手持式红外热像仪选型案例
- 格式:docx
- 大小:2.87 MB
- 文档页数:5
带电设备红外诊断技术应用导则(最新)随着电力系统的不断发展,带电设备的运行状态监测和故障诊断成为保障电力系统安全稳定运行的重要环节。
红外诊断技术作为一种非接触式、快速、高效的检测手段,在带电设备状态监测和故障诊断中得到了广泛应用。
本导则旨在规范带电设备红外诊断技术的应用,提高诊断的准确性和可靠性,确保电力系统的安全运行。
1. 范围本导则适用于电力系统中各类带电设备(包括变压器、断路器、隔离开关、电缆、母线等)的红外诊断技术应用。
内容包括红外诊断技术的原理、设备选型、检测方法、数据分析、故障诊断及预防措施等。
2. 规范性引用文件GB/T 110222011 《高压开关设备和控制设备标准的共用技术要求》DL/T 6642016 《带电设备红外诊断应用规范》DL/T 845.92004 《电力设备预防性试验规程第9部分:红外热像检测》其他相关国家和行业标准3. 术语和定义3.1 红外诊断技术利用红外热像仪对带电设备进行非接触式温度测量,通过分析设备表面的温度分布,判断设备运行状态和潜在故障的技术。
3.2 热像图由红外热像仪采集的设备表面温度分布图像,通常以伪彩色显示。
3.3 热异常设备表面温度分布异常,可能指示设备存在故障或潜在问题。
3.4 热像仪用于采集物体表面红外辐射能量,并将其转换为可视图像的仪器。
4. 红外诊断技术原理4.1 红外辐射原理任何物体在绝对零度以上都会发射红外辐射,辐射强度与物体的温度成正比。
通过测量物体表面的红外辐射强度,可以推算出物体的表面温度。
4.2 红外热像仪工作原理红外热像仪通过光学系统收集物体表面的红外辐射,经过红外探测器转换为电信号,再经过信号处理和图像处理,最终生成热像图。
4.3 温度分布与故障关系设备表面的温度分布反映了设备的运行状态。
正常情况下,设备各部分的温度应均匀分布;若出现局部温度异常升高或降低,可能指示设备存在故障,如接触不良、绝缘老化、过载等。
5. 红外诊断设备选型5.1 红外热像仪选型5.1.1 分辨率选择高分辨率的热像仪,能够更清晰地显示设备表面的温度分布,提高诊断准确性。
福禄克使用说明
福禄克红外热像仪怎么样
质量没得说,而且它的应用是比较广泛,在电路板以及元器件检测,汽车及配件检测,led产品检测,电气设备维护,机电和生产设备维护,建筑检测及维护等方面
都有广泛的应用,很多用户都选择福禄克的热像仪。
~Agite
福禄克红外热像仪怎么样
便携式红外热像仪是福禄克的主打产品。
符合人体工程学的设计、单手操作、易于使用的用户界面,还有坚固耐用的高分辨率电容式触摸屏,可进行快速菜单导航,当然成像品质更是杠杠滴,如果你是电气设备维护什么的用*的就够了。
Flue热成像测温仪和艾瑞的对比哪款好啊
Flue有一款红外热像仪手持式可视测温仪和艾瑞光电的很相似,分辨率比艾瑞低,还贵一倍价。
福禄克红外热像仪的使用方法
这个公司总部位于中国上海,同时在北京、无锡、南京、济南、西安设有办事处,在北美、欧洲、韩国、新加坡、澳大利亚等三十多个国家和地区设有分销商,已通过了国际ISO:质量体系认证、美国FCC认证、欧洲CE认证。
同时公司致力于热像技术
的智能化创新,产品被广泛应用在电力、工业、钢铁、石化、电子、科研等行业,得到工业客户的认可。
实力厂家可以给你提供专业的产品和服务,FOTRIC能提供专业的产品选型指导
和应用案例介绍,你可以联系看看,希望对你选购有帮助。
本页为预览页-1。
DLT 6642008 带电设备红外诊断应用规范DLT 6642008是一项关于带电设备红外诊断应用规范的标准,用于指导带电设备红外诊断的工作流程和操作规范,以确保人员安全和设备可靠性。
本文将详细介绍DLT 6642008的各个方面、要求、举例和应用心得。
一、范围DLT 6642008适用于所有带电设备的红外诊断,包括输电线路、变电站、发电厂和工业设备等。
无论设备所处环境如何,红外诊断都应该被执行。
二、设备要求1. 设备选型:应选用符合国家标准的红外热像仪,保证其精度和可靠性。
2. 设备校验:在使用前和每次使用后,应对红外热像仪进行校验,以保证其准确性。
3. 设备保养:定期对红外热像仪进行维护和保养,包括清洁镜头、更换电池等。
4. 安全用电:使用红外热像仪时应遵守相应的安全用电规范,保证设备运行的安全性。
三、工作流程1. 筹备工作:确定工作范围、目标和计划,并制定详细的工作计划。
同时要确保操作人员具备相关经验和技能。
2. 现地勘查:对待测设备进行现场勘查,了解其工作环境、特点和背景,并记录相关信息。
3. 设备准备:检查带电设备,确保其在正常工作状态,同时为红外热像仪进行准备工作。
4. 红外图像采集:根据工作计划,使用红外热像仪对待测设备进行图像采集,同时标注设备的名称和位置。
5. 数据分析:对采集的红外图像进行分析,检测设备的温度异常和潜在问题,并初步判断其严重程度。
6. 缺陷评估:对潜在问题进行评估,判断其对设备和系统可靠性的影响,并确定是否需要采取修复措施。
7. 报告编制:根据分析结果,编制详细的检测报告,包括问题描述、修复建议和工作计划。
8. 反馈和跟踪:将检测报告反馈给相关部门,并跟踪修复工作的进展情况,确保问题得到及时解决。
四、操作规范1. 安全措施:在执行红外诊断工作时,必须遵循严格的安全措施,如穿戴防护服、佩戴绝缘手套和安全帽等。
2. 操作规程:操作人员必须熟悉红外热像仪的使用方法和操作规程,确保正确操作和准确数据采集。
电气设备红外测温技术规范篇一:电气车间红外测温仪使用规定电气车间红外测温规定为全面掌握高低压母线、电缆接线、各发配电柜、电抗器等电气设备发热状况,通过发热状况判断电气设备运行状态,及时发现隐患及异常,确保电气设备可靠运行,特制定红外成像测温规定。
1、应该用红外测温仪检测的配电室有:四个单元厂房高低压配电室、网控楼10KV配电室、所用变室、电抗器室、公用变室、循环水变室、化水配电室、供热站变室、加压站变室、综合水泵房配电室。
2、测量部位主要有:电抗器本体、电抗器出线封闭母线槽盒、各高低压开关柜外壳,各高低压配电室封闭母线槽盒。
3、测量时间:每周三前夜班接班后第一次巡检(16:00—17:00)4、测量人员:电气车间管理人员(运行技术员)及运行值班员5、巡检路线:一单元高低压配电四单元高低压配电室综合水泵房配电室循环泵变配电室供热站变加压站变6、测量位置:使用红外测温仪按照巡检路线在各配电室依次对各变压器、开关盘柜后壳、封闭母线、电抗器及较大负荷配电开关等部位进行温度测量。
7、进行红外测温需在红外测温记录本上做好详细记录,并由测温人员进行签字。
8、在使用红外检测出设备存在缺陷后,要及时汇报车间,车间根据缺陷处理程序对设备缺陷进行处理,并在处理过后加强针对性监视。
9、红外测温仪使用后应交回车间保管并做好使用记录。
电气车间2015年9月30日篇二:红外规范定稿华东电网500kV输变电设备红外检测现场应用规范(试行)1 总则本规范规定了电气设备红外检测和诊断工作的技术和管理方面的要求及过热缺陷的判别方法。
本规范适用于华东电网所属的500kV输变电设备的红外检测工作。
华东电网所属各电力公司、供电企业以及相关发电企业范围内的输变电设备红外检测可参照本规范执行。
2 适用范围本规范适用于各电压等级中具有电流、电压致热效应或其他致热效应的设备,包括变压器、断路器、刀闸、互感器、套管、电力电容器、避雷器、电力电缆、母线、导线、绝缘子串、组合电器、低压电器及二次回路等。
带电设备红外诊断应用规范20241. 引言1.1 背景与目的随着电力系统的不断发展,带电设备的运行状态监测变得尤为重要。
红外诊断技术作为一种非接触、高效、准确的检测手段,广泛应用于带电设备的故障诊断与预防性维护。
本规范旨在统一和规范带电设备红外诊断的应用,提高诊断的准确性和可靠性,确保电力系统的安全稳定运行。
1.2 适用范围本规范适用于电力系统中各类带电设备(包括但不限于变压器、断路器、电缆接头、绝缘子等)的红外诊断工作。
适用于电力企业、检测机构及相关从业人员。
2. 术语与定义2.1 红外诊断利用红外热像仪对带电设备进行温度检测,通过分析设备表面的温度分布,判断设备内部或外部的异常状态。
2.2 热像图由红外热像仪生成的反映被测物体表面温度分布的图像。
2.3 热斑热像图中温度明显高于周围区域的局部区域,通常指示设备存在异常。
2.4 温差设备某一区域与参考区域(通常为环境温度或设备其他正常区域的温度)之间的温度差。
3. 红外诊断设备与仪器3.1 设备选型3.1.1 红外热像仪应具备高分辨率、高灵敏度、宽温度范围等特性。
3.1.2 根据被测设备的类型和检测距离,选择合适的热像仪型号。
3.1.3 热像仪应具备数据存储、图像处理和分析功能。
3.2 设备校准3.2.1 红外热像仪应定期进行校准,确保测量精度。
3.2.2 校准应按照制造商提供的校准程序进行,或委托专业机构进行。
3.2.3 校准记录应妥善保存,以备查验。
3.3 设备维护3.3.1 红外热像仪应存放在干燥、清洁的环境中,避免受潮和灰尘污染。
3.3.2 使用前后应进行检查,确保设备完好无损。
3.3.3 定期进行设备保养,更换易损件。
4. 红外诊断流程4.1 前期准备4.1.1 收集被测设备的资料,包括设备型号、运行参数、历史故障记录等。
4.1.2 制定详细的检测计划,明确检测时间、地点、人员分工等。
4.1.3 准备必要的检测工具和防护装备,确保安全。
带电设备红外诊断技术应用导则(3篇)文章一:带电设备红外诊断技术概述及优势一、引言随着电力系统的不断发展,对带电设备的运行状态进行实时监测和诊断具有重要意义。
带电设备红外诊断技术作为一种非接触式、快速、有效的检测方法,已在电力系统中得到了广泛应用。
本文将介绍带电设备红外诊断技术的原理、优势及其在电力系统中的应用。
二、带电设备红外诊断技术原理带电设备红外诊断技术是利用红外热像仪捕捉设备运行过程中产生的红外辐射,通过分析红外热像图,发现设备潜在的故障隐患。
其基本原理如下:1. 红外辐射原理:物体在温度高于绝对零度时会向外辐射能量,其辐射强度与物体温度成正比。
带电设备在运行过程中,由于电流的作用,设备温度会发生变化,从而产生红外辐射。
2. 红外热像仪工作原理:红外热像仪通过探测设备产生的红外辐射,将其转换为电信号,经过放大、处理,生成红外热像图。
三、带电设备红外诊断技术优势1. 非接触式检测:红外诊断技术无需与设备直接接触,避免了因接触导致的设备停运和安全隐患。
2. 快速检测:红外热像仪能够实时捕捉设备的红外辐射,快速发现设备故障隐患。
3. 无需停电:带电设备红外诊断技术可在设备正常运行状态下进行,不影响设备正常工作。
4. 检测范围广:红外热像仪可检测不同类型的带电设备,如变压器、电缆、开关等。
5. 诊断结果客观:红外热像图能够直观地反映设备温度分布,诊断结果具有客观性。
四、带电设备红外诊断技术应用1. 变压器红外诊断:通过红外热像仪检测变压器运行过程中的温度变化,发现变压器内部故障,如绕组短路、接头接触不良等。
2. 电缆红外诊断:检测电缆接头、终端等关键部位的温度,发现电缆故障,如接头接触不良、绝缘老化等。
3. 开关设备红外诊断:对开关设备进行红外检测,发现设备内部故障,如触头接触不良、绝缘子损坏等。
4. 避雷器红外诊断:检测避雷器表面的温度,发现避雷器老化、损坏等故障。
文章二:带电设备红外诊断技术应用要点一、红外诊断设备选型1. 红外热像仪:选择具有高分辨率、高灵敏度的红外热像仪,以满足不同场景下的检测需求。
红外热像仪选型及图像调试标准目次1红外热像仪基本概念 (3)2红外热像仪成像原理 (4)2.1红外探测器成像原理 (4)2.2硬件设计原理 (5)2.3软件设计原理 (6)3红外图像调校标准 (7)3.1非均匀性校正(NUC) (7)3.2图像增强 (9)3.3鬼影(Ghost) (10)3.4坏点(Bad Pixels) (10)3.5对比度 (11)3.6锅盖 (12)3.7补偿(Calibration) (12)3.8本底图像 (12)3.9自适应动态范围压缩(AGC) (13)3.10图像细节增强(DDE) (13)3.113D DNR数字降噪 (13)4红外镜头选型 (14)4.1光学镜头常用的材料 (14)4.2红外光学镜片材料选型 (14)4.3红外镜头选型 (15)5红外探测器选型 (17)5.1制冷型探测器类型 (18)5.2制冷探测器场景应用 (23)5.3非制冷型探测器类型 (24)5.4非制冷型探测器封装类型 (25)6红外热像仪关键参数选型 (28)6.1焦距 (28)6.2视场角 (28)6.3响应率 (29)6.4响应时间 (29)6.5噪声 (30)6.6噪声等效功率NEP (30)6.7信噪比 (30)6.8噪声等效温差(NETD) (30)6.9最小可分辨温差(MRTD) (30)6.10探测率 (31)6.11帧率 (31)6.12空间分辨率 (31)7总结 (31)7.1红外热成像优势 (31)7.2红外热像仪应用 (32)7.3红外热成像探测器的技术趋势 (34)1红外热像仪基本概念红外热成像技术是一种通过利用物体表面的热辐射来识别物体表面温度分布的检测技术,它通过红外探测器将光信号转化为电信号,再经过处理后转化为热像图,以便人们观察。
红外辐射是一种电磁波辐射。
它的波长介于可见光和微波之间,通常被分为近红外、短波红外、中波红外和长波红外及远红外区域。
a)近红外辐射波段:0.78-1微米b)短波红外辐射波段:1-3微米c)中波红外辐射波段:3-5微米d)长波红外辐射波段:8-14微米e)远红外波段:14-1000微米图1红外光谱波长图红外热像仪由红外光学镜头、红外探测器、信号处理器和图像处理器等组成。
目录一、概述 (1)1.1背景 (1)1.2需求分析 (2)1.3建设原则 (3)二、热成像防火预警监控系统设计 (4)2.1系统概述 (4)2.2监控系统 (4)2.3 热像防火预警监控系统: (4)三、热成像防火预警方案设计 (5)3.1监控对象 (5)3.2系统功能 (5)四、产品参数及尺寸 (6)4.1红外热像仪型号及参数 (6)4.2产品外观及机械尺寸 (8)4.3系统软件 (9)五、质量保证及售后服务承诺 (10)一、概述1.1背景危废仓库是指存放危险废物的仓库,危险废物是指例如国家危险废物名录或者根据国家规定的危险废物鉴别标准和鉴别方法认定具有危险特性的废物。
危险废物具有各种毒性、腐蚀性、易燃性、爆炸性等,容易对生态环境以及人体安全造成严重危害的有毒有害物质,对于危废仓库内的有毒有害物质的管理以及监控变得十分重要。
危废暂存库不同于一般仓库,人员在进行仓库视察过程中很难发现隐藏的危险,例如货物积压导致的温度升高、易燃气体泄露以及腐蚀性物质的渗漏等这些情况。
如果人体长时间进入危废仓库,则可能造成无法逆转的损害,属于高风险作业,同时企业也承担着巨大的风险,对此投入的人力物力也将花费巨大。
目前,红外热成像技术已日趋成熟,对危废仓库的废料进行温度监视,可清晰反馈因废料积热而发生的温度异常变化,对中控室人员进行远程报警,可及时进行处理防止火灾事故的发生。
红外热像仪的使用可有效减少人员成本以及对人体造成的损害,更重要的是可以提前预警火灾、废料泄露等事故,防患于未然。
1.2需求分析危废暂存库大多存放一些可在常温环境下自行分解成有毒有害物质的废料,这些废料在空气中易自燃,在存储过程中如果发生意外会立即造成大规模环境污染,并且在遇到明火或者温度过高时则会导致巨大的火灾安全隐患。
基于此问题的考虑,能够及时发现可能存在的安全隐患,对人员提前预警,及时处理隐患,则可以在很大程度上避免安全事故的发生。
根据安全管理要求:风险预警与火灾报警:实时全景监控与高灵敏度特点,可对高温实现快速报警;非接触测温,不影响电力设备正常工作;报警日志:报警记录与图像同步存储系统;所有采集点视频图像可全程或报警触发录像存储,并可以对以往的历史图像进行查询和回放;电源供给在全天候的环境下,保证系统不间断供应1.3建设原则热成像防火预警监控系统的建设,是化工、及重工业行业危废物料安全管理升级的重要体现,工程建设应满足以下几个要求:1)先进性本系统技术起点高,采用具有国际先进技术水平的非制冷式焦平面红外热成像仪,结合先进的分析控制软件,实现鉴于重要部位的日夜安全防戒。
红外热像仪主要技术参数1.分辨率:红外热像仪的分辨率是指它可以检测到并显示的最小温度差异。
一般来说,分辨率越高,红外热像仪就能提供更准确和清晰的图像。
分辨率通常以温度差异的最小测量单位表示,比如0.1°C。
2.温度测量范围:红外热像仪的温度测量范围表示它可以测量的最低和最高温度。
一些低端的红外热像仪的温度测量范围可能只有几十摄氏度,而高端的红外热像仪则可以测量到上千摄氏度的温度范围。
3.帧率:帧率是指红外热像仪在一秒钟内可以拍摄和显示的图像帧数。
高帧率可以提供更流畅和清晰的图像,而低帧率可能会导致图像模糊。
4.聚焦方式:红外热像仪的聚焦方式决定了它可以检测到的目标距离范围。
一些红外热像仪具有手动聚焦的功能,用户可以通过调整焦距来获取清晰的图像,而其他红外热像仪具有自动聚焦功能,可以更方便地获得清晰的图像。
5.可视光照相机:一些高端的红外热像仪配备了可视光照相机,可以在红外热像仪图像上叠加显示可视光图像,以提供更直观和全面的信息。
6.图像和视频保存功能:一些红外热像仪具有内置存储功能,可以将图像和视频保存到内部存储器或外部存储卡中。
这使得用户可以随后进行分析和报告编制。
7.接口和通信:红外热像仪通常还配备有各种接口,比如USB、HDMI或无线通信接口,以便用户可以快速传输图像和数据,并与其他设备进行连接。
8.电池寿命:红外热像仪通常使用可充电电池供电,其电池寿命决定了使用时间的长短。
一些高端的红外热像仪具有长时间的电池寿命,可以持续使用数小时。
总结起来,红外热像仪的主要技术参数包括分辨率、温度测量范围、帧率、聚焦方式、可视光照相机、图像和视频保存功能、接口和通信、电池寿命等。
这些参数决定了红外热像仪的性能和适用范围,用户可以根据自己的需求选择适合的红外热像仪。
手持式红外热像仪选型案例
大面积、小目标
评估储油罐的腐蚀或结构完整性监测潜在耐火砖劣化区域
案例解释:
目标尺寸通常超过10 米,检测距离达到数十米,而需要查验的损坏部位的尺寸只有几十厘米,例如:钢厂热风炉的直径为10 米,高度30-50 米,但每块耐火砖宽度只有20 厘米,客户需要既可以看到目标的整体热像图,也要能够看到耐火砖的脱落问题。
设备要求:
1 超过300 万像素,足够的视场角度及优异的空间分辨率,可以实现对较大面积/ 区域的目标进行整体和远距离全面地分析要求,同时又可以分辨/ 检测出很多难以发现的细节或细小问题点,提高检测全面性和效率的同时,避免遗漏或意外事故风险。
2 最先进的聚焦方式选择,让聚焦更省时,LaserSharp® 激光自动对焦, 自动对焦, 手动对焦和EverSharp 多焦点记录功能,多种聚焦方式集于一身。
保证您能够在几乎任何情况下都可以准确对焦,捕捉全部准确的数据;
3 红外热图、视频录制、带红外数据的视频录像,以及Wifi 传输方式,可以保证能够作为深度研究的有力依据。
相关应用:
●大型工业设备的维护,如石化企业的反应塔,蒸馏塔等,冶金企业的高炉等;
●隧道/ 大坝/ 桥梁渗水检测;
●地质研究/ 勘探、火山研究;
●建筑的维护,如机场、建筑群。
小温差
胚胎孵化监测蓝色低温代表死胎)植物病虫害检测
案例解释:
当检测目标的温差低至0.1 ℃以内时,需要有极高热灵敏度的热像仪才能发现细微差别,尤其是在科学研究领域。
设备要求:
1 超高分辨率图像:在精密位移成像技术模式下,分辨率和像素是标准模式的4 倍(TiX1000 的红外像素高达310 万,TiX660 的红外像素高达120 万),可获得锐利的图像,提供目标更多细节。
2 超优异的热灵敏度:此类现场的温差只有0.1℃,需要清晰地看到微小温差的问题点;TiX 系列产品拥有更高的热灵敏度,如TiX640/660 热灵敏度可达0.03℃,对于1℃的温差,可用超过30 种颜色表示其温度的变化,能够显示出更体现更小的温差,提供更清晰的热像。
3 高级对焦系统:提供了手动对焦、自动对焦及LaserSharp® 自动对焦和EverSharp 多焦点记录功能,可快速、准确地捕获对焦正确的图像。
4 灰度和全彩色图像:可满足温差显示细节的要求,各种各样的应用。
5 更大的数码变倍:TiX 系列产品提供32 倍的放大,可以任意缩放图像细节。
相关应用:
●材料工程化:受力分析,热应力分析,非破坏性试验,包括检查和分析复合材料的层离、
空隙、吸湿和压裂,表面辐射。
●化学和生物科学:化学反应/ 变化研究,生物分析,动植物相关研究,医学/ 病理学等
相关研究。
●复合材料和结构的NDT 无损检测裂缝,空隙,分层,粘结,渗漏。
超远距离
水泥厂生产设备检测高压输电塔的线夹检测
案例解释:
电力公司维护人员在500 米外对高压输电塔的进行巡检。
设备要求:
1 超高分辨率图像:在精密位移成像技术模式下,分辨率和像素是标准模式的4 倍(TiX1000 的像红外素高达310 万,TiX660 的红外像素高达120 万),可获得锐利的图像,提供最大细节。
2 超优异的空间分辨率:TiX 系列产品在更高的像素下,配备适合的镜头,可以达到更加优异的空间分辨率,如TiX1000 在配备120mm 超长焦的镜头时,空间分辨率可以达到0.1mRad,也就是说理论上,可以在500m 距离下,能够检测50mm 尺寸目标(高压线夹)。
3 5.6 英寸可旋转LCD 大显示屏:可帮助您方便地检查难以触及设备的上方、下方及周围。
4 可倾斜LCoS 彩色取景器:分辨率为800 x 600 像素,在日光下可提供最大可视性。
5 高级对焦系统:提供了手动对焦、自动对焦及LaserSharp® 自动对焦和EverSharp 多焦点记录功能,可快速、准确地捕获对焦正确的图像。
6 最大的镜头灵活性:利用现场可更换的可选镜头(2 倍和4 倍长焦镜头、两个广角镜头),无论距离远近,均可获得高分辨率图像。
7 更大的数码变倍系数:TiX 系列产品可以提供32 倍的放大,在现场,您就可以利用32 倍放大,分析更小的目标温度。
8 带有语音和文字注释,800 万可见光的录像功能:使得故障点记录、分析、存档更清晰、直观、简单、方便。
相关应用:
●高压供电设备维护;
●港口/ 码头塔吊电机维护。
微米级小目标
电路板中2 x 2 mm 芯片温度检测0.5 x 0.5mm小芯片及周边检测
(使用标准镜头)(使用微距镜头)
案例解释:
小型芯片温度检测,通常尺寸在2-3mm 以内,芯片内部的功能组件在50 μm 以内。
设备要求:
1 更优异的空间分辨率:TiX 系列的超高像素配三款微距镜头,使您能够拍摄高分辨率图像,可以提供小目标,微小目标的检测方案,如测量几十微米(μm)目标尺寸。
TiX 系列在精密位移成像技术模式下,分辨率和像素是标准模式的4 倍(TiX1000 的红外像素高达310 万,TiX660 的红外像素高达120 万),可获得锐利的图像,提供最大细节。
2 超优异的热灵敏度:TiX 系列产品拥有更高的热灵敏度,如TiX640/660 热灵敏度可达0.03℃,便于分辨更小的温差和更小目标,提供更清晰的热像。
3 高帧频模式:可利用TiX 的高帧频模式(高达240Hz)监测目标的温度快速变化。
这样就能够分析多帧数据,便于更好地理解小目标的温度变化。
4 PC上回放和分析数据:利用随热像仪提供的SmartView® 软件,优化和分析图像,并生成检查报告。
您也可将结果导出至电子表格,做进一步、更详细的分析,以及互动式数据展示。
相关应用:
●微生物体研究;
●芯片及PCB 线路,焊点检测;
●生产工艺/ 过程杂质检测;
●细小目标(如激光光纤)生产过程中温度均匀性检测。
高速温度变化/快速位移
烟花快速升空后的燃放瞬间发动机散热系统检测
设备要求:
1 高帧频模式:可利用TiX 的高帧频模式(高达240Hz),实现对高速温度变化/ 快速位移的目标进行连续检测,可以获得目标的温度变化趋势,或高速位移过程中,真实的温度值。
2 实时辐射视频流记录:可以实时记录带温度数据视频,支持逐帧分析热过程和变化,更容易发现和确认真实的温度值,以及需要进一步检查的位置。
3 更多的数据传输/ 存储方式数据可以快速传输/ 存储至:仪器内存/SDHC 卡/ USB / GigE Vision /Wifi 等,有力保证获取大量数据,作为深度研究的有力依据。
4 超高分辨率图像+ 优异的热灵敏度:在精密位移成像技术模式下,分辨率和像素是标准模式的4 倍(TiX1000 的红外像素高达310 万,TiX660 的红外像素高达120 万),结合TiX 更高的热灵敏度,如TiX640/660 热灵敏度可达0.03℃,可获得锐利的图像,提供更清晰、更多细节的目标热图。
5 PC 上回放和分析数据。
利用随热像仪提供的SmartView® 软件,优化和分析图像,并生成检测报告。
您也可将结果导出至电子表格,做进一步、更详细的分析,以及互动式数据展示。
相关应用:
材料研究;摩擦力/ 碰撞/ 力学研究;车床刀具研究;发动机趋势研究;感应加热研究;
点胶应用;焊接/ 包装应用;其他应用:激光脱毛。
其他高端应用
设备要求:
1 高温目标检测:TiX 系列可以检测高达2000 ℃的高温目标,支持需要极端温度条件的检查工作。
2 低温目标:TiX 系列可以检测低至-40℃的低温目标,支持需要极端温度条件的检查工作。
3 适应更低的工作环境:TiX 系列可以在-25℃的环境下,长时间工作,适应更严酷的工作场合。
相关应用:
材料/ 发动机等高温目标检测、低温目标(培养皿保温)检测、严寒地区外部环境下/ 高低温箱内长时间检测等。