信号与线性系统分析试题2004——期末试卷.
- 格式:ppt
- 大小:269.50 KB
- 文档页数:12
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
2004级自动化专业信号与系统期末考试参考答案与评分标准一、填空题(每空2分,共20分)1.非线性 时变 因果 稳定2.离散性 谐波性 收敛性3.)()(0t t k t h -=δ 0)()()(ωωϕωωj j j Ke e e H -==j H4.)()(11nT t f t f n T -∑+∞-∞=或二、计算题1.解:)()(00)()(t t t t t t δδδδ'-='-+='+2.解:5|)243()1()122(1223=-+-=-'+-+=+∞∞-⎰t t t dt t t t t δ 3.解:令11)()1(1+-=+-s e s F S 因为)1()(1--⇔--t t se Sεε 所以)()]1()([11)(1)1(1t f e t t s e s F t S =--⇔+-=-+-εε S e s F s F 211)()(--=+---+--=∴---)]3()2([)]1()([)()2(t t e t t e t f t t εεεε4.解: )3)(2)(1(12611612)(232323++++++=++++++=s s s s s s s s s s s s s F 6116)595(1)(232+++++-+=s s s s s s F 56116)595(lim )(lim )0(2320-=+++++-==∞→→++s s s s s s t f f s t 0)(lim )(lim )(0===∞→∞→s F s t f f s t 三、综合题:1.解:如图所示:2.解:(1)此题用戴维南定理求U2(s)U0C(s)=E(s)/2; R0=6Ω. 故有:)(205.02)(3.063.0)(2s E s s s E s s s U +=⋅+= (2分) 20105.0205.0)()()(2+-=+==s s s s E s U s H …………………………………………………. (2分) )(10)(5.0)(20t et t h t εδ--=∴冲激响应为…………………………………………...…... (3分) 205.01205.0)()(2+=⋅+==s s s s s U s R ε…………………………………… . )(5.0)(20t e t r t εε-=∴阶跃响应为 …………………………………………………....…(3分)(2) )1()()(1-+=t t t e εε………………… ……………………………………(2分) )1(5.0)(5.0)1()()()1(20202--=--=∴---t e t e t r t r t u t t εεεε… ………………. .(2分)(3))1()1()()1()(2--+-=t t t t t e εε………………. .(1分))1(11111)(2222s s e s s e ss s s E ----=+-=∴………………. .(2分) )20()1(5.0205.0)1(11205.0)()()(222+--+=⎥⎦⎤⎢⎣⎡--⋅+==--s s e s e s s s s s E s H s U s s …… .(1分) )1()1(401)()211(401)()1(20202--+--=∴---t e t e t u t t εε………………. .(2分) 3.解:由零极点图:3466)53)(53(6)(2+++=++-++=s s s K j s j s s K s Z …………. .(2分)-15 24 -24 15 ω0 -6 -9 69由Z(0)=3, 得K=17。
2004级自动化专业信号与系统期末考试参考答案与评分标准一、填空题(每空2分,共20分)1.非线性 时变 因果 稳定2.离散性 谐波性 收敛性3.)()(0t t k t h -=δ 0)()()(ωωϕωωj j j Ke e e H -==j H4.)()(11nT t f t f n T -∑+∞-∞=或二、计算题 1.解:)()(00)()(t t t t t t δδδδ'-='-+='+2.解:5|)243()1()122(1223=-+-=-'+-+=+∞∞-⎰t t t dt t t t t δ 3.解:令11)()1(1+-=+-s e s F S 因为)1()(1--⇔--t t se Sεε 所以)()]1()([11)(1)1(1t f e t t s e s F t S =--⇔+-=-+-εε S e s F s F 211)()(--=+---+--=∴---)]3()2([)]1()([)()2(t t e t t e t f t t εεεε4.解: )3)(2)(1(12611612)(232323++++++=++++++=s s s s s s s s s s s s s F 6116)595(1)(232+++++-+=s s s s s s F 56116)595(lim )(lim )0(2320-=+++++-==∞→→++s s s s s s t f f s t 0)(lim )(lim )(0===∞→∞→s F s t f f s t 三、综合题:1.解:如图所示:2.解:(1)此题用戴维南定理求U2(s)U0C(s)=E(s)/2; R0=6Ω. 故有: )(205.02)(3.063.0)(2s E s s s E s s s U +=⋅+= (2分) 20105.0205.0)()()(2+-=+==s s s s E s U s H …………………………………………………. (2分) )(10)(5.0)(20t et t h t εδ--=∴冲激响应为…………………………………………...…... (3分) 205.01205.0)()(2+=⋅+==s s s s s U s R ε…………………………………… . )(5.0)(20t e t r t εε-=∴阶跃响应为 …………………………………………………....…(3分)(2) )1()()(1-+=t t t e εε………………… ……………………………………(2分) )1(5.0)(5.0)1()()()1(20202--=--=∴---t e t e t r t r t u t t εεεε… ………………. .(2分)(3))1()1()()1()(2--+-=t t t t t e εε………………. .(1分))1(11111)(2222s s e s s e ss s s E ----=+-=∴………………. .(2分) )20()1(5.0205.0)1(11205.0)()()(222+--+=⎥⎦⎤⎢⎣⎡--⋅+==--s s e s e s s s s s E s H s U s s …… .(1分) )1()1(401)()211(401)()1(20202--+--=∴---t e t e t u t t εε………………. .(2分) 3.解:由零极点图:3466)53)(53(6)(2+++=++-++=s s s K j s j s s K s Z …………. .(2分)-15 24 -24 15 ω0-6-99由Z(0)=3, 得K=17。
信 号与系统 期 末 考 试 试 题一、选择题(共10 题,每题 3 分 ,共30 分,每题给出四个答案,其中只有一个正确的)1、 卷积 f 1(k+5)*f2 (k-3)等于。
( A ) f 1 (k)*f 2(k)( B ) f 1(k)*f 2(k-8) ( C ) f 1(k)*f 2 (k+8) (D ) f 1(k+3)*f 2 (k-3)2、 积分(t 2) (1 2t )dt 等于。
( A )( B )( C ) 3( D ) 53、 序列 f(k)=-u(-k) 的 z 变换等于。
( A )z z ( B ) - z ( C ) 1 ( D ) 11 z 1 z 1z 14、 若 y(t)=f(t)*h(t), 则 f(2t)*h(2t) 等于。
( A )1y( 2t ) ( B ) 1 y(2t ) ( C ) 1 y( 4t ) ( D ) 1 y(4t)4 2 4 25、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+(t ) ,当输入 f(t)=3e — t u(t) 时,系统的零状态响应 y f (t) 等于(A ) (-9e -t +12e -2t )u(t)( B )(3-9e -t +12e -2t )u(t)(C ) (t) +(-6e -t +8e -2t )u(t)(D )3 (t )+(-9e -t +12e -2t)u(t) 6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 ( C )离散性、周期性(D )离散性、收敛性7、 周期序列 2COS (1.5 k 45 0 ) 的 周期 N 等于(A ) 1( B )2( C )3(D )48、序列和k 1 等于k( A ) 1 (B) ∞ (C)u k 1 (D) ku k19、单边拉普拉斯变换 F s2s 1e 2s 的愿函数等于s 210、信号 f tte 3t u t 2 的单边拉氏变换 F s 等于二、填空题(共 9 小题,每空 3 分,共 30 分)1、卷积和 [ ()k+1u(k+1)]* (1 k) =________________________、单边 z 变换 F(z)= z 的原序列 f(k)=______________________2 2z 1s、已知函数f(t) 的单边拉普拉斯变换F(s)=,则函数 y(t)=3e-2t ·f(3t)的单边拉普3s 1拉斯变换 Y(s)=_________________________4、频谱函数 F(j )=2u(1-)的傅里叶逆变换 f(t)=__________________5、单边拉普拉斯变换 F (s)s23s 1的原函数 f(t)=__________________________s 2s6、已知某离散系统的差分方程为 2y(k) y(k 1) y(k 2)f (k ) 2 f ( k 1) ,则系统的单位序列响应 h(k)=_______________________ 7、已知信号 f(t) 的单边拉氏变换是 F(s),则信号 y(t )t 2f ( x)dx 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为该系统的冲激响应 h(t)=9、 写出拉氏变换的结果 66u t, 22t k三、 ( 8 分)四、( 10 分)如图所示信号f t,其傅里叶变换F jw F f t ,求( 1) F 0 ( 2)F jw dw六、( 10 分)某 LTI系统的系统函数H ss 2,已知初始状态y 00, y2, 激s 2 2s1励 f tu t , 求该系统的完全响应。
101G06A信号与系统一、已知某连续时不变系统的微分方程为)(14)(10)(2)(6)(5)(2222t e dt t de dt t e d t y dt t dy dt t y d ++=++。
(14分) ⑴ 求该系统的系统函数H (s )和单位冲激响应h (t ); ⑵绘出该系统的仿真框图(要求用尽量少的积分器)。
二、求下列信号的傅里叶变换。
(10分)⑴()()10()sin t f t e t u t αω-=⋅⋅,用傅里叶变换性质计算 ⑵()()20()sin f t t u t ω=⋅,用拉氏变换与傅氏变换的关系计算101G06A信号与系统三、如图所示的因果反馈系统,问K 取何值时系统稳定?(10分)四、某线性时不变连续系统,具有两个初始条件,分别为r 1(0)和r 2(0)。
(12分)⑴ 当r 1(0)=1, r 2(0)=0时,其响应为:()()2tte eu t --+⑵ 当r 1(0)=0, r 2(0)=1时,其响应为())(22t u e e t t --+; ⑶ 当r 1(0)=1, r 2(0)=-1,输入为e (t )时,其响应为:()()2teu t -+。
试求:当1(0)r =3, r 2(0)=2,输入为2e (t )时,其响应为多少?101G06A信号与系统五、设有二阶系统方程)()()(11)(2)(22t e dt t de t y dt t dy dtt y d +=++,试求其稳态响应)(3sin 5)(t tu t y =所对应的激励信号e (t )。
(10分)六、已知一线性时不变系统的单位样值响应)(n h 除在10N n N ≤≤区间之外都为零。
而输入)(n x 除在32N n N ≤≤区间之外均为零。
这样,响应)(n y 除在54N n N ≤≤区间之外均被限制为零。
试用N 0,N 1,N 2,N 3,来表示N 4与N 5。
(8分)七、设有差分方程()()()312(2)y n y n y n f n +-+-=,已知()()10.5,2 1.25y y -=--=,)()(n u n f =。
第一部分选择题(共32分)一、单项选择题(本大题共16小题,每小题2分,共32分。
在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内)1.积分等于(B)答案A. B.C. D.2.已知系统微分方程为: 若解得全响应为:t≥0.全响应中为( D ) 答案A.零输入响应分量 B.零状态响应分量C.自由响应分量 D.稳态响应分量3.系统结构框图如图示,该系统的单位冲激响应h(t)满足的方程式为( C)答案4.信号f1(t),f2(t)波形如图所示,设f(t)=f1(t)*f2(t),则f(0)为(B)答案A.1 B.2 C.3 D.4 5.已知信号f(t)的傅里叶变换F(jω)=δ(ω-ω0),则f(t)为( A)答案6.已知信号f(t)如图所示,则其傅里叶变换为(C)答案7.f(t)=ε(t)-ε(t—1)的拉氏变换为(A)答案8. 的拉氏反变换为(D)答案9.图(a)中ab段电路是某复杂电路的一部分,其中电感L和电容C都含有初始状态,请在图(b)中选出该电路的复频域模型。
(B ) 答案10.离散信号f(n)是指(B)答案A.n的取值是连续的,而f(n)的取值是任意的信号B.n的取值是离散的,而f(n)的取值是任意的信号C.n的取值是连续的,而f(n)的取值是连续的信号D.n的取值是连续的,而f(n)的取值是离散的信号11.若序列f(n)的图形如图(a)所示,那么f(—n+1)的图形为图(b)中的( D)答案12.差分方程的齐次解为,特解为,那么系统的稳态响应为( B ) 答案13.已知离散系统的单位序列响应和系统输入如图所示,f(n)作用于系统引起的零状态响应为,那么序列不为零的点数为(C)答案A.3个 B.4个C.5个 D.6个第二部分非选题(共68分)二、填空题(本大题共9小题,每小题2分,共18分)14.=()。
答案15.GLC并联电路发生谐振时,电容上电流的幅值是电流源幅值的(Q)倍。
信号与系统信号与线性系统期末考试试卷1、已知某连续信号()f t 的傅⾥叶变换为21()23F j j ωωω=-+,按照取样间隔1T =对其进⾏取样得到离散时间序列()f k ,序列()f k 的Z 变换。
解法⼀:f(t)的拉普拉斯变换为2111)2)(1(1321)(2+-+=++=++=s s s s ss s F ,2111)(Re )(--===---=-=?-=∑∑e z z e z z e z z K e z z s F s z F ni T s i s s ni sT i i解法⼆:f(t)=L -1{F(jw)}=(e -t - e -2t)ε(t)f(k)= (e -k - e-2k)ε(k)=)())()((21k e ekk ε---F(z)=Z[f(k)]= 21-----ez zez z2、求序列{}10()1,2,1k f k ==和2()1cos ()2f k k k πε??=+的卷积和。
解:f 1(k)={1,2,1}=δ(k)+2δ(k -1)+ δ(k -2)f 1(k)* f 2(k)= f 2(k)+ 2f 2(k -1)+ f 2(k -2)3、已知某双边序列的Z 变换为21()1092F z z z =++,求该序列的时域表达式()f k 。
解:5.014.01)(+-+=z z z F ,两个单阶极点为-0.4、-0.5 当收敛域为|z|>0.5时,f(k)=(( -0.4)k -1-( -0.5)k -1)ε(k -1)当收敛域为0.4<|z|<0.5时,f(k)= ( -0.4)k -1ε(k -1)+( -0.5)k -1ε( -k)当收敛域为|z|<0.4时,f(k)= - ( -0.4)k -1ε(-k)+( -0.5)k -1ε( -k)点评:此题应对收敛域分别讨论,很多学⽣只写出第⼀步答案,即只考虑单边序列。
格式《信号与系统》考试试卷(时间 120 分钟)院 / 系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题 2 分,共 20 分)得分1.系统的激励是 e(t) ,响应为 r(t) ,若满足de(t)r ( t) ,则该系统为线性、时不变、因果。
dt(是否线性、时不变、因果?)2 的值为 5。
2.求积分 (t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。
4.若信号f(t)的最高频率是2kHz,则 f(2t)的乃奎斯特抽样频率为8kHz。
5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为 _一过原点的直线(群时延)。
6.系统阶跃响应的上升时间和系统的截止频率成反比。
.若信号的F(s)=3s j37。
,求该信号的 F ( j)(s+4)(s+2) (j+4)(j+2)8.为使LTI 连续系统是稳定的,其系统函数H(s ) 的极点必须在S 平面的左半平面。
1。
9.已知信号的频谱函数是0)()F(( ,则其时间信号f(t)为0j)sin(t)js110.若信号 f(t)的F ( s ) ,则其初始值f(0)1。
2(s1 )得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题 2 分,共 10 分)《信号与系统》试卷第1页共 7页专业资料整理格式1.单位冲激函数总是满足 ( t )( t ) (√)2.满足绝对可积条件 f ( t ) dt 的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。
(√)4.连续 LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
(×)得分三、计算分析题(1、 3、 4、 5 题每题 10 分, 2 题 5 分,6 题15 分,共 60 分)t 10t11.信号f(t)2eu(t) ,1,信号 f ,试求 f 1 (t)*f 2 (t)。
标准答案(一)一、填空题(每空1分,共30分)1、无线电通信中,信号是以电磁波形式发射出去的。
它的调制方式有调幅、调频、调相。
2、针对不同的调制方式有三种解调方式,分别是检波、鉴频、和鉴相。
3、在单调谐放大器中,矩形系数越接近于1、其选择性越好;在单调谐的多级放大器中,级数越多,通频带越窄、(宽或窄),其矩形系数越(大或小)小。
4、调幅波的表达式为:uAM(t)= 20(1 +0.2COS100πt)COS107πt(V);调幅波的振幅最大值为24V,调幅度Ma为20℅,带宽fBW为100Hz,载波fc为5*106Hz。
5、在无线电技术中,一个信号的表示方法有三种,分别是数学表达式、波形、频谱。
6、调频电路有直接调频、间接调频两种方式。
7、检波有同步、和非同步检波两种形式。
8、反馈式正弦波振荡器按照选频网络的不同,可分为LC、RC、石英晶振等三种。
9、变频器可由混频器、和带通滤波器两部分组成。
10、列出三个常见的频谱搬移电路调幅、检波、变频。
11、用模拟乘法器非线性器件实现调幅最为理想。
二、选择题(每小题2分、共20分)将一个正确选项前的字母填在括号内1、下列哪种信号携带有调制信号的信息(C )A、载波信号B、本振信号C、已调波信号2、小信号谐振放大器的主要技术指标不包含(B )A、谐振电压增益B、失真系数C、通频带D、选择性3、丙类谐振功放其谐振回路调谐于( A )分量A、基波B、二次谐波C、其它高次谐波D、直流分量4、并联型石英晶振中,石英谐振器相当于(C )元件A、电容B、电阻C、电感D、短路线5、反馈式正弦波振荡器的起振条件为( B )A、|AF|=1,φA+φF= 2nπB、|AF| >1,φA+φF = 2nπC、|AF|>1,φA+φF ≠2nπD、|AF| =1,φA+φF ≠2nπ6、要实现集电极调制特性应使功放工作在(B )状态A、欠压状态B、过压状态C、临界状态D、任意状态7、自动增益控制可简称为( B )A、MGCB、AGCC、AFCD、PLL8、利用非线性器件相乘作用来实现频率变换其有用项为( B )A、一次方项B、二次方项C、高次方项D、全部项9、如右图所示的电路是(D )A、普通调幅电路B、双边带调幅电路C、混频器D、同步检波器10、在大信号包络检波器中,由于检波电容放电时间过长而引起的失真是(B)A、频率失真B、惰性失真C、负峰切割失真D、截止失真三、判断题,对的打“√”,错的打“×”(每空1分,共10分)1、谐振放大器是采用谐振回路作负载的放大器。