边角边判定
- 格式:ppt
- 大小:205.00 KB
- 文档页数:18
12.2.2 三角形全等判定(SAS)教学内容本节课主要内容是探索三角形全等的条件(SAS),及利用SAS全等三角形.教学目标1.知识与技能领会“边角边”判定两个三角形的方法并会应用.2.过程与方法经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.3.情感、态度与价值观培养合情推理能力,感悟三角形全等的应用价值.重、难点及关键1.重点:会用“边角边”证明两个三角形全等.2.难点:应用结合法的格式表达问题.3.关键:在实践、观察中正确选择判定三角形全等的方法.教具准备投影仪、直尺、圆规.教学方法采用“操作──实验”的教学方法,让学生有一个直观的感受.教学过程一、回顾交流,操作分析【动手画图】【投影】作一个角等于已知角.【学生活动】动手用直尺、圆规画图.已知:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.【作法】(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交OA 于点C, 交OB于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD 长为半径画弧,交前面的弧于点D1;(5)过点D1作射线O1B1,∠A1O1B1就是所求的角.【导入课题】教师叙述:请同学们连接CD 、C 1D 1,回忆作图过程,分析△COD 和△C 1O 1D 1 中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD=O 1D 1,OC=O 1C 1,∠COD=∠C 1O 1D 1,△COD ≌△C 1O 1D 1.归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”).二、范例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,•使CE=CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC ≌△DEC ,就可以得出AB=DE .在△ABC 和△DEC 中,CA=CD ,CB=CE ,如果能得出∠1=∠2,△ABC 和△DEC•就全等了.证明:在△ABC 和△DEC 中∴△ABC ≌△DEC (SAS )∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等)三、辨析理解,正确掌握【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射12CA CD CB CE =⎧⎪∠=∠⎨⎪=⎩。
三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解并掌握“边角边”判定定理(SAS),能够运用该定理证明两个三角形全等。
2. 培养学生运用几何知识解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队合作能力。
二、教学内容1. 三角形全等的概念。
2. “边角边”判定定理(SAS)的定义及证明过程。
3. 运用“边角边”判定定理解决实际问题。
三、教学重点与难点1. 教学重点:掌握“边角边”判定定理(SAS),能够运用该定理证明两个三角形全等。
2. 教学难点:如何判断两个三角形是否全等,以及如何运用“边角边”判定定理进行证明。
四、教学方法1. 采用讲授法,讲解三角形全等的概念和“边角边”判定定理。
2. 采用案例分析法,分析实际问题,引导学生运用“边角边”判定定理解决问题。
3. 采用小组讨论法,培养学生团队合作精神,提高解决问题的能力。
五、教学过程1. 导入:通过复习三角形全等的概念,引入“边角边”判定定理。
2. 讲解:讲解“边角边”判定定理(SAS)的定义及证明过程,让学生理解并掌握。
3. 案例分析:分析实际问题,引导学生运用“边角边”判定定理解决问题。
4. 小组讨论:让学生分组讨论,运用“边角边”判定定理证明三角形全等。
5. 总结:对本节课的内容进行总结,强调“边角边”判定定理的应用。
6. 作业布置:布置相关练习题,巩固所学知识。
教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
关注学生在解决问题时的创新意识和逻辑思维能力,为后续教学做好准备。
六、教学评价1. 通过课堂讲解、案例分析和小组讨论,评价学生对“边角边”判定定理(SAS)的理解和掌握程度。
2. 评价学生在解决实际问题时,能否正确运用“边角边”判定定理,以及证明的逻辑性和准确性。
3. 观察学生在小组讨论中的表现,评估其团队合作能力和交流沟通能力。
七、教学拓展1. 引导学生思考其他三角形全等的判定定理,如“角边角”(ASA)、“角角边”(AAS)等,让学生了解并掌握更多判定定理。
三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的判定方法。
2. 让学生掌握“边角边”(SAS)判定定理,并能运用其判定两个三角形全等。
3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。
二、教学内容1. 三角形全等的概念。
2. “边角边”(SAS)判定定理。
三、教学重点与难点1. 教学重点:三角形全等的概念,SAS判定定理。
2. 教学难点:SAS判定定理在实际问题中的应用。
四、教学方法1. 采用讲授法讲解三角形全等的概念和SAS判定定理。
2. 利用多媒体演示和实物模型辅助教学,增强学生的直观感受。
3. 开展小组讨论和练习,培养学生的合作精神和解决问题的能力。
五、教学过程1. 导入新课:通过复习三角形全等的概念,引入“边角边”判定定理。
2. 讲解三角形全等的概念:三角形全等指的是在平面内,两个三角形的所有对应角度相等,对应边长比例相等。
3. 讲解“边角边”(SAS)判定定理:如果两个三角形的一边和与其相邻的两个角分别与另一个三角形的一边和与其相邻的两个角相等,这两个三角形全等。
4. 演示和练习:利用多媒体演示和实物模型,让学生直观地理解SAS判定定理。
让学生进行一些练习题,巩固所学知识。
5. 小组讨论:让学生分组讨论如何运用SAS判定定理解决实际问题,并分享讨论成果。
6. 总结与拓展:对本节课的内容进行总结,强调SAS判定定理在三角形全等问题中的应用。
提出一些拓展问题,激发学生的学习兴趣。
7. 布置作业:布置一些有关三角形全等和SAS判定定理的练习题,巩固所学知识。
六、教学评价1. 通过课堂讲解、练习和小组讨论,评价学生对三角形全等概念和SAS判定定理的理解程度。
2. 观察学生在练习题中的解题思路和解答过程,评价其运用SAS判定定理的能力。
3. 收集学生的讨论成果,评价其合作精神和解决问题的能力。
七、教学反思1. 反思本节课的教学内容安排是否合适,教学方法是否得当。
三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的条件。
2. 引导学生学习“边角边”判定定理,并能运用该定理判断三角形全等。
3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。
二、教学内容1. 三角形全等的概念。
2. “边角边”判定定理的内容及运用。
三、教学重点与难点1. 教学重点:三角形全等的概念,边角边判定定理的运用。
2. 教学难点:理解并运用边角边判定定理判断三角形全等。
四、教学方法1. 采用问题驱动法,引导学生探究三角形全等的条件。
2. 运用案例分析法,让学生通过具体案例理解边角边判定定理。
3. 采用小组讨论法,培养学生的合作交流能力。
五、教学过程1. 导入新课:引导学生回顾三角形的基本概念,提问:如何判断两个三角形完全相同呢?2. 探究三角形全等的条件:让学生通过观察、操作,找出两个三角形全等的条件。
引导学生发现,当两个三角形的两边和夹角分别相等时,这两个三角形全等。
3. 引入“边角边”判定定理:讲解边角边判定定理的内容,让学生理解并掌握该定理。
4. 案例分析:展示一组三角形案例,让学生运用边角边判定定理判断三角形全等。
5. 练习巩固:设计一些练习题,让学生独立完成,检验对边角边判定定理的掌握程度。
6. 课堂小结:回顾本节课所学内容,强调三角形全等的条件和边角边判定定理的运用。
7. 作业布置:布置一些有关三角形全等判定的练习题,让学生课后巩固。
六、教学延伸1. 引导学生思考:除了边角边判定定理,还有哪些判定三角形全等的方法?2. 介绍其他判定三角形全等的方法,如ASA(角边角)、AAS(角角边)等。
七、课堂互动1. 组织学生进行小组讨论,探讨如何运用不同的判定方法判断三角形全等。
2. 选取一些判断题,让学生判断题目给出的三角形是否全等,并解释判断依据。
八、课堂总结1. 回顾本节课所学内容,总结三角形全等的判定方法。
2. 强调在实际应用中,要根据题目给出的条件选择合适的判定方法。
三角形全等的判定——“边角边”判定定理教案教案模板:教案标题:三角形全等的判定,“边角边”判定定理教学目标:1.理解“边角边”判定定理的含义和应用条件;2.掌握使用“边角边”判定定理判断两个三角形是否全等的方法;3.练习运用“边角边”判定定理解决实际问题。
教学重点:1.“边角边”判定定理的内容和原理;2.应用“边角边”判定定理判断全等三角形。
教学难点:应用“边角边”判定定理解决实际问题。
教学准备:1.教材教具:教科书、黑板、彩色粉笔;2.教学辅助材料:练习题。
教学过程:步骤1:导入(5分钟)1.引入新内容:前面我们学习了“角边角”判定定理来判断三角形的全等,今天我们将学习“边角边”判定定理。
2.利用黑板上画出两个全等三角形的示意图,让学生观察,思考如何判断这两个三角形是否全等。
步骤2:知识讲解(15分钟)1.讲解“边角边”判定定理的概念和应用条件。
a.边角边判定定理:若两个三角形的一边分别相等,另两边分别相等,并且这两边之间的夹角相等,则两个三角形全等。
b.应用条件:两个三角形的一边分别相等,另两边分别相等,并且这两边之间的夹角相等。
2.通过示意图和示例,详细解释和分析应用“边角边”判定定理判断全等三角形的方法。
a.首先,观察和比较两个三角形的边长是否相等。
b.然后,观察和比较两个三角形的夹角是否相等。
c.最后,根据“边角边”判定定理的应用条件,判断两个三角形是否全等。
步骤3:示范和练习(25分钟)1.在黑板上画出一个已知的三角形ABC,让学生根据题目给出的条件使用“边角边”判定定理判断是否还存在另一个全等三角形。
2.然后,给出一些练习题,组织学生进行个别或小组练习,巩固“边角边”判定定理的运用。
3.指导学生做练习题时,注意运用几何图形的标记和符号,清晰地表达解题过程和思路。
步骤4:知识总结(5分钟)1.提问学生:你们学会了如何使用“边角边”判定定理判断三角形全等了吗?2.引导学生总结“边角边”判定定理的要点和应用方法。
全等五边形的判定—边角边优秀教案一、教案目标本教案旨在帮助学生通过研究全等五边形的判定方法,提高他们的几何思维能力和问题解决能力。
二、教学内容1. 全等五边形的定义和特点2. 边角边(SAS)判定法的理论原理和应用方法3. 利用边角边判定法判定五边形是否全等的示例和练三、教学步骤1. 导入:通过展示一些具有五边形形状的图片或实物,让学生回顾五边形的定义和特点。
2. 讲解:简要介绍边角边判定法的理论原理和应用方法,重点解释其中的几何推理过程。
3. 演示:给出一个边角边判定五边形全等的示例,详细展示解题过程,引导学生理解和掌握边角边判定法的应用。
4. 练:提供一些练题,要求学生利用边角边判定法判定五边形是否全等,并解释他们的解题过程和思路。
5. 总结:归纳边角边判定法的关键步骤和要点,检查学生是否掌握。
6. 拓展:提供更复杂的例题挑战学生,激发他们的研究兴趣和思考能力。
四、教学工具1. 五边形形状的图片或实物2. 教师演示板或电子白板3. 练题册或工作纸五、教学评估1. 利用练题和解题过程,评估学生对边角边判定法的理解和应用能力。
2. 观察学生在实际解题中的几何推理过程和思维能力,评估他们的几何思维水平和问题解决能力。
六、教学延伸1. 引导学生思考其他全等五边形判定方法的可能性,并鼓励他们自主探索和研究。
2. 鼓励学生应用全等五边形判定方法解决实际生活和职业中的问题,培养他们的应用能力和创新思维。
3. 推荐相关的几何研究资源和参考书籍,供有兴趣的学生深入研究和研究。
该教案旨在通过简明扼要地介绍全等五边形的判定方法,帮助学生掌握这一几何概念并提高他们的问题解决能力。
教案结构清晰,包含了导入、讲解、演示、练习、总结和拓展等几个教学步骤。
通过练习和评估,可以检查学生对边角边判定法的理解和应用水平。
此外,教案还提供了教学工具和延伸部分来帮助学生拓展学习和应用全等五边形判定方法的能力。
三角形全等的判定——“边角边”判定定理教案授课人:丁俏尹教学内容:本节课的主要内容是探索三角形全等的条件“边角边”以及利用”SAS”判定定理证明三角形全等。
教学目标:一、知识与技能探索、领会“SAS”判定两个三角形全等的方法。
二、过程与方法1、经历探索三角形全等的判定方法的过程。
2、能灵活地运用三角形全等的条件,进行有条理地思考和简单推理。
3、利用三角形的全等解决实际问题,体会数学与实际生活的联系。
三、情感态度与价值观培养学生合理的推理能力,感悟三角形全等的应用价值,体会数学与实际生活的联系,学会团队合作,培养自己主动参与、勇于探究的精神。
教学重点、难点:1、重点:通过学习、会利用“边角边”证明两个三角形全等。
2、难点:通过学习、会正确运用“SAS”判定定理,在实际观察中正确选择判定三角形的方法。
教学方法:采用“操作——实验”的教学方法,让学生有一个直观的感受教学用具:多媒体、纸板、常用画图工具3.证明两个三角形全等时有些图形中常常包含一些隐含条件:如对顶角,公共角,公共边。
4.证明边相等或者角相等常常转化为证三角形全等。
五、课后作业[1]必做题:课本第78页练习第2、3题[2]选做题:1、已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:∠B=∠C2、如图,AB∥EF,AB=EF,BD=EC,那么①△ABC与△FED全等吗?为什么?②AC∥FD吗?为什么?CB EDFA3、思考:两边一角分别相等包括“两边夹角”和“两边及其中一边的对角”分别相等两种情况,前面已探索出“SAS”判定三角形全等的方法,那么由“SSA”的条件能判定两个三角形全等吗?学生课后自主完成巩固本节知识,查漏补缺。
板书三角形全等的判定——“边角边”判定定理1、定理:在两个三角形中,如果有两边及他们的夹角对应相等,那么这两个三角形全等(简记为SAS)2、证明三角形全等的过程1)准备条件2)指明范围3)摆齐条件写出结论4)。