泰州市2020年初中学业水平测试数学试题
- 格式:pdf
- 大小:194.54 KB
- 文档页数:8
2020年江苏省泰州市中考数学试卷一、选择题:(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.﹣2的倒数是( ) A .2B .12C .﹣2D .12-2.把如图所示的纸片沿着虚线折叠,可以得到的几何体是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥3.下列等式成立的是( )A .3+=B = C=D 3= 4.如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )A .只闭合1个开关B .只闭合2个开关C .只闭合3个开关D .闭合4个开关5.点P (a ,b )在函数32y x =+的图像上,则代数式621a b -+的值等于( ) A .5B .3C .﹣3D .﹣16.如图,半径为10的扇形AOB 中,∠AOB =90°,C 为AB 上一点,CD∠OA ,CE∠OB ,垂足分别为D 、E .若∠CDE 为36°,则图中阴影部分的面积为( )A .10πB .9πC .8πD .6π二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接填写在答题卡相应位置上) 7.9的平方根等于_______. 8.因式分解:24x -=_______.9.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学计数法表示为_______.10.方程2230x x +-=的两根为1x 、2x 则12x x ⋅的值为______.11.今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是______.(第11题) (第12题) (第13题)12.如图,将分别含有30°、45°角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中角α的度数为_______.13.以水平数轴的原点O 为圆心过正半轴O x 上的每一刻度点画同心圆,将O x 逆时针依次旋转30°、60°、90°、...、330°得到11条射线,构成如图所示的“圆”坐标系,点A 、B 的坐标分别表示为(5,0°)、(4,300°),则点C 的坐标表示为_______.(第14题) (第15题) (第16题)14.如图,直线a ∠b ,垂足为H ,点P 在直线b 上,PH =4cm ,O 为直线b 上一动点,若以1cm 为半径的O 与直线a 相切,则OP 的长为_______.15.如图所示的网格由边长为1个单位长度的小正方形组成,点A 、B 、C 在直角坐标系中的坐标分别为(3,6),(﹣3,3),(7,﹣2),则∠ABC 内心的坐标为______. 16.如图,点P 在反比例函数3y x=的图像上且横坐标为1,过点P 作两条坐标轴的平行线,与反比例函数ky x=()0k <的图像相交于点A 、B ,则直线AB 与x 轴所夹锐角的正切值为______.三、解答题(本大题共有10题,共102分,请在答题卡规定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:11()602π-⎛⎫-+︒ ⎪⎝⎭(2)解不等式组:311442x x x x -≥+⎧⎨+<-⎩18.(8分)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成图表如下:(1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么? (3)求统计表中m 的值.19.(8分)一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是______(精确到0.01),由此估出红球有______个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个乒乓球,1个红球的概率.20.(10分)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.21.(10分)如图,已知线段a,点A在平面直角坐标系x O y内,(1)用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a.(保留作图痕迹,不写作法)(2)在(1)的条件下,若a≈A点的坐标为(3,1),求P点的坐标.22.(10分)我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m的A处测得在C处的龙舟俯角为23°;他登高6m到正上方的B处测得驶至D处︒≈,的龙舟俯角为50°,问两次观测期间龙舟前进了多少?(结果精确到1m,参考数据:tan230.42︒≈)︒≈,tan67 2.36︒≈,tan50 1.19tan400.8423.(10分)如图,在∠ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∠AB,交AC于点D,连接AP,设CP=x,∠ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.24.(10分)如图,在O中,点P为AB的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若O的半径为8,AB的度数为90°,求线段MN的长.25.(12分)如图,正方形ABCD的边长为6,M为AB的中点,∠MBE为等边三角形,过点E作ME的垂线分别与边AD、BC相交于点F、G,点P、Q分别在线段EF、BC上运动,且满足∠PMQ=60°,连接PQ.(1)求证:∠MEP∠∠MBQ .(2)当点Q 在线段GC 上时,试判断PF +GQ 的值是否变化?如果不变,求出这个值,如果变化,请说明理由.(3)设∠QMB =α,点B 关于QM 的对称点为B’,若点B’落在∠MPQ 的内部,试写出α的范围,并说明理由.26.(14分)如图,二次函数21()y a x m n =-+、226y ax n =+(0,0,0)a m n <>>的图像分别为C 1、C 2,C 1交y 轴于点P ,点A 在C 1上,且位于y 轴右侧,直线PA 与C 2在y 轴左侧的交点为B .(1)若P 点的坐标为(0,2),C 1的顶点坐标为(2,4),求a 的值; (2)设直线PA 与y 轴所夹的角为α.∠当α=45°,且A 为C 1的顶点时,求am 的值; ∠若α=90°,试说明:当a 、m 、n 各自取不同的值时,PAPB的值不变; (3)若PA =2PB ,试判断点A 是否为C 1的顶点?请说明理由.2020年江苏省泰州市中考数学试卷第一部分选择题(区18分)一、选择题:(本大题共有6小题,第小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.-2的倒数是()A. -2B.12C. 12D. 2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握2.把如图所示的纸片沿着虚线折叠,可以得到的几何体是()A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥【答案】A【解析】【分析】根据折线部分折回立体图形判断即可.【详解】由图形折线部分可知,有两个三角形面平行,三个矩形相连,可知为三棱柱.故选A.【点睛】本题考查折叠与展开相关知识点,关键在于利用空间想象能力折叠回立体图形. 3.下列等式成立的是()A. 3+=B.= C.= D.3=【答案】D 【解析】 【分析】根据二次根式的运算法则即可逐一判断.【详解】解:A 、3和A 错误;B =B 错误;C===C 错误;D 3=,正确; 故选:D .【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.4.如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关【答案】B 【解析】 【分析】观察电路发现,闭合,A B 或闭合,C D 或闭合三个或四个,则小灯泡一定发光,从而可得答案. 【详解】解:由小灯泡要发光,则电路一定是一个闭合的回路,只闭合1个开关,小灯泡不发光,所以是一个不可能事件,所以A 不符合题意; 闭合4个开关,小灯泡发光是必然事件,所以D 不符合题意;只闭合2个开关,小灯泡有可能发光,也有可能不发光,所以B 符合题意; 只闭合3个开关,小灯泡一定发光,是必然事件,所以C 不符合题意. 故选B .【点睛】本题结合物理知识考查的是必然事件,不可能事件,随机事件的概念,掌握以上知识是解题的关键.5.点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( ) A. 5 B. 3C. 3-D. 1-【答案】C 【解析】 【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果; 【详解】把(),P a b 代入函数解析式32y x =+得:32=+b a , 化简得到:32-=-a b ,∠()()621=231=221=-3-+-+⨯-+a b a b . 故选:C .【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.6.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D 、E .若CDE ∠为36︒,则图中阴影部分的面积为( )A. 10πB. 9πC. 8πD. 6π【答案】A 【解析】 【分析】本题可通过做辅助线,利用矩形性质对角线相等且平分以及等面积性,利用扇形ABC 面积减去扇形AOC 面积求解本题.【详解】连接OC 交DE 为F 点,如下图所示: 由已知得:四边形DCEO 为矩形.∠∠CDE=36°,且FD=FO ,∠∠FOD=∠FDO=54°,∠DCE 面积等于∠DCO 面积.2290105410==10360360AOB AOC S S S πππ••••--=阴影扇形扇形.故选:A .【点睛】本题考查几何面积求法,在扇形或圆形题目中,需要构造辅助线利用割补法,即大图形面积减去小图形面积求解题目,扇形面积公式为常用工具.第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接填写在答题卡相应位置上)7.9的平方根是_________. 【答案】±3 【解析】分析:根据平方根的定义解答即可. 详解:∠(±3)2=9, ∠9的平方根是±3. 故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.因式分解:24x -= . 【答案】(x+2)(x-2) 【解析】【详解】解:24x -=222x -=(2)(2)x x +-; 故答案为(2)(2)x x +-9.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学计数法表示为_______.【答案】44.2610.⨯【解析】【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 4.26a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。
2020年江苏省泰州市中考数学测评试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若点A(m,n)在第三象限,则点B(m-,n)在()A.第一象限B.第二象限C.第三象限D.第四象限2.满足不等式组210107mm+≥⎧⎨->⎩的整数m 的值有()A.1 个B.2 个C.3 个D.4 个3.如图,∠ADE与∠DEC是()A.同位角B.内错角C.同旁内角D.不能确定4.用科学记数法表示0.000 0907,并保留两个有效数字,得()A.49.110-⨯B.59.110-⨯C.59.010-⨯D.59.0710-⨯5.如图,∠AOP=∠BOP,PD⊥OB,PC⊥OA,则下列结论正确的是()A.PD=PC B.PD<PC C.PD>PC D.PD和PC的大小关系是不确定的6.如图,直线AB、CD相交于点 O,OE平分∠AOD,若∠BOC=80°,则∠AOE的度数是()A.40°B. 50°C. 80°D.100°7.416x-分解因式的结果是()A.22(4)(4)x x-+B.2(2)(2)(4)x x x+-+C.3(2)(2)x x-+D.22(2)(2)x x-+8.有理数:-7,3. 5,12-,112,0,π,1317中正分数有()A.1 个B. 2 个C.3 个D.4 个9.下列各多项式中,在有理数范围内可用平方差公式分解因式的是()A .24a +B .22a -C .24a -+D .24a --二、填空题10.已知Rt △ABC 中,∠ACB =90°,AC =6,BC =8,Rt △ABC 的内切圆半径为r . 11.在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16 cm ,那么油面宽度AB= cm .12.如图,在△ABC 和△DBC 中,E ,F ,G ,H 分别是AB ,DB ,DC ,AC 的中点,AD =3,BC =8,则四边形EFGH 的周长为 .13. 已知1x =是一元二次方程2210x mx -+=的一个根,则 m= .14.如图,在△AOM 中,∠AMO=90°,0A=5,AM=4.则点A 的坐标为 .15.关于x 的不等式组2132x x x m +⎧>-⎪⎨⎪<⎩的所有整数解的和是-7,则m 的取值范围是_____________.16.一个长方形的面积等于(2268a b ab +)cm 2,其中长是(34a b +)cm ,则该长方形的宽是 cm .17.如图,是某煤气公司的商标图案,外层可以视为利用图形的 设计而成的,内层可以视为利用图形的 设计而成的.18.如图所示,已知AC 和BD 相交于0,A0=C0,∠A=∠C ,说出BO=D0的理由.解:∵AC 和BD 相交于0,∴∠AOB= ( ).在△AOB 和△COD 中,∠AOB= (已证),= (已知),∴△AOB ≌△COD( ).∴BO=D0( ).解答题19.初三年某班共50名学生参加体育测试,全班学生成绩合格率为94%,则不合格的人数有_______人.20.某教室要换新桌椅,教室中共有(1n +)行桌椅,其中每行 7 人的有n 行,另有一行有 8 人,共需 套新桌椅;当6n =时,共需 套新桌椅.三、解答题21.下图为住宅区内的两幢楼,它们的高m CD AB 30==,现需了解甲楼对乙楼的采光的影响情况.当太阳光与水平线的夹角为30°时.试求:1)若两楼间的距离m AC 24=时,甲楼的影子,落在乙楼上有多高?2)若甲楼的影子,刚好不影响乙楼,那么两楼的距离应当有多远?甲 乙 A C300 B D22.根据边的宽可影响放人相片的大小,如图,相框长 26 cm ,宽 22 cm ,相框边的宽为 x(㎝),相框内的面积为y(cln2),求y 与x 的函数关系式及x 的取值范围.23.已知二次函数22(2)y x =-+.(1)说出抛物线22(2)y x =-+可以由怎样的抛物线2y ax =通过怎样的平移得到?(2)试说说函数22(2)y x =-+有哪些性质?比一比,谁的速度快.24.如图,在四边形ABCD 中,AB=CD ,E ,F ,M ,N 分别是BD ,AC ,AD ,BC 的中点.(1)求证:四边形MENF 是平行四边形;(2)若AB=4 cm ,求四边形MENF 的周长.25.如图所示,在□ABCD 中,点E ,F 分别在BC ,DA 上,AE ∥CF .求证:DF=BE .26.如图甲,正方形被划分成l6个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:(1)涂黑部分的面积是原正方形面积的一半;(2)涂黑部分成轴对称图形.如图乙是一种涂法,请在图①~③中分别设计另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一种涂法,如图乙与图丙)27.已知△ABC中,以点A为顶点的外角为120°,∠B=30°,求∠C的度数.28.2008年5月12日,四川省汶川发生8.0级强烈地震,给当地人民造成巨大的经济损失.某学校积极组织捐款支援灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表;表中捐款2元和 5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.29.画一条数轴,把-2、3、和它们的相反数表示在数轴上,并比较这些数的大小.30.为了预防“水痘”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分)成正比例,药物燃烧后,y与x成反比例(如图所示).现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请你根据题中所提供的信息,解答下列问题:(1)药物燃烧时y关于x的函数关系式为:,自变量x的取值范围是:;药物燃烧后y与x的函数关系式为:;(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量低不低于1.6毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.B5.A6.A7.B8.C9.C二、填空题10.24812.1113.114.(3,4)15.-3<m ≤-216.2ab 17.旋转变换,轴对称变换18.∠COD ,对顶角相等,∠COD ,A0,C0,∠A ,∠C ,ASA ,全等三角形的对应边相等 19.320.78n +,50三、解答题21.解:(1)设阳光照射在乙楼CD 的E 处,连结BD ,则BD=AC=24,∠D BE =30°,DE=33BD=83,∵AB=CD=30,∴CE=30-83;即阳光照射在乙楼离地面高30-83米处;(2)要使甲楼的影子不影响乙,则阳光刚好照射在乙楼C 处,在Rt △ABC 中,∠A BC =60°,AC=3AB=303,即两楼相距303米.22.(262)(222)y x x =--,∵0260222x x <<⎧⎨<<⎩,∴0<x<1l. 23.(1))是由2y =向左平移 2 个单位得到.(2)性质有:顶点坐标 (—2,0),对称轴是直线x= -2,开口向下,图象有最高点等(1)利用中位线定理证明;(2)8 cm25.证AECF 为平行四边形即可26.略27.∠C=90°28.捐2元的有4人,捐5元的有38人.理由如下:设捐款2元的有x 人,则捐款5元的有(5567x ---)人. 根据题意,得1625(5567)107274x x ⨯++---+⨯=,解得4x =, ∴556738x ---=(人)29. -2,3,5的相反数分别是2,-3,5-,它们在数轴上表示如图所示:观察数轴可知:352253-<--<<30.(1)x y 43=,80≤<x ,x y 48=;(2)30(3)有效.。
2020年江苏省泰州市中考数学试卷题号一二三总分得分一、选择题(本大题共6小题,共18.0分)1.-2的倒数是( )A. 2B.C. -2D. -2.把如图所示的纸片沿着虚线折叠,可以得到的几何体是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥3.下列等式成立的是( )A.3+4=7 B. =C.÷=2 D. =34.如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B或同时闭合开关C、D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关5.点P(a,b)在函数y=3x+2的图象上,则代数式6a-2b+1的值等于( )A. 5B. 3C. -3D. -16.如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为( )A. 10πB. 9πC. 8πD. 6π二、填空题(本大题共10小题,共30.0分)7.9的平方根等于______.8.因式分解:x2-4=______.9.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为______.10.方程x2+2x-3=0的两根为x1、x2,则x1•x2的值为______.11.今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是______.12.如图,将分别含有30°、45°角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中角α的度数为______.13.以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为______.14.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以lcm为半径的⊙O与直线a相切,则OP的长为______.15.如图所示的网格由边长为1个单位长度的小正方形组成,点A、B、C在直角坐标系中的坐标分别为(3,6),(-3,3),(7,-2),则△ABC内心的坐标为______.16.如图,点P在反比例函数y=的图象上,且横坐标为1,过点P作两条坐标轴的平行线,与反比例函数y=(k<0)的图象相交于点A、B,则直线AB与x轴所夹锐角的正切值为______.三、解答题(本大题共10小题,共104.0分)17.(1)计算:(-π)0+()-1-sin60°;(2)解不等式组:18.2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成如图表:2020年6月2日骑乘人员头盔佩戴情况统计表骑乘摩托车骑乘电动自行车戴头盔人数1872不戴头盔人数2m(1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?(3)求统计表中m的值.19.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200300400100016002000摸到白球的频数7293130334532667摸到白球的频率0.36000.31000.32500.33400.33250.3335(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是______.(精确到0.01),由此估出红球有______个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.20.近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.21.如图,已知线段a,点A在平面直角坐标系xOy内.(1)用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a.(保留作图痕迹,不写作法)(2)在(1)的条件下,若a≈2,A点的坐标为(3,1),求P点的坐标.22.我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m的A处测得在C处的龙舟俯角为23°;他登高6m到正上方的B处测得驶至D处的龙舟俯角为50°,问两次观测期间龙舟前进了多少?(结果精确到1m,参考数据:tan23°≈0.42,tan40°≈0.84,tan50°≈1.19,tan67°≈2.36)23.如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.24.如图,在⊙O中,点P为的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若⊙O的半径为8,的度数为90°,求线段MN的长.25.如图,正方形ABCD的边长为6,M为AB的中点,△MBE为等边三角形,过点E作ME的垂线分别与边AD、BC相交于点F、G,点P、Q分别在线段EF、BC上运动,且满足∠PMQ=60°,连接PQ.(1)求证:△MEP≌△MBQ.(2)当点Q在线段GC上时,试判断PF+GQ的值是否变化?如果不变,求出这个值,如果变化,请说明理由.(3)设∠QMB=α,点B关于QM的对称点为B',若点B'落在△MPQ的内部,试写出α的范围,并说明理由.26.如图,二次函数y1=a(x-m)2+n,y2=6ax2+n(a<0,m>0,n>0)的图象分别为C1、C2,C1交y轴于点P,点A在C1上,且位于y轴右侧,直线PA与C2在y轴左侧的交点为B.(1)若P点的坐标为(0,2),C1的顶点坐标为(2,4),求a的值;(2)设直线PA与y轴所夹的角为α.①当α=45°,且A为C1的顶点时,求am的值;②若α=90°,试说明:当a、m、n各自取不同的值时,的值不变;(3)若PA=2PB,试判断点A是否为C1的顶点?请说明理由.答案和解析1.【答案】D【解析】解:-2的倒数是-.故选:D.根据倒数定义求解即可.本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.【答案】A【解析】解:观察展开图可知,几何体是三棱柱.故选:A.由平面图形的折叠及立体图形的表面展开图的特点解题.考查了展开图折叠成几何体,掌握各立体图形的展开图的特点是解决此类问题的关键.3.【答案】D【解析】解:A.3与4不是同类二次根式,不能合并,此选项计算错误;B.×=,此选项计算错误;C.÷=×=3,此选项计算错误;D.=3,此选项计算正确;故选:D.根据二次根式的加、乘、除法法则及二次根式的性质逐一判断即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的加、乘、除法法则及二次根式的性质.4.【答案】B【解析】解:A、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B.根据题意分别判断能否发光,进而判断属于什么事件即可.考查了随机事件的判断,解题的关键是根据题意判断小灯泡能否发光,难度不大.5.【答案】C【解析】解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,则3a-b=-2.∴6a-2b+1=2(3a-b)+1=-4+1=-3故选:C.把点P的坐标代入一次函数解析式,得出3a-b=2.代入2(3a-b)+1即可.本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.6.【答案】A【解析】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE=36°,由矩形CDOE易得到△DOE≌△CEO,∴∠COB=∠DEO=36°∴图中阴影部分的面积=扇形OBC的面积,∵S扇形OBC==10π∴图中阴影部分的面积=10π,故选:A.连接OC,易证得四边形CDOE是矩形,则△DOE≌△CEO,得到∠COB=∠DEO=∠CDE=36°,图中阴影部分的面积=扇形OBC的面积,利用扇形的面积公式即可求得.本题考查了扇形面积的计算,矩形的判定与性质,利用扇形OBC的面积等于阴影的面积是解题的关键.7.【答案】±3【解析】解:∵(±3)2=9,∴9的平方根是±3.故答案为:±3.直接根据平方根的定义进行解答即可.本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.8.【答案】(x+2)(x-2)【解析】解:x2-4=(x+2)(x-2).故答案为:(x+2)(x-2).直接利用平方差公式分解因式得出答案.此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.9.【答案】4.26×104【解析】解:将42600用科学记数法表示为4.26×104,故答案为:4.26×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【答案】-3【解析】解:∵方程x2+2x-3=0的两根为x1、x2,∴x1•x2==-3.故答案为:-3.根据方程的系数结合根与系数的关系,即可得出x1•x2的值.本题考查了根与系数的关系,牢记两根之积等于是解题的关键.11.【答案】4.65-4.95【解析】解:∵一共调查了50名学生的视力情况,∴这50个数据的中位数是第25、26个数据的平均数,由频数分布直方图知第25、26个数据都落在4.65-4.95之间,∴这50名学生视力的中位数所在范围是4.65-4.95,故答案为:4.65-4.95.由这50个数据的中位数是第25、26个数据的平均数,再根据频数分布直方图找到第25、26个数据所在范围,从而得出答案.本题主要考查频数(率)分布直方图,解题的关键是掌握中位数的定义,并根据频数分布直方图找到解题所需数据.12.【答案】140°【解析】解:如图,∵∠ACB=90°,∠DCB=65°,∴∠ACD=∠ACB-∠ACD=90°-65°=25°,∵∠A=60°,∴∠DFB=∠AFC=180°-∠ACD-∠A=180°-25°-60°=95°,∵∠D=45°,∴∠α=∠D+∠DFB=45°+95°=140°,故答案为:140°.求出∠ACD,根据三角形内角和定理求出∠AFC,求出∠DFB,根据三角形的外角性质求出即可.本题考查了三角形的内角和定理和三角形的外角的性质,能灵活运用定理进行推理和计算是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于与它不相邻的两个内角的和.13.【答案】(3,240°)【解析】解:如图所示:点C的坐标表示为(3,240°).故答案为:(3,240°).直接利用横纵坐标的意义进而表示出点C的坐标.此题主要考查了坐标确定位置,正确理解横纵坐标的意义是解题关键.14.【答案】3cm或5cm【解析】解:∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1cm,当点O在点H的左侧,⊙O与直线a相切时,如图1所示:OP=PH-OH=4-1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,如图2所示:OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm,故答案为:3cm或5cm.当点O在点H的左侧⊙O与直线a相切时,OP=PH-OH;当点O在点H的右侧⊙O与直线a相切时,OP=PH+OH,即可得出结果.本题考查了切线的性质以及分类讨论;熟练掌握切线的性质是解题的关键.15.【答案】(2,3)【解析】解:如图,点I即为△ABC的内心.所以△ABC内心I的坐标为(2,3).故答案为:(2,3).根据点A、B、C在直角坐标系中的坐标分别为(3,6),(-3,3),(7,-2),建立直角坐标系,根据等腰三角形三线合一,利用网格确定△ABC内心的坐标即可.本题考查了三角形的内切圆与内心、坐标与图形性质,解决本题的关键是掌握三角形的内心定义.16.【答案】3【解析】解:点P在反比例函数y=的图象上,且横坐标为1,则点P(1,3),则点A、B的坐标分别为(1,k),(k,3),设直线AB的表达式为:y=mx+t,将点A、B的坐标代入上式得,解得m=-3,故直线AB与x轴所夹锐角的正切值为3,故答案为3.点P在反比例函数y=的图象上,且横坐标为1,则点P(1,3),则点A、B的坐标分别为(1,k),(k,3),即可求解.本题考查的是反比例函数与一次函数的交点问题,确定点A、B的坐标是解题的关键.17.【答案】解:(1)原式=1+2-×=1+2-=;(2)解不等式3x-1≥x+1,得:x≥1,解不等式x+4<4x-2,得:x>2,则不等式组的解集为x>2.【解析】(1)先计算零指数幂、负整数指数幂、代入三角函数值,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】解:(1)不同意,虽然可用某地区一路口的摩托车骑乘人员佩戴头盔情况来估计该地区的摩托车骑乘人员佩戴头盔情况,但是,只用6月3日的来估计,具有片面性,不能代表该地区的真实情况,可用某地区一路口一段时间内的平均值进行估计,就比较客观、具有代表性.(2)通过对折线统计图中,摩托车和电动自行车骑乘人员佩戴头盔的百分比的变化情况,可以得出:电动自行车骑乘人员佩戴头盔情况进行宣传,毕竟这5天,其佩戴的百分比增长速度较慢,且数值减低;(3)由题意得,=45%,解得,m=88,答:统计表中的m的值为88人.【解析】(1)6月3日的情况估计总体情况具有片面性,不具有普遍性和代表性;(2)通过数据对比,得出答案;(3)根据6月2日的电动自行车骑行人员佩戴头盔情况进行计算即可.本题考查折线统计图的意义和制作方法,理解数量之间的关系是解决问题的前提.19.【答案】0.33 2【解析】解:(1)观察表格发现,随着摸球次数的增多,摸到白球的频率逐渐稳定在0.33附近,由此估出红球有2个.故答案为:0.33,2;(2)画树状图为:由图可知,共有9种等可能的结果数,其中恰好摸到1个白球、1个红球的结果数为4,所以从该袋中摸出2个球,恰好摸到1个白球、1个红球的结果的概率为.(1)通过表格中数据,随着次数的增多,摸到白球的频率越稳定在0.33左右,估计得出答案;(2)画树状图展示所有9种等可能的结果数,找出恰好摸到1个白球、1个红球的结果数,然后利用概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了利用频率估计概率.20.【答案】解:设走路线A的平均速度为xkm/h,则走路线B的平均速度为(1+50%)xkm/h,依题意,得:-=,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴(1+50%)x=75.答:走路线B的平均速度为75km/h.【解析】设走路线A的平均速度为xkm/h,则走路线B的平均速度为(1+50%)xkm/h,根据时间=路程÷速度结合走路线B比走路线A少用6min,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.【答案】解:(1)如图,点P即为所求;(2)由(1)可得OP是角平分线,设点P(x,x),过点P作PE⊥x轴于点E,过点A作AF⊥x轴于点F,AD⊥PE于点D,∵PA=a≈2,A点的坐标为(3,1),∴PD=x-1,AD=x-3,根据勾股定理,得PA2=PD2+AD2,∴(2)2=(x-1)2+(x-3)2,解得x=5,x=-1(舍去).所以P点的坐标为(5,5).【解析】(1)根据角平分线的性质即可用直尺和圆规在第一象限内作出点P,使点P 到两坐标轴的距离相等,且与点A的距离等于a;(2)在(1)的条件下,根据a≈2,A点的坐标为(3,1),利用勾股定理即可求P点的坐标.本题考查了作图-复杂作图、坐标与图形的性质、角平分线的性质、勾股定理,解决本题的关键是掌握角平分线的性质.22.【答案】解:如图,根据题意得,∠C=23°,∠BDE=50°,AE=15m,BE=21m,在Rt△ACE中,tan C=tan23°===0.42,解得:CE≈35.7,在Rt△BDE中,tan∠BDE=tan50°===1.19,解得:DE≈17.6,∴CD=CE-DE=35.7-17.6=18.1≈18m,答:两次观测期间龙舟前进了18m.【解析】如图,根据题意得,∠C=23°,∠BDE=50°,AE=15m,BE=21m,解直角三角形即可得到结论.此题考查了解直角三角形的应用-仰角俯角问题,解答本题的关键是利用三角函数的知识,求出DE,CE.23.【答案】解:(1)∵PD∥AB,∴,∵AC=3,BC=4,CP=x,∴,∴CD=,∴AD=AC-CD=3-,即AD=;(2)根据题意得,S=,∴当x≥2时,S随x的增大而减小,∵0<x<4,∴当S随x增大而减小时x的取值范围为2≤x<4.【解析】(1)由平行线分线段成比例定理,用x表示CD,进而求得结果;(2)根据三角形的面积公式列出函数解析式,再根据函数性质求出S随x增大而减小时x的取值范围.本题主要考查了平行线分线段成比例性质,列出一次函数解析式,列二次函数解析式,二次函数的性质,三角形的面积,关键是正确列出函数解析式.24.【答案】(1)证明:∵AD⊥PC,∴∠EMC=90°,∵点P为的中点,∴,∴∠ADP=∠BCP,∵∠CEM=∠DEN,∴∠DNE=∠EMC=90°=∠DNB,∵,∴∠BDP=∠ADP,∴∠DEN=∠DBN,∴DE=DB,∴EN=BN,∴N为BE的中点;(2)解:连接OA,OB,AB,AC,∵的度数为90°,∴∠AOB=90°,∵OA=OB=8,∴AB=8,由(1)同理得:AM=EM,∵EN=BN,∴MN是△AEB的中位线,∴MN=AB=4.【解析】(1)根据圆周角定理得:∠ADP=∠BCP,由三角形的内角和定理和平角的定义得:∠DNE=∠EMC=90°=∠DNB,最后由等腰三角形的判定和性质可得结论;(2)连接OA,OB,AB,AC,先根据勾股定理得AB=8,再证明MN是△AEB的中位线,可得MN的长.本题考查了圆周角定理,勾股定理,等腰三角形的判定和性质,三角形的内角和定理等知识,解题的关键是学会添加常用辅助线构造等腰直角三角形解决问题,属于中考常考题.25.【答案】证明:(1)∵正方形ABCD的边长为6,M为AB的中点,∴∠A=∠ABC=90°,AB=BC=6,AM=BM=3,∵△MBE是等边三角形,∴MB=ME=BE,∠BME=∠PMQ=60°,∴∠BMQ=∠PME,又∵∠ABC=∠MEP=90°,∴△MBQ≌△MEP(ASA);(2)PF+GQ的值不变,理由如下:如图1,连接MG,过点F作FH⊥BC于H,∵ME=MB,MG=MG,∴Rt△MBG≌Rt△MEG(HL),∴BG=GE,∠BMG=∠EMG=30°,∠BGM=∠EGM,∴MB=BG=3,∠BGM=∠EGM=60°,∴GE=,∠FGH=60°,∵FH⊥BC,∠C=∠D=90°,∴四边形DCHF是矩形,∴FH=CD=6,∵sin∠FGH===,∴FG=4,∵△MBQ≌△MEP,∴BQ=PE,∴PE=BQ=BG+GQ,∵FG=EG+PE+FP=EG+BG+GQ+PF=2+GQ+PF,∴GQ+PF=2;(3)如图2,当点B'落在PQ上时,∵△MBQ≌△MEP,∴MQ=MP,∵∠QMP=60°,∴△MPQ是等边三角形,当点B'落在PQ上时,点B关于QM的对称点为B',∴△MBQ≌△MB'Q,∴∠MBQ=∠MB'Q=90°∴∠QME=30°∴点B'与点E重合,点Q与点G重合,∴∠QMB=∠QMB'=α=30°,如图3,当点B'落在MP上时,同理可求:∠QMB=∠QMB'=α=60°,∴当30°<α<60°时,点B'落在△MPQ的内部.【解析】(1)由“ASA”可证△MBQ≌△MEP;(2)连接MG,过点F作FH⊥BC于H,由“HL”可证Rt△MBG≌Rt△MEG,可得BG=GE ,∠BMG=∠EMG=30°,∠BGM=∠EGM,由直角三角形的性质可求BG=GE=,由锐角三角函数可求GF=4,由全等三角形的性质可求PE=BQ=BG+GQ,即可求GQ+PF=2;(3)利用特殊值法,分别求出点B'落在QP上和MP上时α的值,即可求解.本题是四边形综合题,考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,等边三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.26.【答案】解:(1)由题意m=2,n=4,∴y1=a(x-2)2+4,把(0,2)代入得到a=-.(2)①如图1中,过点A作AN⊥x轴于N,过点P作PM⊥AN于M.∵y1=a(x-m)2+n=ax2-2amx+am2+n,∴P(0,am2+n),∵A(m,n),∴PM=m,AN=n,∵∠APM=45°,∴AM=PM=m,∴m+am2+n=n,∵m>0,∴am=-1.②如图2中,由题意AB⊥y中,∵P(0,am2+n),当y=am2+n时,am2+n=6ax2+n,解得x=±m,∴B(-m,am2+n),∴PB=m,∵AP=2m,∴==2.(3)如图3中,过点A作AH⊥x轴于H,过点P作PK⊥AH于K,过点B作BE⊥KP 交KP的延长线于E.设B(b,6ab2+n),∵PA=2PB,∴A[-2b,a(-2b-m)2+n],∵BE∥AK,∴==,∴AK=2BE,∴a(-2b-m)2+n-am2-n=2(am2+n-6ab2-n),整理得:m2-2bm-8b2=0,∴(m-4b)(m+2b)=0,∵m-4b>0,∴m+2b=0,∴m=-2b,∴A(m,n),∴点A是抛物线C1的顶点.【解析】(1)利用待定系数法解决问题即可.(2)①如图1中,过点A作AN⊥x轴于N,过点P作PM⊥AN于M.证明AM=PM=m,根据AM+MN=AM+OP=AN,构建关系式即可解决问题.②如图2中,由题意AB⊥y中,求出PA,PB的长即可解决问题.(3))如图3中,过点A作AH⊥x轴于H,过点P作PK⊥AH于K,过点B作BE⊥KP 交KP的延长线于E.设B(b,6ab2+n),由PA=2PB,推出A[-2b,a(-2b-m)2+n],由BE∥AK,推出==,推出AK=2BE,由此构建关系式,证明m=-2b即可解决问题.本题属于二次函数综合题,考查了待定系数法,解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,属于中考压轴题.。
(第4题图)俯视图左视图主视图泰州市2020年初中毕业、升学统一考试数学试题(考试时间:120分钟 满分:150分)请注意:1、本试卷分选择题和非选择题两部分。
2、所有试题的答案均填写在答题卡上,答案写在试卷上无效。
3、作图必须用2B 铅笔作图,并请加黑加粗描写清楚。
第一部分 选择题(共24分)一、 选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应的位置上)1.21-的相反数是A .21-B .21C .2D .2-2.计算322a a ⋅的结果是A .52aB .62aC .54aD .64a 3.一元二次方程x x 22=的根是A .2=xB .0=xC .2,021==x xD .2,021-==x x4.右图是一个几何体的三视图,则这个几何体是DA .圆锥B .圆柱C .长方体D .球体5.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的6.为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是A .某市八年级学生的肺活量B .从中抽取的500名学生的肺活量C .从中抽取的500名学生D .5007.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC 。
其中一定能判断这个四DABC边形是平行四边形的条件共有A .1组B .2组C .3组D .4组8.如图,直角三角形纸片ABC 的∠C 为90°,将三角形纸片沿着图示的中位线DE 剪开,然后把剪开的两部分重新拼接成不重叠的图形,下列选项中不能拼出的图形是A .平行四边形B .矩形C .等腰梯形D .直角梯形第二部分 非选择题(共126分)二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接写在答题卡相应的位置上) 9.16的算术平方根是 。
2020年江苏省泰州市中考数学试卷一、选择题:(本大题共有6小题,第小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.(3分)﹣2的倒数是( ) A .2B .12C .﹣2D .−122.(3分)把如图所示的纸片沿着虚线折叠,可以得到的几何体是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥3.(3分)下列等式成立的是( ) A .3+4√2=7√2B .√3×√2=√5C .√3÷1√6=2√3 D .√(−3)2=34.(3分)如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )A .只闭合1个开关B .只闭合2个开关C .只闭合3个开关D .闭合4个开关5.(3分)点P (a ,b )在函数y =3x +2的图象上,则代数式6a ﹣2b +1的值等于( ) A .5B .3C .﹣3D .﹣16.(3分)如图,半径为10的扇形AOB 中,∠AOB =90°,C 为AB̂上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE 为36°,则图中阴影部分的面积为( )A.10πB.9πC.8πD.6π二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根等于.8.(3分)因式分解:x2﹣4=.9.(3分)据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为.10.(3分)方程x2+2x﹣3=0的两根为x1、x2,则x1•x2的值为.11.(3分)今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是.12.(3分)如图,将分别含有30°、45°角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中角α的度数为.13.(3分)以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为.14.(3分)如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.15.(3分)如图所示的网格由边长为1个单位长度的小正方形组成,点A、B、C在直角坐标系中的坐标分别为(3,6),(﹣3,3),(7,﹣2),则△ABC内心的坐标为.16.(3分)如图,点P在反比例函数y=3x的图象上,且横坐标为1,过点P作两条坐标轴的平行线,与反比例函数y=kx(k<0)的图象相交于点A、B,则直线AB与x轴所夹锐角的正切值为.三、解答题(本大题共有10题,共102分,请在答题卡规定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:(﹣π)0+(12)﹣1−√3sin60°;(2)解不等式组:{3x −1≥x +1,x +4<4x −2.18.(8分)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成如下图表: 2020年6月2日骑乘人员头盔佩戴情况统计表骑乘摩托车骑乘电动自行车戴头盔人数 18 72 不戴头盔人数2m(1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么? (3)求统计表中m 的值.19.(8分)一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数 200 300 400 1000 1600 2000 摸到白球的频数 7293130 334 532 667 摸到白球的频率0.3600 0.31000.32500.33400.33250.3335(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是 .(精确到0.01),由此估出红球有 个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.20.(10分)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.21.(10分)如图,已知线段a,点A在平面直角坐标系xOy内.(1)用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a.(保留作图痕迹,不写作法)(2)在(1)的条件下,若a≈2√5,A点的坐标为(3,1),求P点的坐标.22.(10分)我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m的A处测得在C处的龙舟俯角为23°;他登高6m 到正上方的B处测得驶至D处的龙舟俯角为50°,问两次观测期间龙舟前进了多少?(结果精确到1m,参考数据:tan23°≈0.42,tan40°≈0.84,tan50°≈1.19,tan67°≈2.36)23.(10分)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.̂的中点,弦AD、PC互相垂直,垂足为M,BC分24.(10分)如图,在⊙O中,点P为AB别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.̂的度数为90°,求线段MN的长.(2)若⊙O的半径为8,AB25.(12分)如图,正方形ABCD的边长为6,M为AB的中点,△MBE为等边三角形,过点E作ME的垂线分别与边AD、BC相交于点F、G,点P、Q分别在线段EF、BC上运动,且满足∠PMQ=60°,连接PQ.(1)求证:△MEP≌△MBQ.(2)当点Q在线段GC上时,试判断PF+GQ的值是否变化?如果不变,求出这个值,如果变化,请说明理由.(3)设∠QMB=α,点B关于QM的对称点为B',若点B'落在△MPQ的内部,试写出α的范围,并说明理由.26.(14分)如图,二次函数y1=a(x﹣m)2+n,y2=6ax2+n(a<0,m>0,n>0)的图象分别为C1、C2,C1交y轴于点P,点A在C1上,且位于y轴右侧,直线P A与C2在y 轴左侧的交点为B.(1)若P点的坐标为(0,2),C1的顶点坐标为(2,4),求a的值;(2)设直线P A与y轴所夹的角为α.①当α=45°,且A为C1的顶点时,求am的值;②若α=90°,试说明:当a、m、n各自取不同的值时,PAPB的值不变;(3)若P A=2PB,试判断点A是否为C1的顶点?请说明理由.2020年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题:(本大题共有6小题,第小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.(3分)﹣2的倒数是( ) A .2B .12C .﹣2D .−12【解答】解:﹣2的倒数是−12. 故选:D .2.(3分)把如图所示的纸片沿着虚线折叠,可以得到的几何体是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥【解答】解:观察展开图可知,几何体是三棱柱. 故选:A .3.(3分)下列等式成立的是( ) A .3+4√2=7√2B .√3×√2=√5C .√3÷√6=2√3 D .√(−3)2=3【解答】解:A .3与4√2不是同类二次根式,不能合并,此选项计算错误; B .√3×√2=√6,此选项计算错误; C .√3√6=√3×√6=3√2,此选项计算错误; D .√(−3)2=3,此选项计算正确; 故选:D .4.(3分)如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )A.只闭合1个开关B.只闭合2个开关C.只闭合3个开关D.闭合4个开关【解答】解:A、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B.5.(3分)点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b+1的值等于()A.5B.3C.﹣3D.﹣1【解答】解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,则3a﹣b=﹣2.∴6a﹣2b+1=2(3a﹣b)+1=﹣4+1=﹣3故选:C.̂上一点,CD⊥OA,CE 6.(3分)如图,半径为10的扇形AOB中,∠AOB=90°,C为AB⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π【解答】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE=36°,由矩形CDOE易得到△DOE≌△CEO,∴∠COB=∠DEO=36°∴图中阴影部分的面积=扇形OBC的面积,∵S扇形OBC=36⋅π×102360=10π∴图中阴影部分的面积=10π,故选:A.二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根等于±3.【解答】解:∵(±3)2=9,∴9的平方根是±3.故答案为:±3.8.(3分)因式分解:x2﹣4=(x+2)(x﹣2).【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).9.(3分)据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为 4.26×104.【解答】解:将42600用科学记数法表示为4.26×104,故答案为:4.26×104.10.(3分)方程x2+2x﹣3=0的两根为x1、x2,则x1•x2的值为﹣3.【解答】解:∵方程x2+2x﹣3=0的两根为x1、x2,∴x1•x2=ca=−3.故答案为:﹣3.11.(3分)今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是4.65﹣4.95.【解答】解:∵一共调查了50名学生的视力情况,∴这50个数据的中位数是第25、26个数据的平均数,由频数分布直方图知第25、26个数据都落在4.65﹣4.95之间,∴这50名学生视力的中位数所在范围是4.65﹣4.95,故答案为:4.65﹣4.95.12.(3分)如图,将分别含有30°、45°角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中角α的度数为140°.【解答】解:如图,∵∠ACB=90°,∠DCB=65°,∴∠ACD=∠ACB﹣∠ACD=90°﹣65°=25°,∵∠A=60°,∴∠DFB=∠AFC=180°﹣∠ACD﹣∠A=180°﹣25°﹣60°=95°,∵∠D=45°,∴∠α=∠D+∠DFB=45°+95°=140°,故答案为:140°.13.(3分)以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为(3,240°).【解答】解:如图所示:点C的坐标表示为(3,240°).故答案为:(3,240°).14.(3分)如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为3cm或5cm.【解答】解:∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1cm,当点O在点H的左侧,⊙O与直线a相切时,如图1所示:OP=PH﹣OH=4﹣1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,如图2所示:OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm,故答案为:3cm或5cm.15.(3分)如图所示的网格由边长为1个单位长度的小正方形组成,点A、B、C在直角坐标系中的坐标分别为(3,6),(﹣3,3),(7,﹣2),则△ABC内心的坐标为(2,3).【解答】解:如图,点I即为△ABC的内心.所以△ABC内心I的坐标为(2,3).故答案为:(2,3).16.(3分)如图,点P在反比例函数y=3x的图象上,且横坐标为1,过点P作两条坐标轴的平行线,与反比例函数y=kx(k<0)的图象相交于点A、B,则直线AB与x轴所夹锐角的正切值为3.【解答】解:点P 在反比例函数y =3x的图象上,且横坐标为1,则点P (1,3), 则点A 、B 的坐标分别为(1,k ),(13k ,3),设直线AB 的表达式为:y =mx +t ,将点A 、B 的坐标代入上式得{k =m +t3=−13km +t,解得m=﹣3,故直线AB 与x 轴所夹锐角的正切值为3, 故答案为3.三、解答题(本大题共有10题,共102分,请在答题卡规定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:(﹣π)0+(12)﹣1−√3sin60°;(2)解不等式组:{3x −1≥x +1,x +4<4x −2.【解答】解:(1)原式=1+2−√3×√32 =1+2−32 =32;(2)解不等式3x ﹣1≥x +1,得:x ≥1, 解不等式x +4<4x ﹣2,得:x >2, 则不等式组的解集为x >2.18.(8分)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成如下图表: 2020年6月2日骑乘人员头盔佩戴情况统计表骑乘摩托车骑乘电动自行车戴头盔人数1872不戴头盔人数2m(1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?(3)求统计表中m的值.【解答】解:(1)不同意,虽然可用某地区一路口的摩托车骑乘人员佩戴头盔情况来估计该地区的摩托车骑乘人员佩戴头盔情况,但是,只用6月3日的来估计,具有片面性,不能代表该地区的真实情况,可用某地区一路口一段时间内的平均值进行估计,就比较客观、具有代表性.(2)通过折线统计图中,摩托车和电动自行车骑乘人员佩戴头盔的百分比的变化情况,可以得出:电动自行车骑乘人员佩戴头盔情况进行宣传,毕竟这5天,其佩戴的百分比增长速度较慢,且数值减低;(3)由题意得,7272+m=45%,解得,m=88,答:统计表中的m的值为88人.19.(8分)一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200300400100016002000摸到白球的频数7293130334532667摸到白球的频率0.36000.31000.32500.33400.33250.3335(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是0.33.(精确到0.01),由此估出红球有2个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.【解答】解:(1)观察表格发现,随着摸球次数的增多,摸到白球的频率逐渐稳定在0.33附近,由此估出红球有2个. 故答案为:0.33,2;(2)画树状图为:由图可知,共有9种等可能的结果数,其中恰好摸到1个白球、1个红球的结果数为4, 所以从该袋中摸出2个球,恰好摸到1个白球、1个红球的结果的概率为49.20.(10分)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度.【解答】解:设走路线A 的平均速度为xkm /h ,则走路线B 的平均速度为(1+50%)xkm /h , 依题意,得:25x−30(1+50%)x=660,解得:x =50,经检验,x =50是原方程的解,且符合题意, ∴(1+50%)x =75.答:走路线B 的平均速度为75km /h .21.(10分)如图,已知线段a ,点A 在平面直角坐标系xOy 内.(1)用直尺和圆规在第一象限内作出点P ,使点P 到两坐标轴的距离相等,且与点A 的距离等于a .(保留作图痕迹,不写作法)(2)在(1)的条件下,若a ≈2√5,A 点的坐标为(3,1),求P 点的坐标.【解答】解:(1)如图,点P即为所求;(2)由(1)可得OP是角平分线,设点P(x,x),过点P作PE⊥x轴于点E,过点A作AF⊥x轴于点F,AD⊥PE于点D,∵P A=a≈2√5,A点的坐标为(3,1),∴PD=x﹣1,AD=x﹣3,根据勾股定理,得P A2=PD2+AD2,∴(2√5)2=(x﹣1)2+(x﹣3)2,解得x=5,x=﹣1(舍去).所以P点的坐标为(5,5).22.(10分)我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m的A处测得在C处的龙舟俯角为23°;他登高6m 到正上方的B处测得驶至D处的龙舟俯角为50°,问两次观测期间龙舟前进了多少?(结果精确到1m,参考数据:tan23°≈0.42,tan40°≈0.84,tan50°≈1.19,tan67°≈2.36)【解答】解:如图,根据题意得,∠C=23°,∠BDE=50°,AE=15m,BE=21m,在Rt△ACE中,tan C=tan23°=AECE=15CE=0.42,解得:CE≈35.7,在Rt△BDE中,tan∠BDE=tan50°=BEDE=21DE=1.19,解得:DE≈17.6,∴CD=CE﹣DE=35.7﹣17.6=18.1≈18m,答:两次观测期间龙舟前进了18m.23.(10分)如图,在△ABC 中,∠C =90°,AC =3,BC =4,P 为BC 边上的动点(与B 、C 不重合),PD ∥AB ,交AC 于点D ,连接AP ,设CP =x ,△ADP 的面积为S . (1)用含x 的代数式表示AD 的长;(2)求S 与x 的函数表达式,并求当S 随x 增大而减小时x 的取值范围.【解答】解:(1)∵PD ∥AB , ∴CP CB=CD CA,∵AC =3,BC =4,CP =x , ∴x4=CD 3,∴CD =34x ,∴AD =AC ﹣CD =3−34x , 即AD =−34x +3;(2)根据题意得,S =12AD ⋅CP =12x(−34x +3)=−38(x −2)2+32, ∴当x ≥2时,S 随x 的增大而减小, ∵0<x <4,∴当S 随x 增大而减小时x 的取值范围为2≤x <4.24.(10分)如图,在⊙O 中,点P 为AB ̂的中点,弦AD 、PC 互相垂直,垂足为M ,BC 分别与AD 、PD 相交于点E 、N ,连接BD 、MN . (1)求证:N 为BE 的中点.(2)若⊙O 的半径为8,AB̂的度数为90°,求线段MN 的长.【解答】(1)证明:∵AD⊥PC,∴∠EMC=90°,̂的中点,∵点P为AB̂=PB̂,∴PA∴∠ADP=∠BCP,∵∠CEM=∠DEN,∴∠DNE=∠EMC=90°=∠DNB,̂=PB̂,∵PA∴∠BDP=∠ADP,∴∠DEN=∠DBN,∴DE=DB,∴EN=BN,∴N为BE的中点;(2)解:连接OA,OB,AB,AC,̂的度数为90°,∵AB∴∠AOB=90°,∵OA=OB=8,∴AB=8√2,由(1)同理得:AM=EM,∵EN=BN,∴MN是△AEB的中位线,∴MN=12AB=4√2.25.(12分)如图,正方形ABCD的边长为6,M为AB的中点,△MBE为等边三角形,过点E作ME的垂线分别与边AD、BC相交于点F、G,点P、Q分别在线段EF、BC上运动,且满足∠PMQ=60°,连接PQ.(1)求证:△MEP≌△MBQ.(2)当点Q在线段GC上时,试判断PF+GQ的值是否变化?如果不变,求出这个值,如果变化,请说明理由.(3)设∠QMB=α,点B关于QM的对称点为B',若点B'落在△MPQ的内部,试写出α的范围,并说明理由.【解答】证明:(1)∵正方形ABCD的边长为6,M为AB的中点,∴∠A=∠ABC=90°,AB=BC=6,AM=BM=3,∵△MBE是等边三角形,∴MB=ME=BE,∠BME=∠PMQ=60°,∴∠BMQ=∠PME,又∵∠ABC=∠MEP=90°,∴△MBQ≌△MEP(ASA);(2)PF+GQ的值不变,理由如下:如图1,连接MG,过点F作FH⊥BC于H,∵ME=MB,MG=MG,∴Rt△MBG≌Rt△MEG(HL),∴BG=GE,∠BMG=∠EMG=30°,∠BGM=∠EGM,∴MB=√3BG=3,∠BGM=∠EGM=60°,∴GE=√3,∠FGH=60°,∵FH⊥BC,∠C=∠D=90°,∴四边形DCHF是矩形,∴FH=CD=6,∵sin∠FGH=FHGF=√32=6FG,∴FG=4√3,∵△MBQ≌△MEP,∴BQ=PE,∴PE=BQ=BG+GQ,∵FG=EG+PE+FP=EG+BG+GQ+PF=2√3+GQ+PF,∴GQ+PF=2√3;(3)如图2,当点B'落在PQ上时,∵△MBQ≌△MEP,∴MQ=MP,∵∠QMP=60°,∴△MPQ是等边三角形,当点B'落在PQ上时,点B关于QM的对称点为B',∴△MBQ≌△MB'Q,∴∠MBQ=∠MB'Q=90°∴∠QME=30°∴点B'与点E重合,点Q与点G重合,∴∠QMB=∠QMB'=α=30°,如图3,当点B'落在MP上时,同理可求:∠QMB=∠QMB'=α=60°,∴当30°<α<60°时,点B'落在△MPQ的内部.26.(14分)如图,二次函数y1=a(x﹣m)2+n,y2=6ax2+n(a<0,m>0,n>0)的图象分别为C1、C2,C1交y轴于点P,点A在C1上,且位于y轴右侧,直线P A与C2在y 轴左侧的交点为B.(1)若P点的坐标为(0,2),C1的顶点坐标为(2,4),求a的值;(2)设直线P A与y轴所夹的角为α.①当α=45°,且A为C1的顶点时,求am的值;②若α=90°,试说明:当a、m、n各自取不同的值时,PAPB的值不变;(3)若P A=2PB,试判断点A是否为C1的顶点?请说明理由.【解答】解:(1)由题意m=2,n=4,∴y1=a(x﹣2)2+4,把(0,2)代入得到a=−1 2.(2)①如图1中,过点A作AN⊥x轴于N,过点P作PM⊥AN于M.∵y1=a(x﹣m)2+n=ax2﹣2amx+am2+n,∴P(0,am2+n),∵A(m,n),∴PM=m,AN=n,∵∠APM=45°,∴AM=PM=m,∴m+am2+n=n,∵m>0,∴am=﹣1.②如图2中,由题意AB⊥y中,∵P (0,am 2+n ),当y =am 2+n 时,am 2+n =6ax 2+n ,解得x =±√66m , ∴B (−√66m ,am 2+n ),∴PB =√66m ,∵AP =2m ,∴PA PB =√66m =2√6.(3)如图3中,过点A 作AH ⊥x 轴于H ,过点P 作PK ⊥AH 于K ,过点B 作BE ⊥KP 交KP 的延长线于E .设B (b ,6ab 2+n ),∵P A =2PB ,∴A [﹣2b ,a (﹣2b ﹣m )2+n ],∵BE∥AK,∴BEAK =PBPA=12,∴AK=2BE,∴a(﹣2b﹣m)2+n﹣am2﹣n=2(am2+n﹣6ab2﹣n),整理得:m2﹣2bm﹣8b2=0,∴(m﹣4b)(m+2b)=0,∵m﹣4b>0,∴m+2b=0,∴m=﹣2b,∴A(m,n),∴点A是抛物线C1的顶点.。
2020年江苏省泰州市中考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)2的算术平方根是()A.B.C.D.22.(3分)下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a33.(3分)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C. D.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点5.(3分)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,P为反比例函数y=(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.8二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)|﹣4|=.8.(3分)天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为.9.(3分)已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为.10.(3分)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)11.(3分)将一副三角板如图叠放,则图中∠α的度数为.12.(3分)扇形的半径为3cm,弧长为2πcm,则该扇形的面积为cm2.13.(3分)方程2x2+3x﹣1=0的两个根为x1、x2,则+的值等于.14.(3分)小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了m.15.(3分)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.16.(3分)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB 方向从点A运动到点B,则点E运动的路径长为.三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(1)计算:(﹣1)0﹣(﹣)﹣2+tan30°;(2)解方程:+=1.18.(8分)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.19.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.20.(8分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.21.(10分)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P 在△AOB的内部,求m的取值范围.22.(10分)如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG 于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.23.(10分)怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?24.(10分)如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.(1)求证:点P为的中点;(2)若∠C=∠D,求四边形BCPD的面积.25.(12分)阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)26.(14分)平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.2020年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2020•泰州)2的算术平方根是()A.B.C.D.2【分析】根据算术平方根的定义直接解答即可.【解答】解:2的算术平方根是,故选B.【点评】本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.(3分)(2020•泰州)下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a3【分析】分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.【解答】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.(3分)(2020•泰州)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C. D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是轴对称图形,又不是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2020•泰州)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)(2020•泰州)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据平均数的意义、方差的意义,可得答案.【解答】解:==165,S2=,原==165,S2=,平均数不变,方差变小,故选:C.【点评】本题考查了方差,利用方差的定义是解题关键.6.(3分)(2020•泰州)如图,P为反比例函数y=(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.8【分析】方法1、作BF⊥x轴,OE⊥AB,CQ⊥AP,易证△BOE∽△AOD,根据相似三角形对应边比例相等的性质即可求出k的值.方法2、先求出OG,OC,再判断出△BOG∽△OAC,得出=,再利用等腰直角三角形的性质得出BG,AC即可得出结论.【解答】解:方法1、作BF⊥x轴,OE⊥AB,CQ⊥AP;设P点坐标(n,),∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°∵PB∥OG,PA∥OC,∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,∴PA=PB,∵P点坐标(n,),∴OD=CQ=n,∴AD=AQ+DQ=n+4;∵当x=0时,y=﹣x﹣4=﹣4,∴OC=DQ=4,GE=OE=OC=;同理可证:BG=BF=PD=,∴BE=BG+EG=+;∵∠AOB=135°,∴∠OBE+∠OAE=45°,∵∠DAO+∠OAE=45°,∴∠DAO=∠OBE,∵在△BOE和△AOD中,,∴△BOE∽△AOD;∴=,即=;整理得:nk+2n2=8n+2n2,化简得:k=8;故选D.方法2、如图1,过B作BF⊥x轴于F,过点A作AD⊥y轴于D,∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°∵PB∥OG,PA∥OC,∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,∴PA=PB,∵P点坐标(n,),∴A(n,﹣n﹣4),B(4﹣)∴AD=AQ+DQ=n+4;∵当x=0时,y=﹣x﹣4=﹣4,∴OC=4,当y=0时,x=﹣4.∴OG=4,∵∠AOB=135°,∴∠BOG+∠AOC=45°,∵直线AB的解析式为y=﹣x﹣4,∴∠AGO=∠OCG=45°,∴∠BGO=∠OCA,∠BOG+∠OBG=45°,∴∠OBG=∠AOC,∴△BOG∽△OAC,∴=,∴=,在等腰Rt△BFG中,BG=BF=,在等腰Rt△ACD中,AC=AD=n,∴,∴k=8,故选D.【点评】本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)(2020•泰州)|﹣4|=4.【分析】因为﹣4<0,由绝对值的性质,可得|﹣4|的值.【解答】解:|﹣4|=4.【点评】本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.8.(3分)(2020•泰州)天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为 4.25×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将42500用科学记数法表示为:4.25×104.故答案为:4.25×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(3分)(2020•泰州)已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为8.【分析】先将原式化简,然后将2m﹣3n=﹣4代入即可求出答案.【解答】解:当2m﹣3n=﹣4时,∴原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8故答案为:8【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.10.(3分)(2020•泰州)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是不可能事件.(填“必然事件”、“不可能事件”或“随机事件”)【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:∵袋子中3个小球的标号分别为1、2、3,没有标号为4的球,∴从中摸出1个小球,标号为“4”,这个事件是不可能事件,故答案为:不可能事件.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.(3分)(2020•泰州)将一副三角板如图叠放,则图中∠α的度数为15°.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.12.(3分)(2020•泰州)扇形的半径为3cm,弧长为2πcm,则该扇形的面积为3πcm2.【分析】先用弧长公式求出扇形的圆心角的度数,然后用扇形的面积公式求出扇形的面积.【解答】解:设扇形的圆心角为n,则:2π=,得:n=120°.==3πcm2.∴S扇形故答案为:3π.【点评】本题考查的是扇形面积的计算,根据题意先求出扇形的圆心角的度数,再计算扇形的面积.13.(3分)(2020•泰州)方程2x2+3x﹣1=0的两个根为x1、x2,则+的值等于3.【分析】先根据根与系数的关系得到x1+x2=﹣,x1x2=﹣,再通分得到+=,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣,x1x2=﹣,所以+===3.故答案为3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.14.(3分)(2020•泰州)小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了25m.【分析】首先根据题意画出图形,由坡度为1:,可求得坡角∠A=30°,又由小明沿着坡度为1:的山坡向上走了50m,根据直角三角形中,30°所对的直角边是斜边的一半,即可求得答案.【解答】解:如图,过点B作BE⊥AC于点E,∵坡度:i=1:,∴tan∠A=1:=,∴∠A=30°,∵AB=50m,∴BE=AB=25(m).∴他升高了25m.故答案为:25.【点评】此题考查了坡度坡角问题.此题比较简单,注意能构造直角三角形并用解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.15.(3分)(2020•泰州)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为(7,4)或(6,5)或(1,4).【分析】由勾股定理求出PA=PB==,由点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,得出PC=PA=PB=,即可得出点C 的坐标.【解答】解:∵点A、B、P的坐标分别为(1,0),(2,5),(4,2).∴PA=PB==,∵点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,∴PC=PA=PB==,则点C的坐标为(7,4)或(6,5)或(1,4);故答案为:(7,4)或(6,5)或(1,4).【点评】本题考查了三角形的外接圆、坐标与图形性质、勾股定理;熟练掌握勾股定理是解决问题的关键.16.(3分)(2020•泰州)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为6.【分析】如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,求出AC′即可解决问题.【解答】解:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′==6,故答案为6.【点评】主要考查轨迹、平移变换、勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2020•泰州)(1)计算:(﹣1)0﹣(﹣)﹣2+tan30°;(2)解方程:+=1.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=1﹣4+1=﹣2;(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)(2020•泰州)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.【分析】(1)求得16﹣20的频数即可补全条形统计图;(2)用样本估计总体即可;【解答】解:(1)观察统计图知:6﹣10个的有6人,占10%,∴总人数为6÷10%=60人,∴16﹣20的有60﹣6﹣6﹣24﹣12=12人,∴条形统计图为:(2)该校全体学生中每周学习数学泰微课在16至30个之间的有1200×=960人.【点评】本题考查了条形统计图及用样本估计总体的知识,解题的关键是认真读两种统计图,并从统计图中整理出进一步解题的信息,难度不大.19.(8分)(2020•泰州)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.(8分)(2020•泰州)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.【点评】本题主要考查了基本作图以及相似三角形的判定与性质的运用,解题时注意:两角对应相等的两个三角形相似;相似三角形的对应边成比例.21.(10分)(2020•泰州)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P 在△AOB的内部,求m的取值范围.【分析】(1)要判断点(m+1,m﹣1)是否的函数图象上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可.(2)根据题意得出0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3,解不等式组即可求得.【解答】解:(1)∵当x=m+1时,y=m+1﹣2=m﹣1,∴点P(m+1,m﹣1)在函数y=x﹣2图象上.(2)∵函数y=﹣x+3,∴A(6,0),B(0,3),∵点P在△AOB的内部,∴0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3∴1<m<.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的性质,图象上的点的坐标适合解析式.22.(10分)(2020•泰州)如图,正方形ABCD中,G为BC边上一点,BE⊥AG 于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.【分析】(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF,即可根据AAS证明△ABE≌△DAF;(2)设EF=x,则AE=DF=x+1,根据四边形ABED的面积为6,列出方程即可解决问题;【解答】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∵DF⊥AG,BE⊥AG,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS).(2)设EF=x,则AE=DF=x+1,由题意2××(x+1)×1+×x×(x+1)=6,解得x=2或﹣5(舍弃),∴EF=2.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.23.(10分)(2020•泰州)怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?【分析】(1)由A种菜和B种菜每天的营业额为1120和总利润为280建立方程组即可;(2)设出A种菜多卖出a份,则B种菜少卖出a份,最后建立利润与A种菜多卖出的份数的函数关系式即可得出结论.【解答】解:(1)设该店每天卖出A、B两种菜品分别为x、y份,根据题意得,,解得:,答:该店每天卖出这两种菜品共60份;(2)设A种菜品售价降0.5a元,即每天卖(20+a)份;总利润为w元因为两种菜品每天销售总份数不变,所以B种菜品卖(40﹣a)份每份售价提高0.5a元.w=(20﹣14﹣0.5a)(20+a)+(18﹣14+0.5a)(40﹣a)=(6﹣0.5a)(20+a)+(4+0.5a)(40﹣a)=(﹣0.5a2﹣4a+120)+(﹣0.5a2+16a+160)=﹣a2+12a+280=﹣(a﹣6)2+316当a=6,w最大,w=316答:这两种菜品每天的总利润最多是316元.【点评】此题主要考查的是二元一次方程组和二次函数的应用,解本题的关键是正确理解题意,找出题目中的等量关系,再列出方程组或函数关系式,最后计算出价格变化后每天的总利润.24.(10分)(2020•泰州)如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.(1)求证:点P为的中点;(2)若∠C=∠D,求四边形BCPD的面积.【分析】(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理即可得到结论;(2)根据圆周角定理得到∠POB=2∠D,根据三角形的内角和得到∠C=30°,推出四边形BCPD是平行四边形,于是得到结论.【解答】(1)证明:连接OP,∵CP与⊙O相切于点P,∴PC⊥OP,∵BD∥CP,∴BD⊥OP,∴=,∴点P为的中点;(2)解:∵∠C=∠D,∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∵PO=AB=6,∴PC=6,∵∠ABD=∠C=30°,∴OE=OB=3,∴PE=3,∴四边形BCPD的面积=PC•PE=6×3=18.【点评】本题考查了切线的性质,垂径定理,平行四边形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.25.(12分)(2020•泰州)阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)【分析】(1)作AC⊥x轴,由PC=4、AC=4,根据勾股定理求解可得;(2)作BD∥x轴,分点P在AC左侧和右侧两种情况求解,P位于AC左侧时,根据勾股定理即可得;P位于AC右侧时,作AP2⊥AB,交x轴于点P2,证△ACP2≌△BEA得AP2=BA=5,从而知P2C=AE=3,继而可得答案;(3)分点P在AC左侧和右侧两种情况求解,P位于AC左侧时,根据勾股定理即可得;点P位于AC右侧且P3M=6时,作P2N⊥P3M于点N,知四边形AP2NM 是矩形,证△ACP2∽△P2NP3得=,求得P2P3的长即可得出答案.【解答】解:(1)如图1,作AC⊥x轴于点C,则AC=4、OC=8,当t=4时,OP=4,∴PC=4,∴点P到线段AB的距离PA===4;(2)如图2,过点B作BD∥x轴,交y轴于点E,①当点P位于AC左侧时,∵AC=4、P1A=5,∴P1C===3,∴OP1=5,即t=5;②当点P位于AC右侧时,过点A作AP2⊥AB,交x轴于点P2,∴∠CAP2+∠EAB=90°,∵BD∥x轴、AC⊥x轴,∴CE⊥BD,∴∠ACP2=∠BEA=90°,∴∠EAB+∠ABE=90°,∴∠ABE=∠P2AC,在△ACP2和△BEA中,∵,∴△ACP2≌△BEA(ASA),∴AP2=BA===5,而此时P2C=AE=3,∴OP2=11,即t=11;(3)如图3,①当点P位于AC左侧,且AP3=6时,则P3C===2,∴OP3=OC﹣P3C=8﹣2;②当点P位于AC右侧,且P3M=6时,过点P2作P2N⊥P3M于点N,则四边形AP2NM是矩形,∴∠AP2N=90°,∠ACP2=∠P2NP3=90°,AP2=MN=5,∴△ACP2∽△P2NP3,且NP3=1,∴=,即=,∴P2P3=,∴OP3=OC+CP2+P2P3=8+3+=,∴当8﹣2≤t≤时,点P到线段AB的距离不超过6.【点评】本题主要考查一次函数的综合问题,理解题意掌握点到线段的距离概念及分类讨论思想的运用、矩形的判定与性质、相似三角形的判定与性质是解题的关键.26.(14分)(2020•泰州)平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.【分析】(1)①当a=1、d=﹣1时,m=2a﹣d=3,于是得到抛物线的解析式,然后求得点A和点B的坐标,最后将点A和点B的坐标代入直线AB的解析式求得k的值即可;②将x=a,x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,然后依据y1随着x的增大而减小,可得到﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),结合已知条件2a﹣m=d,可求得d的取值范围;(2)由d=﹣4可得到m=2a+4,则抛物线的解析式为y=﹣x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB与x轴的位置关系;(3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,﹣2d),D(0,﹣4d﹣8),于是可得到CD的长度.【解答】解:(1)①当a=1、d=﹣1时,m=2a﹣d=3,所以二次函数的表达式是y=﹣x2+x+6.∵a=1,∴点A的横坐标为1,点B的横坐标为3,把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,∴A(1,6),B(3,0).将点A和点B的坐标代入直线的解析式得:,解得:,所以k的值为﹣3.②∵y=﹣x2+(m﹣2)x+2m=﹣(x﹣m)(x+2),∴当x=a时,y=﹣(a﹣m)(a+2);当x=a+2时,y=﹣(a+2﹣4)(a+4),∵y1随着x的增大而减小,且a<a+2,∴﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),解得:2a﹣m>﹣4,又∵2a﹣m=d,∴d的取值范围为d>﹣4.(2)∵d=﹣4且a≠﹣2、a≠﹣4,2a﹣m=d,∴m=2a+4.∴二次函数的关系式为y=﹣x2+(2a+2)x+4a+8.把x=a代入抛物线的解析式得:y=a2+6a+8.把x=a+2代入抛物线的解析式得:y=a2+6a+8.∴A(a,a2+6a+8)、B(a+2,a2+6a+8).∵点A、点B的纵坐标相同,∴AB∥x轴.(3)线段CD的长度不变.∵y=﹣x2+(m﹣2)x+2m过点A、点B,2a﹣m=d,∴y=﹣x2+(2a﹣d﹣2)x+2(2a﹣d).∴y A=﹣a2+(2﹣d)a﹣2d,y B=a2+(2﹣d)a﹣4d﹣8.∴点C(0,﹣2d),D(0,﹣4d﹣8).∴DC=|﹣2d﹣(﹣4d﹣8)|=|2d+8|.∵d为常数,∴线段CD的长度不变.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,求得点A和点B的坐标是解题的关键.。
泰州市2020版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共36分)1. (3分)有理数a、b在数轴上的位置如图所示,在下列结论中:①ab<0;②a+b>0;③a﹣b<0;④|a|>|b|正确的结论有()A . 1个B . 2个C . 3个D . 4个2. (3分)下列运算正确的是()A . a2•a2=a4B . (a﹣b)2=a2﹣b2C . 2+=2D . (﹣a3)2=﹣a63. (3分) (2020九下·龙岗期中) 在今年十一期间,汝州风穴寺景区共接待游客8. 7275万人次,旅游总收入为2094. 6万元. 将2094. 6万元用科学记数法表示为()A . 元B . 元C . 元D . 元4. (3分)(2020·慈溪模拟) 下图由正六边形与两条对角线所组成的图形中不是轴对称图形的是()A .B .C .D .5. (3分)(2017·深圳) 图中立体图形的主视图是()A .B .C .D .6. (3分)(2019·合肥模拟) 整数m满足m-1<<m ,则m的值为()A . 1B . 2C . 3D . 47. (3分)(2019·平阳模拟) 化简的结果是()A . a+1B . a﹣1C . a2﹣aD . a8. (3分) (2019八下·赵县期中) 如图以数轴上的单位长度为边作一个正方形,以数轴的原点为圆心,以正方形的对角线为半径画弧交数轴于点A,则点A表示的数是()A .B .C . -D . -9. (3分) (2018八上·靖远期末) 已知关于x,y的方程组的解为,则m,n的值为()A .B .C .D .10. (3分)(2016·淄博) 反比例函数y= (a>0,a为常数)和y= 在第一象限内的图象如图所示,点M在y= 的图象上,MC⊥x轴于点C,交y= 的图象于点A;MD⊥y轴于点D,交y= 的图象于点B,当点M在y= 的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A . 0B . 1C . 2D . 311. (3分)等腰三角形的一条边长为6,另一边长为13,则它的周长为()A . 25B . 25或32C . 32D . 1912. (3分) (2018九上·钦州期末) 已知点(x1 , y1),(x2 , y2)均在抛物线y=x2﹣1上,下列说法正确的是()A . 若x1=﹣x2 ,则y1=﹣y2B . 若y1=y2 ,则x1=x2C . 若x1<x2<0,则y1<y2D . 若0<x1<x2 ,则y1<y2二、填空题 (共6题;共18分)13. (3分)计算:a2•a4=________.14. (3分) (2019七下·北京期末) 计算: ________.15. (3分) (2019九上·伊通期末) 从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是________.16. (3分) (2019八上·靖远月考) 一次函数的图象与x轴的交点坐标是________ ,与y轴的交点坐标是________.17. (3分)如图,∠MON=45°,OA1=1,作正方形A1B1C1A2 ,周长记作L1;再作第二个正方形A2B2C2A3 ,周长记作L2;继续作第三个正方形A3B3C3A4 ,周长记作L3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Ln=________.18. (3分) (2019九上·道里期末) 如图,在菱形ABCD中,,点E在边CD上,且,与关于AE所在的直线成对称图形以点A为中心,把顺时针旋转,得到,连接GF,则线段GF的长为________.三、解答题 (共7题;共66分)19. (8分)(2016·石峰模拟) 把直线y=﹣x﹣3向上平移m个单位,与直线y=2x+4的交点在第二象限,则m的取值范围是________.20. (8.0分)甲、乙两名射手在相同条件下打靶,射中的环数如图所示,利用图中提供的信息,解答下列问题:(1)分别求甲、乙两名射手中环数的众数和平均数;(2)如果从甲、乙两名射手中选一名去参加射击比赛,你选谁去?为什么?21. (10分)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,求∠BAC的度数.22. (10分)(2017·荆门) 金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB 的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)23. (10.0分)(2020·邓州模拟) 某社会团体准备购进甲、乙两种防护服捐给一线抗疫人员,经了解,购进5件甲种防护服和4件乙种防护服需要2万元,购进10件甲种防护服和3件乙种防护服需要3万元.(1)甲种防护服和乙种防护服每件各多少元?(2)实际购买时,发现厂家有两种优惠方案,方案一:购买甲种防护服超过20件时,超过的部分按原价的8折付款,乙种防护服没有优惠;方案二:两种防护服都按原价的9折付款,该社会团体决定购买件甲种防护服和30件乙种防护服.①求两种方案的费用与件数的函数解析式;②请你帮该社会团体决定选择哪种方案更合算.24. (10分) (2019八上·宝安期中) 如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(2)在x轴上是否存在一个点P,使△PAM为等腰三角形?如果有请直接写出符合题意的所有点P的坐标.25. (10分)(2017·深圳模拟) 如图1,平面直角坐标系中,抛物线y= 与x 轴的两个交点分别为A(﹣3,0),B(1,0),与y轴的交点为D,对称轴与抛物线交于点C,与x轴负半轴交于点H.(1)求抛物线的表达式;(2)点E,F 分别是抛物线对称轴CH 上的两个动点(点E 在点F 上方),且EF=1,求使四边形BDEF 的周长最小时的点E,F 坐标及最小值;(3)如图2,点P 为对称轴左侧,x 轴上方的抛物线上的点,PQ⊥AC 交AC 于点Q,是否存在这样的点P 使△PCQ与△ACH 相似,若存在请求出点P 的坐标,若不存在请说明理由.参考答案一、选择题 (共12题;共36分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共18分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共66分)19-1、20-1、20-2、21-1、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
泰州市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)﹣8的相反数是()A . 8B . -8C .D .2. (2分) (2017九·龙华月考) 如图4,已知五边形ABCDE是⊙O的内接正五边形,且⊙O的半径为1.则图中阴影部分的面积是()A .B .C .D .3. (2分)下列几何体中,俯视图是三角形的是()A .B .C .D .4. (2分)(2019·邯郸模拟) 样本一:92,94,96;样本二:m,94,96.嘉淇通过相关计算并比较,发现:样本二的平均数较大,方差较小.则m的值可能是()A . 91B . 92C . 95D . 985. (2分) (2016六下·新泰月考) 计算﹣2016﹣1﹣(﹣2016)0的结果正确的是()A . 0B . 2016C . ﹣2016D . ﹣6. (2分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A .B .C .D .7. (2分) (2019八上·东莞期中) 如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A . SSSB . SASC . ASAD . AAS8. (2分)如图,是交警部门为缓解市区内交通拥挤在学府路某处设立的路况显示牌.立杆AB的高度是米,从D点测得显示牌顶端C和底端B的仰角分别是60°和45°,则显示牌BC的高度为()A . 米B . (3- )米C . 9米D . (2 -3)米9. (2分)(2017·黄石港模拟) 某支青年排球队有12名队员,队员年龄情况如图所示,那么球队队员年龄的众数、中位数分别是()A . 19,19B . 19,20C . 20,20D . 22,1910. (2分) (2019八下·重庆期中) 对于函数,下列结论不正确的是()A . 它的图象必经过点(-1,-2)B . 图象与y轴的交点是(-2,0)C . 当 x<-2时,y>0D . 它的图象不经过第一象限11. (2分)由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A . 16(1+a)2=25B . 25(1﹣2a)=16C . 25(1﹣a)2=16D . 25(1﹣a2)=1612. (2分)一个圆柱的侧面展开图是相邻边长分别为10和16的矩形,则该圆柱的底面圆半径是()A .B . 或C .D . 或13. (2分)(2017·深圳模拟) 下列说法正确的是().A . 将抛物线 = 向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是.B . 方程有两个不相等的实数根.C . 平行四边形既是中心对称图形又是轴对称图形.D . 平分弦的直径垂直于弦,并且平分这条弦所对的两条弧.14. (2分)一个菱形链,此链按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分菱形的个数可能是()A . 2008B . 2010C . 2012D . 2014二、填空题 (共6题;共7分)15. (1分) (2017八上·金堂期末) 若,则x= ________16. (1分)若2m﹣n2=4,则代数式10+4m﹣2n2的值为________ .17. (1分)如图,原点是和的位似中心,点与点是对应点,点,则点的坐标________.18. (1分)(2017·姑苏模拟) 分式方程 = 的解是________.19. (2分)(2020·嘉兴·舟山) 如图,在半径为的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为________;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为________ 。
2023年江苏省泰州市中考数学学业水平测试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一个密闭不透明的盒子里有若干个白球,在不允许将球全部倒出来的情况下,为估计白球的个数,小刚向其中放人 8 个黑球,摇匀后从中随机模出一个球记下颜色,再把它放回盒中,不断重复,共模球 400 次,其中 88次摸到黑球,估计盒中大约有白球( )A .28 个B .30 个C . 36 个D . 42 个2.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( )A .6cmB .10cmC .32cmD .52cm3.已知某种品牌电脑的显示器的寿命大约为4210⨯小时,这种显示器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( )4. 如图,DE ∥BC ,点D 、E 分别在 AB 、AC 上,且AD : AB= 1 : 3 , CE=4,则 AC 的长为( )A .6B .5C .7D . 835.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A .50°B .80°C .90°D . 100° 6. 在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( )A .k >3B .k >0C .k <3D .k <07.平行四边形的周长为 24 cm ,相邻两边长的比为 3:1,那么这个平行四边形较短的边长( )A .3cmB .6cmC .9cmD .12cm8.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .89.如图,直线a 、b 被c 所截,a ∥b ,已知∠1 =50°,则∠2 等于( )A .30°B .50°C .130D .150°10.下列计算错误..的是( ) A .6a 2b 3÷(3a 2b-2ab 2)=2b 2-3abB .[12a 3+(-6a 2)]÷(-3a )=-4a 2+2aC .(-xy 2-3x )÷(-2x )=12y 2+32D .[(-4x 2y )+2xy 2]÷2xy=-2x+y 11.下列事件中,属于必然事件的是( )A .打开电视机,正在播放新闻B .父亲的年龄比他儿子年龄大C .通过长期努力学习,你会成为数学家D .下雨天,每个人都打着伞二、填空题 12.如图,直线 AB 经过⊙O 上一点 C ,且OA=OB ,CA= CB ,则直线 AB 与⊙O 的位置关系是 .13.船A 在灯塔C 的东北方向(即北偏东 45°方向)上,船B 在灯塔C 的南偏东 60°的方向上,则∠ACB= .14.半径为6 ㎝,弧长为2π2π的扇形面积为 ㎝2.15.如图,□ABCD 的周长为20,对角线AC 的长为5,则ABC △的周长为 .16.已知□ABCD 中,∠A 比∠B 的3倍大20°,则∠C= ,∠D= . 17.平行四边形的周长为30 cm ,两条邻边不等,其中较长一边为y(cm),较短一边为x(cm), 则y 与x 的函数解析式为 ,自变量x 的取值范围为 .18.函数y=3x+5中,自变量x 的取值范围为 . 19.如果一个角的两边分别与另一个角的两边平行,并且这两个角相差 90°,那么这两个角的度数分别是 .20.若02910422=+-+-b b a a ,则a = ,=b .21.如图,AB+BC>AC ,其理由是 .22.在括号内填上适当的项:(1)a-( )=a-b-c, x+y-1=-( ) ,3[( )+x]=-6y+3x.(2) 2282x xy y -+= 2x +( )= 2x -( ).(3)22)12m mn n -+-=1-( )(4) (-a+b+c)(a+b-c)=[b+( )][b-( )].三、解答题23.在△ABC 中,P 是BC 上一动点,过点P 作PE ∥AC 交AB 于点E ,过点P 作PF ∥AB 交AC 于点F ,当点P 运动到什么位置时,四边形AEPF 是菱形?24.把下列命题改写成“如果……,那么……”的形式.(1)两条直线相交,只有一个交点.改写:(2)等角的补角相等.改写:25.在同一直角坐标系中画出一次函数121y x =-+与223y x =+的图象,并根据图象解答下 列问题:(1)直线121y x =-+、223y x =+与y 轴分别交于A 、B .求A 、B 两点的坐标;(2)求直线121y x =-+与223y x =+的交点P 的坐标;(3)△PAB 的面积为多少?26.如图是一个被等分成12个扇形的转盘.请在转盘上选出若干个扇形涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自由转动这个转盘,当它停止转动时,指针落在阴影区域内的概率为41.27.有这样一道题“计算:2222111x x x x x x x-+-÷--+的值,其中2008x =.” 甲同学把“2008x =”错抄成“2080x =”,但他的计算结果也正确,这是怎么回事?28.月球质量约是257.35110⨯g ,地球质量约是275.97710⨯ g ,问地球质量约是月球质量的多少倍?(结果保留整数)29.如图 ,将一张长方形纸斜折过去,使顶点A 落在A ′处,BC 为折痕,然后把BE 折过去,使之与A ′B 重合,折痕为 BD ,那么两折痕BC 、BD 的夹角是多少度?30.已有长为l 的篱笆,利用它和房屋的一面墙围成如图形状的园子,园子的宽为t .(1)用关于l 、t 的代数式表示园子的面积;(2)当l=100 m,t=30 m 时,求园子的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.C4.A5.D6.A7.A8.C9.C10.A11.B二、填空题12.相切.13.75°14.6π 15.1516.140°,40°17.y=15-x ,O<x<7.518.任何实数19.135°、45°20.2,521.两点之间线段最短22.(4)c a -, c a -(1) b c +,1x y --+,2y - (2)282xy y -+, 282xy y - (3) 222m mn n -+三、解答题23.P 运动到∠A 的平分线与BC 的交点24.(1)如果两条直线相交.那么它们只有一个交点;(2)如果两个角分别是两个相等的角的补角,那么这两个角相等25.图象略.(1)A(0,1),B(0,3);(2)P(12-,2);(3)111(31)222⨯-⨯-=.26.略.27.原式的值为 0,与x值无关28.81 倍29.如图,由题意,知∠1 =∠2,∠3=∠4.∵∠1+∠2 +∠3 +∠4=180°,∴∠DOC=∠2+∠4 =90°.即两折痕BC、BD的夹角是 90°.30.(1) (2)t l t⋅- (2)1200 (m2 )。
2020年泰州市初中毕业升学统一考试初中数学数学试卷1.化简)2(--的结果是A .2-B .21-C .21D .22.国家投资建设的泰州长江大桥差不多开工,据«泰州日报»报道,大桥预算总造价是9 370 000 000元人民币,用科学计数法表示为A .93.7⨯910元B .9.37⨯910元C .9.37⨯1010元D .0.937⨯1010元3.以下运算结果正确的选项是A .6332X X X =•B .623)(X X -=-C .33125)5(X X =D .55X X X =÷ 4.如图,以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD .下底BC 以及腰AB 均相切,切点分不是D .C .E 。
假设半圆O 的半径为2,梯形的腰AB 为5,那么该梯形的周长是A .9B .10C .12D .145.如图,直线a 、b 被直线c 所截,以下讲法正确的选项是A .当21∠=∠时,一定有a // bB .当a // b 时,一定有21∠=∠C .当a // b 时,一定有 18021=∠+∠D .当a // b 时,一定有9021=∠+∠ 6.如图是一个几何体的三视图,依照图中提供的数据〔单位:cm 〕可求得那个几何体的体积为A .23cmB .43cmC .63cmD .83cm7.如图,一扇形纸片,圆心角AOB ∠为 120,弦AB 的长为32cm ,用它围成一个圆锥的侧面〔接缝忽略不计〕,那么该圆锥底面圆的半径为A .32cmB .π32cmC .23cmD .π23cm 8.依照下面流程图中的程序,当输入数值x 为2-时,输出数值y 为A .4B .6C .8D .109.二次函数342++=x x y 的图象能够由二次函数2x y =的图象平移而得到,以下平移正确的选项是A .先向左平移2个单位长度,再向上平移1个单位长度B .先向左平移2个单位长度,再向下平移1个单位长度C .先向右平移2个单位长度,再向上平移1个单位长度D .先向右平移2个单位长度,再向下平移1个单位长度10.有以下事件:①367人中必有2人的生日相同;②抛掷一只平均的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0C时冰融解;④假如A .b 为实数,那么a+b=b+a 。
2020年江苏省泰州市中考数学综合检测试卷A卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图, AP 为圆O 的切线, P 为切点, OA 交圆O 于点B , 若40A ∠=, 则APB ∠等于( )A .25B .20C .40D .35 2.已知直角三角形的面积为30,斜边上的中线是6.5,则两直角边的和是( ) A .19 B .17C .16D .15.53.一组数据共40个,分成5组,第1~4组的频数分别是10,5,7,6,第5组的频率是( )A .0.15B .0.20C .0.25D .0.304.如图,如果AB ∥CD ,那么角α,β,γ之间的关系式为( ) A .α+β+γ=360° B .α-β+γ=180° C .α+β+γ=180° D .α+β-γ=180°5.点P (x ,y )的坐标x ,y 满足0xy =,则P 点在( ) A .x 轴上 B .y 轴上 C .x 轴或y 轴上 D .原点 6.在△ABC 中,AB = BC ,∠A =80°, 则∠B 的度数是( )A .100°B .80°C . 20D . 80°或 20°7.不改变分式 1.3120.7x x y--的值,把它的分子、分母的系数化为整数,其结果正确的是( )A .13127x x y--B .131027x x y--C .1310207x x y--D .131207x x y--8.若x 满足2310x x ++=,则代数式221x x+的值是( ) A .37B .3C .949D .79.用科学记数法表示0.000 0907,并保留两个有效数字,得( ) A . 49.110-⨯B .59.110-⨯C .59.010-⨯D .59.0710-⨯10.下列方程中,与方程1x y +=有公共解23x y =-⎧⎨=⎩的是( ) A .45y x -= B .23y 13x -=- C .21y x =+ D .1x y =- 11.已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是( )A .6B .2 m -8C .2 mD .-2 m12.一块试验田的形状是三角形(设其为ABC △),管理员从BC 边上的一点D 出发,沿DC CA AB BD →→→的方向走了一圈回到D 处,则管理员从出发到回到原处在途中身体( )A .转过90B .转过180C .转过270D .转过36013.下列说法错误的是 ( ) A .(-3)2的平方根是±3B .绝对值等于它的相反数的数一定是负数C .单项式235x y z 与322zy x -是同类项D .近似数3.14×103有三个有效数字二、填空题如图是一个圆柱体,它的左视图是 (填图形的名称即可).15.如图,正方形内接于⊙O ,已知正方形的边长为22cm ,则图中的阴影部分的面积是 _______ cm 2(用π表示).16.将ABC △绕点C 顺时针旋转得到A B C '''△,已知903ACA BC '∠==,,则点B 旋转经过的路线长是 .17.“含有相同的字母,并且相同字母的指数也相同的项,叫做同类项”是 的定义. 18.在一组数据中,其中的两个数为m ,n ,已知m 比n 大10,最小的数比m 小l4,最大的 数比n 大l7,那么这组数据的极差是 .19.学校组织学生去剧院看元旦文艺会演,小王的座位是3排5号,小林的座位是5排3 号. (1)如果3排5号记作(3,5),那么5排3号记作 . (2)(9,12)表示 ,(12,9)表示 .20.如图,是几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是 .21.观察下表: 幂的运算 18 182 183 184 185 186 187 188 … 结果的个位数字84268426…通过以上信息,用你发现的规律得出 182008的个位数字是.22.等边三角形ABC绕着它的中心,至少旋转度才能与其本身重合.三、解答题23.如图,甲站在墙前,乙在墙后,为了不被甲看到,请你在图中画出乙的活动区域.24.如图,已知△ABC、△DEF均为正三角形,D、E分别在AB、•BC上,请找出所有与△DBE相似的三角形,并找一对进行证明.25.已知:如图,在□ABCD 中,以A为圆心,AB为半径作圆交AD、BC于F、G,延长 BA交⊙A于E.求证:⌒EF =⌒FG.26.已知关于x的一元二次方程x2-m x-2=0.……①(1) 若x=-1是方程①的一个根,求m的值和方程①的另一根;(2) 对于任意实数m,判断方程①的根的情况,并说明理由.27. 下面是某同学对多项式22(42)(46)4x x x x -+-++进行因式分解的过程. 解:设24x x y -=原式=(2)(6)4y y +++ (第一步) =2816y y ++ (第二步) =2(4)y + (第三步) =22(44)x x -+ (第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的( ) A .提取公因式 B . 平方差公式C .两数和的完全平方公式D . 两数差的完全平方公式(2)该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”);若不彻底,请直接写出因式分解的最后结果 ;(3)请你模仿以上方法尝试对多项式22(2)(22)1x x x x --++进行因式分解.28. 已知一个梯形的上底长为2a b -,下底长为43a b +,高为a b -,求这个梯形的面积. 2232a ab b --29.计算3(2)-,3(3)-,31()2-,31()3-,并找出其中最大的数和最小的数.30.以给定的图形“○○、△△、二二”(两个圆、两个三角形、两条平行线段)为构件,尽可能多地构思出独特且有意义的图形,并写上一两句贴切诙谐的解说词.如图左框中是符合要求的一个图形,请在右框中画出与之不同的图形,比一比,看谁想得多.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.D4.D5.C6.C7.C8.D9.B10.B11.D12.D13.B二、填空题14.矩形15.π-216.3π17.2同类项18.2119.(1)(5,3);(2)9排12号,l2排9号20.5个21.622.120三、解答题23.如图中斜线区.24.△ADG, △GFH, △HEC.25.连结 AG ,∵AB 、AG 是半径,∴AB=AG ,∴∠2=∠3 ,∵□ABCD ,∴.AD ∥BC ,∴∠1 = ∠2,∠3 =∠4 ,∴∠1 = ∠4 ,∴⌒EF =⌒FG .26.解:(1) x =-1是方程①的一个根,所以1+m -2=0, 解得m =1. 方程为x 2-x -2=0, 解得, x 1=-1, x 2=2. 所以方程的另一根为x =2.(2) ac b 42-=m 2+8,因为对于任意实数m ,m 2≥0,所以m 2+8>0, 所以对于任意的实数m ,方程①有两个不相等的实数根.27.(1)C (2)不彻底,4(2)x - (3)4(1)x -28.2232a ab b --29.最大的数31()3-,最小的数为3(3)-30.。
2020年江苏省泰州市中考数学综合测评试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,小芳和爸爸正在散步,爸爸身高1.8m ,他在地面上的影长为2.1m .若小芳比爸爸矮0.3m ,则她的影长为( )A .1.3mB .1.65mC .1.75mD .1.8m2.如图,等腰梯形ABCD 中,AD ∥BC ,以A 为圆心,AD 为半径的圆与BC 切于点M ,与AB 交于点E ,若AD =2,BC =6,则⌒DE的长为( ) A .23π B .43π C .83π D .π3 3.某班级想举办一次书法比赛,全班45名同学必须每人上交一份书法作品,设一等奖5名,二等奖10名,三等奖15名,那么该班某位同学获一等奖的概率为( )A .19B .29C .13D .23 4.一个圆柱的侧面展开图是相邻边长分别为10和16的矩形,则该圆柱的底面圆半径是( ) A .π5 B .π8 C .π5或π8 D .π10或π16 5.若2m-5m+5(2)y m x =-是反比例函数,则m 的值是( ) A .4B .1或4C .3D .2或-3 6.顺次连接菱形各边中点所得的四边形一定是( )A .等腰梯形B .正方形C .平行四边形D .矩形 7.已知四边形ABCD 中,90A B C ===∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .90D =∠B .AB CD =C .AD BC =D .BC CD = 8.下列语句中,不是命题的是( ) A .若a -c =b -c ,则a =b B .同角的余角相等C .作线段AB 的垂直平分线D .两直线相交,只有一个公共点 9.如图△ABC 与△A ′B ′C ′关于直线MN 对称,P 为MN 上任意一点,下列说法不正确的是( )A .AP=A ′PB .MN 垂直平分AA ′,CC ′C .这两个三角形面积相等D .直线AB ,A ′B ′的交点不一定在MN 上10.不解方程判断方程21230111x x x -+=+--的解是( ) A .O B .1 C .2 D .1311.下列各组图形,可经过平移变换由一个图形得到另一个图形的是( )12.如果一个数的平方与这个数的差等于零,那么这个数只能是( )A .0B .-1C . 1D .0 或 1二、填空题13.如图所示,在 Rt △ABC 中,∠C= 90°,AC= 6 ,BC= 8 ,那么sinA = .cosA = ,tanB = .14.如图,有6张牌,从中任意抽取两张,点数和是奇数的概率是________.15.反比例函数1(1)y k x -=+的图象在每一象限内,y 随x 的增大而减小,那么庄的取值范围是 .16.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个四边形各角为 .17.已知一次函数y kx b =+(k ≠0)的图象经过点(0,1),而且y 随x 的增大而增大,请你写出一个符合上述条件的函数解析式 .18.在平面直角坐标系中.点A(x-l ,2-x)在第四象限,则实数x 的取值范围是 .19.小惠想将长、宽、高分别是4cm 、3cm 、2cm 的两个完全相同的长方体叠放在一起. 可是结果有多种,小惠希望得到一种新的长方体,使它的表面积最小. 请问新的长方体中表面积最小的是 cm 2.20.如图,在△ABC 中,∠ACB=90°,AC=BC ,∠ACD=52°,则∠BDC= . 21.请举出生活中两个常见的反映旋转变换的例子:______________.22.已知3x -2y =5,用关于x 的代数式表示y ,为y = .23.已知A 、B 、C 三点在同一条直线上,M 、N 分别为线段AB 、BC 的中点,且 AB = 60,BC = 40,则MN 的长为 .24.已知∠α=23°38′,则∠α的余角的度数是 .25.若x=1 是方程2155(1)0.30.33x x a ax -+-=-的解,那么式子21a a ++的值是 . 三、解答题26.如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与双曲线2k y x=(x <0)分别交于点C 、D ,且C 点的坐标为(1-,2).(1)分别求出直线AB 及双曲线的解析式;(2)求出点D 的坐标;(3)利用图象直接写出:当x 在什么范围内取值时,1y >2y .27.为了了解学生的身高情况,抽测了某校17岁学生中50名男生的身高,数据如下:将数据分成7组,组距为3,填写频数分布表,并回答下列问题:(1)样本数据中,17岁男生身高的众数、中位数分别是多少?(2)依据样本数据,估计该校17岁男生身高不低于165cm,且不高于170cm的学生所占比例;(3)指出该校17岁男生中,身高在哪个范围内的频率最大?若该校17岁男生共500人,那么在这个范围内的人数估计是多少人?分组频数频率1.565~1.5951.625~1.6551.685~1.7151.745~1.775合计28.剪一块面积为150cm2的长方形铁片,使它的长比宽多5 cm,这块铁片应怎样剪?29.如图所示,△ABC经相似变换后所得的像是△DEF.(1)线段AB与DE,AC与DF,BC与EF的大小关系如何?(2)∠A与∠D,∠B8与∠E,∠C与∠F的大小关系如何?(3)变换后所得的图形周长是原图形周长的多少倍?30.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每件涨价l元,其销售量要减少10件.为在一个月内赚取8000元的利润且假定每件售价大于50元,售价应定为每件多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.A4.C5.C6.D7.D8.C9.D10.A11.A12.D二、填空题13.45,35,3414.15815.k>—116.60°,120°,60°,120°17.y=2x+1(答案不唯一)18.2x >19.8020.97°21.略22.253-x 23.10或5024.66°22′25.3三、解答题26.(1)3+=x y ,x y 2-=;(2)(-2,1);(3)-2<x<-127.⑴169cm,169cm;⑵54%;⑶该校17岁男生身高在168.5~171.5cm范围内频率最大,约为0.34,若该校17岁男生共有500人,估计此身高范围内人数为170人.28.长 15 cm,宽 10 cm29.(1)AB=12DE,AC=12DF,BC=12EF;(2)∠A=∠D,∠B=∠E,∠C=∠F ;(3)2倍30.60 元或 80 元。
江苏省泰州市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)-2的绝对值等于()A . 2B . -2C .D . ±22. (2分)如图所示的几何体是由五个小正方体组合而成的,它的主视图是()A .B .C .D .3. (2分)(2016·南平模拟) “武夷水秀”以特有的光影效果,吸引众多市民前去观看.特别是五一当天,共演了7场,平均每场有1200人观看,这天观看的总人数用科学记数法可以表示为()A . 0.12×104B . 1.2×103C . 8.4×103D . 84×1024. (2分)下列二次根式中,不能作为最后结果的是()A .B .C .D .5. (2分)等腰三角形的一个内角为50°,则另外两个角的度数分别为()A . 65°,65°B . 50°,80°C . 65°,65°或50°,80°D . 50°,50°6. (2分) (2015七下·卢龙期中) 计算(a4b)2÷a2的结果是()A . a2 b2B . a6 b2C . a7 b2D . a8 b27. (2分)当△ABC满足下列那个条件时,就是等边三角形()A . AB=AC,∠A=60°B . ∠B=60°C . AB=ACD . ∠A=∠B8. (2分) (2018八上·抚顺期末) 如图,AD是△ABC的角平分线,DE⊥AC垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF 正确的个数是()C . 3个D . 4个9. (2分)如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是下列选项中的哪一个()A .B .C .D .10. (2分) (2018八上·营口期末) 若关于x的方程的解为正数,则m的取值范围是()A . m<6B . m>6C . m<6且m≠0D . m>6且m≠811. (2分)(2018·覃塘模拟) 如图,已知二次函数的图象与y轴的正半轴交于点A,其顶点B在轴的负半轴上,且OA=OB,对于下列结论:① ≥0;② ;③关于的方程无实数根;④ 的最小值为3.其中正确结论的个数为()C . 3个D . 4个12. (2分)(2014·海南) 将抛物线y=x2平移得到抛物线y=(x+2)2 ,则这个平移过程正确的是()A . 向左平移2个单位B . 向右平移2个单位C . 向上平移2个单位D . 向下平移2个单位二、填空题 (共4题;共4分)13. (1分)(2011·嘉兴) 分解因式:2a2﹣8=________.14. (1分)(2018·东莞模拟) 不等式组的解集为________.15. (1分) (2019九上·滨湖期末) 如图,⊙O的半径是3,点A、B、C在⊙O上,若∠ACB=40°,则弧AB 的长为________.16. (1分)如图,已知,要使,还需添加一个条件,则可以添加的条件是________。
2020年江苏省泰州市中考数学过关检测试卷A卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米 B.6米 C.7.2米 D.8米2.一种彩票的中奖率为 1%,小胡买了100 张彩票,则()A.他一定会中奖B.他一定不会中奖C.他有可能会中奖D.他再买 10000 张一定中奖3.下图中不可能是正方体的平面展开图的是()A.B.C.D.4.若点P(x,y)的坐标满足x y=0,则点P的位置在()A.原点B.x轴上C.y轴上D.x 轴上或y 轴上5.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC与∠ACB的角平分线且相交于点F,则图中的等腰三角形有()A.6个B.7个C.8个D.9个6.如图,△ABC中,∠ACB=120°,在AB上截取AE=AC,BD=BC,则∠DCE等于()A.20°B.30°C.45°D.60°7.若x 满足2310x x ++=,则代数式221x x +的值是( ) A .37 B .3 C .949 D .78.若关于x 的分式方程311x m x x -=--有增根,则m 的值为( ) A .1m = B .2m =- C .0m = D .无法确定9.分式方程11888x x x +=+--的根是( ) A .x=8 B .x=1 C .无解 D .有无数多个10.已知0)5(2=+-++y x y x ,那么x 和y 的值分别是( )A .25-,25B .25,25-C .25,25D .25-, 25-11.下列式子中正确的是( )A .x-(y-z )=x-y-zB .-(x-y+z ) =x-y-zC .x+2y-2z=x-2(y+z )D .-a+c+d-b=-(a+b )+(c+d )12.下列各组量中具有相反意义的量是( )A .向东行 4km 与向南行4 kmB .队伍前进与队伍后退C .6 个小人与 5 个大人D .增长3%与减少2%13.如图所示是人字形屋架的设计图,由AB 、AC 、AD 、BC 四根钢条焊接而成,其中A 、B 、C 、D 均为焊接点,现在焊接所需要的四根钢条已截好,且已标出BC 的中点D ,如果焊接工身边只有检验直角的角尺,那么为了准确快速度地焊接,他首先应取的两根钢条及焊接点是 ( )A .AB 和BC ,焊接点BB .AB 和AC ,焊接点A C .AD 和BC ,焊接点DD .AB 和AD ,焊接点A 14.下列生活现象中,属于相似变换的是( )A .抽屉的拉开B .汽车刮雨器的运动C .荡秋千D .投影片的文字经投影变换到屏幕 二、填空题15.已知tan α=125,α是锐角,则sin α= . 16. 抛物线243y x x =-+的顶点及它与x 轴的交点,三点连线所围成的三角形的面积是 .17.如图,四边形ABCD 是各边长都大于2,分别以它的顶点为圆心,1为半径画弧(弧的端点分别在四边形的相邻两边上),则这四条弧长的和是_________.18.已知一次函数的图象如图所示,则一次函数的解析式为.19.如图,方格纸上有A、B两点.若以B为原点,建立平面直角坐标系,则点A的坐标为(6,3);若以A为原点建立平面直角坐标系,则点B的坐标为 .20.甲班人数比乙班多 2 人,甲、乙两班入数不足100人.设乙班有x人,则x应满足的不等式是.21.如图,△ABC≌△DEF,点B和点E,点A 和点D是对应顶点,则AB= ,CB= ,∠C= ,∠CAB= .22.用有45°直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角 为.23.如图,在△ABC中,已知∠BAC=80°,∠B=40°,AD是△ABC的角平分线,那么∠ADB= .24.某段铁路长 392 km,某客运车的行车速度每小时比原来增加 40 km,使得行完这段铁路所需时间短了 1 小时. 如果设该列车提速前的速度为每小时 x(km),那么为求x所列出的方程为.25.在括号内填上适当的项: (1)a-( )=a-b-c, x+y-1=-( ) ,3[( )+x]=-6y+3x. (2) 2282x xy y -+= 2x +( )= 2x -( ).(3)22)12m mn n -+-=1-( )(4) (-a+b+c)(a+b-c)=[b+( )][b-( )].三、解答题26.已知函数y=-x 2-2x +3,求该函数图象的顶点坐标、对称轴及图象与两坐标轴的交点坐标.顶点(-1,4),对称轴为直线x=-1,与坐标轴的交点(0,3),(1,0),(-3,0).27.在数学探究活动中,王老师为了加强直观教学,拿出若干个相同的小立方体骰子组合成不同的几何体,让同学们分别画出对应的三视图.如图所示的图形是小聪画的某个组合体的三视图. 从这组三视图推测,小聪说王老师摆放了 6个骰子. 你同意小聪的说法吗?请说明理由.28.已知x a =5,x b =3,求x 3a -2b 的值.125929.先化简,再求值:(1)21()a a a a-÷-,其中3a =- (2)22142244a a a a a --⨯--+,其中1a =-.30.球的表面积等于π与球半径的平方的积的4倍;球的体积等于π与球半径的立方的积的4.3(1)用 r、S、V分别表示球的半径、表面积和体积,写出球的表面积公式和体积公式;(2)地球的半径大约是 6.4×lO6 m,海洋的面积约占地球表面积的 70%,问海洋的面积有多大?(结果保留 4 个有效数字)(3)海洋的平均深度为 3795 m,估计地球上大约有海水多少立方米? (结果保留 4个有效数字)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.3.C4.D5.C6.B7.D8.B9.C10.A11.D12.D13.C14.D二、填空题15.13516. 117.π6 18.y=-2x+219.(-6,-3)20.x+2+x<10021.DE, FE,∠F, ∠FDE 22.22°23.100°24.392392140x x -=+25. (4)c a -, c a -(1) b c +,1x y --+,2y - (2)282xy y -+, 282xy y - (3) 222m mn n -+三、解答题26.27.不同意小聪的说法.理由:结果有如下两种情况,答案一:有8个骰子; 答案二:有9个骰子. 28.125929. (1)21a ,13;(2)22(2)a a +-,16- 30.(1)24S r π=,V=343r π (2)3.601×1014 m 2 (3) 1.367 ×10`18 m。
2020年江苏省泰州市中考数学联合测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图所示中的几何体,其三种视图完全正确的一项是( )A .B .C .D .2.如图,是一水库大坝横断面的一部分,坝高h=6m ,迎水斜坡AB=10m ,斜坡的坡角为α,则tan α的值为( ) A .53 B .54 C .34 D .433.如图所示,草地上一根长5米的绳子,一端拴在墙角的木桩上,加一端栓着一只小羊R .那么,小羊在草地上的最大活动区域的面积是( ) A .m 2213π B .m 2427π C .m 2213π D .m 2427π4.把方程x 2-8x+3=0化成(x +m )2=13的形式,则m 的值是( ) A .4 B .8C .-4D .-85.如图,直线AE ∥CD,∠EBF=135°,∠BFD=60°,则∠D 等于( )A .75°B .45°C .30°D .15°6.用如图所示的两个转盘设计一个“配紫色”的游戏,则获胜的概率为( ) A .12B .13C .14D .237.已知2x y m=⎧⎨=⎩是二元一次方程5x+3y=1的一组解,则m 的值是( )A .3B .3-C .113D .113-8.若a b c x b c a c a b ===+++,则x 等于( )A .1-或21 B .1- C .21 D .不能确定9.四个各不相等的整数 a 、b 、c 、d ,它们的积9a b c d ⋅⋅⋅=,那么a b c d +++的值是( ) A .0 B .3 C .4 D . 不能确定 10.若|2|a =-,|4|b =--,0c =,下列用不等号连结正确的是( )A .a b c >>B .a c b >>C .b a c <<D .b c a >>二、填空题11.如图是一个圆柱体,它的俯视图是 (填图形的名称即可). 12.用如图所示的两个转盘“配紫色”,则能配成紫色的概率是 .13.在半径为 1 2的弦所对的圆心角是 .14.线段 AB=6 cm ,则过A 、B 两点,且半径等于3cm 的圆有 个;半径等于 5 cm 的圆有 个.15.写出2y x =与2y x =-的两个相同点: (1) ; (2) . 16.函数443y x =--的图象交x 轴于A ,交y 轴于B ,则点A 的坐标 ,点B 的坐标 . 17.甲、乙两台机器分别灌装每瓶标准质量为500g 的矿泉水,从甲、乙灌装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是2 4.8S =甲g 2,2 3.6S =乙 g 2,那么 (填“甲”或“乙”)机器灌装的矿泉水质量比较稳定. 18.如图,在长方形ABCD 中,AB =1,BC =2则AC =___________.19.如图所示,在Rt △ABC 中,∠ACB=90°,且CD ⊥AB 于点D . (1)若∠B=50°,则∠A= ; (2)若∠B —∠A=50°,则∠A= .20.从装有 4个红球、2个白球的袋子中随意摸出一个球,摸到可能性较小的是 球. 21.计算21a a-= .22.如图所示,已知AB=AD ,AE=AC ,∠DAB=∠EAC ,请将下列说明△ACD ≌△AEB 的理由的过程补充完整. 解:∵∠DAB=∠EAC(已知),∴∠DAB+ =∠EAC+ ,即 = . 在△ACD 和△AEB 中 AD=AB( ), = (已证), = (已知), ∴△ACD ≌△AEB( ).23.已知142n a b --与21n a b +是同类项,则2n m -= . 24.已知3x=4y ,则yx=________. 三、解答题25.小明站在窗口观察室外的一棵树.如图所示,小明站在什么位置才能看到这棵树的全部?请在图中用线段表示出来.26.有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙1赢;若出现两个反面,则甲、乙都不赢.(1)这个游戏是否公平?请说明理由;(2)如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏;如果你认为这个游戏公平,那么请你改变游戏规则,设计一个不公平的游戏.27.己知直角三角形的两直角边的和为2,求斜边长的最小值,以及当斜边长达到最小值时的两条直角边的长.当两条直角边都为1时,斜边长最小,最小值为 228.先化简,再求值:3x2+4x-(2x2+x)+(x2-3x-1) 其中x=-3.29.如图,任意剪一个三角形纸片ABC,设它的锐角为∠A,首先用对折的方法得到高AN,然后按图中所示的方法分别将含有∠B,∠C的部分向里折,找出AB,AC的中点D,E,同时得到两个折痕DF,EG,分别沿折痕DF,EG剪下图中的三角形①,②,并按图中箭头所指的方向分别旋转180°.(1)你能拼成一个什么样的四边形?并说明你的理由.(2)请你利用这个图形,证明三角形的面积公式:12S=⨯⨯底高.30.如图,△ABC 中,DE ∥BC ,EF ∥AB ,23AE EC =,ABC 25S ∆=,求BFEDS .【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.B4.C5.D6.C7.B8.A9.A10.B二、填空题11.圆12.113.690°14.1,215.顶点是原点;开口大小相同.16.A(-3,0),B(0,-4)17.乙18.519.(1)40°;(2)20°20.白21.122.a∠BAC,∠BAC,∠DAC,∠BAE,已知,∠DAC,∠BAE,AC,AE,SAS 23.324.43三、解答题25.小明应该站在AB的位置.26.(1)不公平.21()42P ==正正,21()42P ==正反∴甲的概率小于乙的概率.(2)公平游戏:如出现两个正面,则甲赢;出现两个反面,则乙赢.27.28.原式=2x 2-1,当x=-3时,原式=1729.(1)矩形;(2)略30.∵DE ∥BC ,EF ∥AB ,∴△ADE ∽△ABC,△CEF ∽△CAB, ∵23AE EC =,∴ 25AE AC =,∴4ADC S ∆=,又∵3,5CE AC =,∴9ECF S ∆=, ∴12BFEDABC ADE ECF SS S S ∆∆∆=--=.。
泰州市二◯二◯年初中学业水平测试数学试题(考试时间:120分钟 满分150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B 铅笔,并请加黑加粗.第一部分 选择题(区18分)一、选择题:(本大题共有6小题,第小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答∙题∙卡∙相∙应∙位∙置∙上)1. -2的倒数是A . 2B . 12C . -2D . -122.把如图所示的纸片沿着虚线折叠,可以得到的几何体是A .三棱柱B .四棱柱C .三棱锥D .四棱锥3. 下列等式成立的是A . 3+42 =72B . 3 ×2 =5C . 3 ÷16=23 D . (-3)2 =34. 如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是A .只闭合1个开关B .只闭合2个开关C .只闭合3个开关D .闭合4个开关5. 点P (a ,b )在函数y =3x +2的图像上,则代数式6a -2b +1的值等于A . 5B . 3C . -3D . -16. 如图,半径为10的扇形AOB 中,∠AOB =90°,C 为AB上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE 为36°,则图中阴影部分的面积为A . 10πB . 9πC . 8πD . 6π(第2题图)A B CD(第4题图)A BC DEO(第6题图)第二部分 非选择题(共132分)二、填空题(本大题共有10 小题,每小题3分,共30分,请把答案直接填写在答∙题∙卡∙相∙应∙位∙置∙上)7. 9的平方根等于_____.8. 因式分解:x 2-4=____.9. 据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学计数法表示为_______.10. 方程x 2+2x -3=0的两根为x 1、x 2,则x 1∙x 2的值为________.11. 今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是_______.12.如图,将分别含有30°、45°角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中角α的度数为________.3714197人数048121620 4.05以下 4.35~4.654.05~4.35 4.65~4.954.95以上视力值(第11题图)65°α(第12题图)30°60°90°120°150°180°210°240°270°300°330°ABC(第13题图)13.以水平数轴的原点O 为圆心,过正半轴Ox 上的每一刻度点画同心圆,将Ox 逆时针依次旋转30°、60°、90°、⋯、330°得到11条射线,构成如图所示的“圆”坐标系,点A 、B 的坐标分别表示为(5,0°)、(4,300°),则点C 的坐标表示为________.14.如图,直线a ⊥b ,垂足为H ,点P 在直线b 上,PH =4cm ,O 为直线b 上一动点,若以1cm 为半径的⊙O 与直线a 相切,则OP 的长为________.15. 如图所示的网格由边长为1个单位长度的小正方形组成,点A 、B 、C 、在直角坐标系中的坐标分别为(3,6),(-3,3),(7,-2),则△ABC 内心的坐标为________.16. 如图,点P 在反比例函数y =3x的图像上,且横坐标为1,过点P 作两条坐标轴的平行线,与反比例函数y =kx(k <0)的图像相交于点A 、B ,则直线AB 与x 轴所夹锐角的正切值为_______.abPOH(第14题图)A BC(第15题图)OxyP(第16题图)三、解答题(本大题共有10题,共102分,请在答题卡规定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分12分)(1)计算:(-π)0+12-1-3 sin 60°;(2)解不等式组:3x -1≥x +1,x +4<4x -2.18.(本题满分8分)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成图表如下:020*********头盔佩戴率(%)5.29 5.30 5.316.1 6.2 6.3232640434546596278899095摩托车电动自行车日期2020年5月29日~6月3日骑乘人员头盔佩戴率折线统计图2020年6月2日骑乘人员头盔佩戴情况统计表骑乘摩托车骑乘电动自行车戴头盔人数1872不戴头盔人数2m(1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?(3)求统计表中m 的值.19.(本题满分8分)一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200300400100016002000摸到白球的频数7293130334532667摸到白球的频率0.36000.31000.32500.33400.33250.3335(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是_______.(精确到0.01),由此估出红球有______个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球、1个红球的概率.20.(本题满分10分)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.21.(本题满分10分)如图,已知线段a ,点A 在平面直角坐标系xOy 内,(1)用直尺和圆规在第一象限内 作出点P ,使点P 到两坐标轴的距离相等,且与点A 的距离等于a .(保留作图痕迹,不写作法)(2) 在(1)的条件下,若a =25 ,A 点的坐标为(3,1),求P 点的坐标.aAxyO(第21题图)22.(本题满分10分)我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m 的A 处测得在C 处的龙舟俯角为23°;他登高6m 到正上方的B 处测得驶至D 处的龙舟俯角为50°,问两次观测期间龙舟前进了多少?(结果精确到1m ,参考数据:tan 23°≈0.42,tan 40°≈0.84,tan 50°≈1.19,tan 67°≈2.36)50°23°AB CD水面(第22题图)23.(本题满分10分)如图,在△ABC 中,∠C =90°,AC =3,BC =4,P 为BC 边上的动点(与B 、C 不重合),PD ⎳AB ,交AC 于点D ,连接AP ,设CP =x ,△ADP 的面积为S .(1)用含x 的代数式表示AD 的长;(2)求S 与x 的函数表达式,并求当S 随x 增大而减小时x 的取值范围.A BCP D(第23题图)24.(本题满分10分)如图,在⊙O 中,点P 为AB的中点,弦AD 、PC 互相垂直,垂足为M ,BC 分别与AD 、PD 相交于点E 、N ,连接BD 、MN .(1)求证:N 为BE 的中点.(2)若⊙O 的半径为8,AB的度数为90°,求线段MN 的长.A BCDEMN OP(第24题图)25.(本题满分12分)如图,正方形ABCD 的边长为6,M 为AB 的中点, △MBE 为等边三角形,过点E 作ME 的垂线分别与边AD 、BC 相交于点F 、G ,点P 、Q 分别在线段EF 、BC 上运动,且满足∠PMQ =60°,连接PQ .(1)求证:△MEP ≌△MBQ .(2)当点Q 在线段GC 上时,试判断PF +GQ 的值是否变化?如果不变,求出这个值,如果变化,请说明理由.(3)设∠QMB =α,点B 关于QM 的对称点为B ',若点B '落在△MPQ 的内部,试写出α的范围,并说明理由.ABCDEF GMPQ(第25题图)26.(本题满分14分)如图,二次函数y 1=a (x -m )2+n 、y 2=6ax 2+n (a <0,m >0,n >0)的图像分别为C 1、C 2,C 1交y 轴于点P ,点A 在C 1上,且位于y 轴右侧,直线P A 与C 2在y 轴左侧的交点为B .(1)若P 点的坐标为(0,2),C 1的顶点坐标为(2,4),求a 的值;(2)设直线P A 与y 轴所夹的角为α.①当α=45°,且A 为C 1的顶点时,求am 的值;②若α=90°,试说明:当a 、m 、n 各自取不同的值时,P A PB的值不变;(3)若P A =2PB , 试判断点A 是否为C 1的顶点?请说明理由。
OxyABP C 1C 2(第26题图)OxyABPC 1C 2(备用图)。