可以较简便的方法得到最简表达式。
但首先需要了解最小项的概念。
一、最小项的定义及其性质1.最小项的基本概念由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是1. 每项都只有三个因子2. 每个变量都是它的一个因子3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次一般情况下,对n个变量来说,最小项共有2n个,如n =3时,最小项有23=8个2.最小项的性质为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。
由此可见,最小项具有下列性质:(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。
(2)不同的最小项,使它的值为1的那一组变量取值也不同。
(3)对于变量的任一组取值,任意两个最小项的乘积为0。
(4)对于变量的任一组取值,全体最小项之和为1。
3.最小项的编号最小项通常用mi表示,下标i即最小项编号,用十进制数表示。
以ABC为例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3按此原则,3个变量的最小项二、逻辑函数的最小项表达式利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。
下面举例说明把逻辑表达式展开为最小项表达式的方法。
例如,要将化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即又如,要将化成最小项表达式,可经下列几步:(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式;(2)利用分配律除去括号,直至得到一个与或表达式;(3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。
数电公式法化简
在数字电路中,使用布尔代数的基本法则可以对逻辑表达式进行化简。
下面介绍几个常见的数电公式化简的方法:
1.代数法:利用布尔代数的基本规则(如分配律、结合律、德摩根定律等)对逻辑表达式中的项进行展开和合并,以简化逻辑电路。
2.卡诺图法:卡诺图是一种将逻辑表达式可视化的方法。
通过将逻辑函数的真值表转化为卡诺图,可以直观地找出逻辑表达式中的最简形式。
3.真值表法:列出逻辑函数的真值表,并找出其中的规律,通过观察真值表中的1的分布情况,判断哪些项可以合并,从而得到最简形式。
4.极小项与极大项法:将逻辑函数表示为与或表达式后,利用极小项(逻辑函数为1的最小项)和极大项(逻辑函数为0的最大项)来化简逻辑函数。
将重复出现的项进行合并和消去。
需要注意的是,在化简过程中,应注意遵循布尔代数的基本规则,并要合理利用化简后的逻辑表达式的特点,例如选择合适的公式展开
顺序、尽量合并重复的项等。
除了以上方法外,还可以使用电路分解、电路索引和逻辑运算性
质等技巧来帮助化简逻辑表达式。
需要根据具体题目的要求和逻辑表
达式的复杂程度选择适合的方法进行化简。
一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消因子。
常用方法有:①并项法利用公式AB+AB’=A 将两个与项合并为一个,消去其中的一个变量。
②吸收法利用公式A+AB=A 吸收多余的与项。
③消因子法利用公式A+A’B=A+B 消去与项多余的因子④消项法利用公式AB+A’C=AB+A’C+BC 进行配项,以消去更多的与项。
⑤配项法利用公式A+A=A,A+A’=1配项,简化表达式。
二、卡诺图化简法逻辑函数的卡诺图表示法将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。
逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。
1.表示最小项的卡诺图将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,每一个方格对应变量的一个取值组合。
具有逻辑相邻性的最小项在位置上也相邻地排列。
用卡诺图表示逻辑函数:方法一:1、把已知逻辑函数式化为最小项之和形式。
2、将函数式中包含的最小项在卡诺图对应的方格中填1,其余方格中填0。
方法二:根据函数式直接填卡诺图。
用卡诺图化简逻辑函数:化简依据:逻辑相邻性的最小项可以合并,并消去因子。
化简规则:能够合并在一起的最小项是2n个。
如何最简:圈数越少越简;圈内的最小项越多越简。
注意:卡诺图中所有的1 都必须圈到,不能合并的1 单独画圈。
说明,一逻辑函数的化简结果可能不唯一。
合并最小项的原则:1)任何两个相邻最小项,可以合并为一项,并消去一个变量。
2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。
3)任何8个相邻最小项,可以合并为一项,并消去3个变量。
卡诺图化简法的步骤:画出函数的卡诺图;画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合);画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小项仅被圈过一次,以免出现多余项。
6、逻辑代数的化简(公式法和卡诺图法)⼀、逻辑函数的化简将⼀个逻辑表达式变得最简单、运算量最少的形式就叫做化简。
由于运算量越少,实现逻辑关系所需要的门电路就越少,成本越低,可靠性相对较⾼,因此在设计逻辑电路时,需要求出逻辑函数的最简表达式。
由此可以看到,函数化简是为了简化电路,以便⽤最少的门实现它们,从⽽降低系统的成本,提⾼电路的可靠性。
通常来说,我们化简的结果会有以下五种形式为什么是这五种情况,这个跟我们实现的逻辑电路的元器件是有关系的。
在所有的逻辑电路中,都是通过与、或、⾮三种逻辑电路来实现的,之前说过逻辑“与或”、“或与”、“与或⾮”组合逻辑电路是具有完备性的,也就是说能够通过它们不同数量的组合能够实现任何电路。
通过不同的“与或”电路组成的电路,最后化简的表达式就是“与或”表达式,其他同理。
⼆、将使⽤“与或”表达式的化简表达式中乘积项的个数应该是最少的表达了最后要⽤到的与门是最少的,因为每⼀个乘积项都需要⼀个与门来实现。
同时也对应了或门输⼊端的个数变少,有2个与项或门就有2个输⼊端,有3个与项或门就有3个输⼊端。
所以第⼀个条件是为了我们的与门和或门最少。
每⼀个乘积项中所含的变量个数最少它是解决每⼀个与门的输⼊端最少。
逻辑函授的化简有三种⽅法三、逻辑函数的代数化简法3.1 并项法并项法就是将两个逻辑相邻(互补)的项合并成⼀个项,这⾥就⽤到了“合并律”将公因⼦A提取出来合并成⼀项,b和b⾮相或的结果就等于1,所以最后的结果就是A。
吸收法是利⽤公式“吸收律”来消去多余的项3.3 消项法消项法⼜称为吸收律消项法3.4 消因⼦法(消元法)3.4 配项法左边的例⼦⽤到了⽅法1,右边的例⼦⽤到了⽅法2。
3.5 逻辑函数的代数法化简的优缺点优点:对变量的个数没有限制。
在对定律掌控熟练的情况下,能把⽆穷多变量的函数化成最简。
缺点:需要掌握多个定律,在使⽤时需要能够灵活应⽤,才能把函数化到最简,使⽤门槛较⾼。
逻辑电路化简公式
逻辑电路的化简是电子数字电路设计中的重要环节。
它通过对逻辑电路的布尔函数进行简化,实现对电路的优化,从而减少电路中的元器件数量,降低电路的功耗和成本,提高电路的可靠性和性能。
化简逻辑电路的核心是化简其布尔函数,而化简布尔函数又有以下几种方法。
1.代数化简法
代数化简法是一种基本的布尔函数化简方法,其基本思想是通过代数运算,把布尔表达式转化为简化的形式。
常用的代数化简方法有吸收律、分配律、德摩根定理等。
例如,在化简布尔表达式AB+AC时,可以使用吸收律将其简化为
A(B+C)。
2.卡诺图法
卡诺图法是一种重要的逻辑电路化简方法,它通过绘制卡诺图,把同样的几个布尔函数合并在一起,以达到化简的目的。
例如,在化简布尔表达式A’C’+A’BC+AB’C时,可以使用卡诺图法得到如下的化简结果:
3.奎因-麦克拉斯基方法
奎因-麦克拉斯基方法是一种基于二进制数的逻辑电路化简方法,它通过求取二进制数的最小项和最大项,以及使用二进制加法和减法等运算,实现对布尔表达式的化简。
例如,在化简布尔表达式A’B’C+ABC’+ABC时,可以使用奎因-麦克拉斯基方法得到如下的化简结果:
4.逻辑代数法
逻辑代数法是一种类比于传统代数的逻辑演算方法,它在布尔代数理论的基础上,将逻辑运算符与代数运算符联系起来,以期达到逻辑电路的简单化,化简的方法是精品。
以上四种化简方法可以互相结合使用,以达到更好的效果。
在实际的电路设计中,根据不同的应用场景和要求,选择合适的化简方法,可以大幅提高电路的性能和可靠性。