测试技术流量测量
- 格式:pdf
- 大小:1.90 MB
- 文档页数:17
1.测试技术是测量和试验技术的统称,是关于将被测量转换为可检测、传输、处理、显示或记录的量,再与标准量比较的过程技术。
2.测试系统一般主要由传感器、中间调理电路、显示存储和输出装置三部分组成。
3.传感器一般主要由敏感元件、转换元件,调理电路和辅助电源等组成。
4.传感器按能量关系可分为能量控制型和能量转换型。
a能量控制型传感器先将被测量转换成电参量的变化,依靠外部辅助电源再将电参量转换成电信号输出,也称为电参量型传感器。
B能量转换型传感器直接将被测量转换成电信号输出,也称为发电型传感器。
5.电阻应变式传感器是利用金属导体的电阻应变效应原理工作,(电阻丝几何尺寸变化),可用于直接测量应力或应变,按其用途不同,可分为应变式力,压力、加速度、扭矩传感器。
6.压阻式传感器是利用半导体材料的压阻效应原理工作的(电阻率发生变化,从而引起电阻变化),可用于测量压力和加速度。
[电阻应变式传感器和压阻式传感器,两者在外力作用下都将会引起电阻的变化]7.热电阻传感器是利用电阻随温度电阻随温度变化的特性而制成的,可分为金属热电阻和半导体热敏电阻两类,主要用于温度测量、温度控制和温度补偿。
金属热电阻具有正的电阻温度系数,也采用电桥将电阻变化转换成电压或电流输出,为了消除连接导线电阻随温度升高减小的测量误差,唱采用三线接法和四线接法。
【热敏电阻阻值随温度升高减小】8.电容式传感器可分为变极距式、变面积式和变介电常数式。
①变极距式电容传感器做成差动结构,不仅提高了灵敏度,减小非线性误差,且起到温度补偿的作用。
广泛应用于微小位移和压力测量。
②变面积式传感器的灵敏度为常数(即输出和输入为线性关系),广泛应用于较大的直线位移和角位移的测量。
③变介电常数式用来测量介质的厚度、位移和液位等(如洗衣机水位测量)9.电感式传感器是利用电磁感应原理,常用来测量位移、振动、压力、流量、转速、力矩等。
①变磁阻式传感器(当衔铁随被测件上下移动时,一个线圈的自感增大,另一个线圈的自感减小)②电涡流式传感器是利用金属材料在交变磁场中的涡流效应原理制成的,可对金属材料进行涡流探伤,广泛用于位移、振动、转速和表面裂纹及缺陷的测量10.压电式传感器是利用压电效应原理制成的。
钻井液流量检测技术中石化胜利工程有限公司地质录井公司摘要:钻井液出入口流量的准确检测是发现以上异常现象的重要手段之一,因此准确实现钻井液出入口流量的检测,对于现场油气钻探的安全施工有着重要的意义。
关键词:钻井液流量;检测;录井;研究方法引言在钻井现场,钻井液出口流量是一个重要的参数,根据出口流量的变化能够判断井下异常情况,通常情况下是利用靶式流量计来测量,其测量原理是靠泥浆的冲击使靶体发生位移,带动电阻变化,产生信号变化,反应灵敏,测量结果能够快速反映钻井液出口流量的变化;靶体使用优质不锈钢材料制作,成本低廉、原理简单、不容易损坏。
该传感器存在诸多缺点:1、使用困难,传感器一般是装在架空管线上,需要对架空管线开口,安装人员需要佩戴安全带,进行高处作业;2、经过长时期使用,传感器会变得不灵活,泥浆在靶体上固结,形成泥饼,影响了测量的精度,导致传感器的输出信号变小,不能反映泥浆流量的真实变化;3、无法根据实际情况标定传感器,当受到钻井液冲击后,其上升和回落之间的落差较大,只能反映一个相对值,不能计算真实的流量变化。
所以,靶式流量传感器的测量精度不能满足钻井过程中井涌、井漏及其他钻井安全事故监控预报的需求。
1、研究意义钻井液入口流量采用泥浆泵计算的方法获得,存在误差大、受泥浆泵效率影响大等问题。
因此,研制一套钻井液出入口流量实时检测单元,对于准确计算钻井过程中的钻井液体积变化具有重要意义。
在钻井现场,如果采用的流量检测手段不适合,对井漏井涌等异常工况的发生预测不及时,将会造成极为严重的后果。
在重庆开县发生过重大的死伤事故,在天然气井钻进时,若处理措施不恰当,还会引起失控着火、爆炸以及地层下陷等事故。
为预防各种事故的发生,钻井过程中,录井人员应该做好井控监视工作,及时发现溢流、井漏等征兆,进行快速汇报。
需要对钻井液流量进行定量、实时的检测,及时发现各类异常工况,及时进行预警,在根本上防止井喷等事故的发生,以便于钻井工作的顺利实施,提高社会效益。
流量测试作业操作规程1主题内容与适用范围本规程规定了水井流量测试作业操作步骤和要求。
本规程适用于水井流量测试作业。
2程序内容2.1出车前的准备2.1.1队长(技术干部)对本班工作提出针对性的安全、质量、环保施工要求。
2.1.2班长到调度室领取流量测试作业票、油田常规作业票、流量测试测试计划任务书及相关记录。
2.1.3班长组织召开班前安全讲话,开展经验分享活动,进行岗位分工和风险提示以及操作规程的学习。
2.1.4班组成员劳保护具上岗,各种证件齐全有效,对各自岗位的风险进行识别并提出预防措施。
2.1.5填写班组QHSE综合记录,各岗位签字确认。
2.1.6到仪表班领取电磁流量计、电池、加重杆等仪器。
2.1.7到资料解释组核实本次流量测试井井位、管柱数据、井下遇阻、遇卡、落物、水量等有关资料。
2.1.8检查装载流量测试井口防喷装置(防喷管、封井器、井口连接短节),天、地滑轮等及管钳、扳手等现场工具齐全完好。
2.1.9司机按车辆巡回检查制度进行车辆检查完好,证件齐全。
2.1.10班长核查设施完整,测试仪器工作正常。
2.2施工过程2.2.1流量测试前的准备2.2.1.1到采油厂工艺室(油藏室)办理油田常规作业票。
2.2.1.2到采油厂工区签字确认油田常规作业票。
2.2.1.3确认施工现场达到施工要求,检查井口设施完好并与巡检工办理交接井手续。
2.2.1.4各岗位进行巡回检查,劳保护具上岗,严禁烟、火、手机带入井场,确认无误后,填写QHSE 检查表和流量测试作业票、油田常规作业票。
2.2.1.5班长负责指挥司机将钢丝试井车停在距井口20-30米处的上风口或侧风口,并使钢丝滚筒的中心轴垂直于井口纵向轴,且滚筒的中心正对井口,司机停车,倒换气路至台上操作台。
2.2.1.6司机在试井车两后轮后面各垫一个掩木,关闭防火帽。
2.2.1.7施工现场摆放“钢丝作业,严禁穿越”标识牌,井口与试井车之间拉好警戒带。
2.2.2打钢丝绳帽2.2.2.1打绳结前检查钢丝疲劳程度,(φ2.2mm弯折次数≥8,φ2.4mm弯折次数≥7),卸开防喷盒压帽,检查更换盘根。
电磁流量计测量不准或示值波动原因总结流量计技术指标在电磁流量计现场应用中,假如显现测量不准或示值波动,可以从以下几个方面进行检修与排查。
旭东仪表厂技术人员为您总结原因如下:1、液体中含有气泡。
2、非满管导致测量不精准。
3、电极腐蚀导致测量不准。
4、电导率过低导致测量不精准。
5、电极结垢及电极短路导致测量不精准。
6、衬里变形导致测量不精准。
7、外部强电场导致测量不准。
仅需对仪表作周期性直观检查,检查仪表四周环境,扫除尘垢,确保不进水和其他物质,检查接线是否良好,检查仪表相近有否新装强电磁场设备或有新装电线横跨仪表。
若是测量介质简单沾污电极或在测量管壁内沉淀、结垢、应定期作清垢、清洗。
故障查找流量计开始投运或正常投运一段时间后发觉仪表工作不正常,应首先检查流量计外部情况,如电源是否良好、管道是否泄露或处于非满管状态、管道内是否有气泡、信号电缆是否损坏、转换器输出信号(即后位仪表输入回路)是否开路。
切记盲目拆修流量计。
传感器检查测试设备:500M绝缘电阻测试仪一台,万用表一只。
测试步骤:(1)在管道充分介质的情况下,用万用表测量接线端子A、B 与C之间的电阻值,A—C、B—C之间的阻值应大至相等。
若差异在1倍以上,可能是电极显现渗漏、测量管外壁或接线盒内有冷凝水吸附。
(2)在衬里干燥情况下,用M表测A—C、B—C之间的绝缘电阻(应大于200M)。
再用万用表测量端子A、B与测量管内二只电极的电阻(应呈短路连通状态)。
若绝缘电阻很小,说明电极渗漏,应将整套流量计返厂维护和修理。
若绝缘有所下降但仍有50M以上且步骤(1)的检查结果正常,则可能是测量管外壁受潮,可用热风机对外壳内部进行烘干。
(3)用万用表测量X、Y之间的电阻,若超过200,则励磁线圈及其引出线可能开路或接触不良。
拆下端子板检查。
(4)检查X、Y与C之间的绝缘电阻,应在200M以上,若有所下降,用热风对外壳内部进行烘干处理。
实际运行时,线圈绝缘性下降将导致测量误差增大、仪表输出信号不稳定。
1.1简述测量仪器的组成与各组成部分的作用答:感受件、中间件和效用件。
感受件直接与被测对象发生联系,感知被测参数的变化,同时对外界发出相应的信号;中间件将传感器的输出信号经处理后传给效用件,放大、变换、运算;效用件的功能是将被测信号显示出来。
1.2测量仪器的主要性能指标及各项指标的含义是什么答:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间等。
精确度表示测量结果与真值一致的程度;恒定度为仪器多次重复测量时,指示值的稳定程度;灵敏度以仪器指针的线位移或角位移与引起这些位移的被测量的变化值之间的比例表示;灵敏度阻滞又称感量,是足以引起仪器指针从静止到做微小移动的被测量的变化值;指示滞后时间为从被测参数发生改变到仪器指示出该变化值所需时间,或称时滞。
2.3试述常用的一、二阶测量仪器的传递函数及它的实例答:一阶测量仪器如热电偶;二阶测量仪器如测振仪.2。
4试述测量系统的动态响应的含义、研究方法及评价指标。
答:测量系统的动态响应是用来评价系统正确传递和显示输入信号的指标.研究方法是对系统输入简单的瞬变信号研究动态特性或输入不同频率的正弦信号研究频率响应.评价指标为时间常数τ(一阶)、稳定时间t s和最大过冲量A d(二阶)等。
2.6试说明二阶测量系统通常取阻尼比ξ=0.6~0。
8范围的原因答:二阶测量系统在ξ=0.6~0。
8时可使系统具有较好的稳定性,而且此时提高系统的固有频率ωn会使响应速率变得更快。
3.1测量误差有哪几类?各类误差的主要特点是什么?答:系统误差、随机误差和过失误差。
系统误差是规律性的,影响程度由确定的因素引起的,在测量结果中可以被修正;随机误差是由许多未知的或微小因素综合影响的结果,出现与否和影响程度难以确定,无法在测量中加以控制和排除,但随着测量次数的增加,其算术平均值逐渐接近零;过失误差是一种显然与事实不符的误差.3。
2试述系统误差产生的原因及消除方法答:仪器误差,安装误差,环境误差,方法误差,操作误差(人为误差),动态误差。
孔板流量计测量精度的方法孔板流量计常见问题解决方法孔板流量计,具有结构简单、维护和修理便利、性能稳定等特点,并且广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程掌控和测量。
但孔板流量计在现场测量的时候孔板流量计,具有结构简单、维护和修理便利、性能稳定等特点,并且广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程掌控和测量。
但孔板流量计在现场测量的时候,还是会碰到一些问题,常常会由于一些客观的因素而导致测量结果误差较大,下面就给大家紧要介绍下提高孔板流量计测量精度的方法:1、孔板流量计进行逐台标定:大家都知道,标准孔板只要设计制造参照相关标准,不需要实流标定就可以直接使用。
由于流出系数可以直接由软件算出,但是计算机计算终归的比较理想的,和现场环境还是有确定差别的,所以,为了保证测量精度,建议对每台流量计进行实流标定,把标定出的流出系数和计算结果进行比对,算出差值,进行修正。
2、温度对孔板流量计的影响及其修正,流体温度变化引起密度的变化,从而导致差压和流量之间的关系变化,其次,温度变化引起管道内径,孔板开孔的变化,对温度变化的修正,就是实行温度仪表测量现场温度进而输入到二次仪表中来修正温度变化而导致的误差。
3、可膨胀性校正:孔板流量计测量蒸汽,气体流量时,必需进行流体的可膨胀性校正,实在校正系数可以参照节流装置设计手册。
4、雷诺数修正,孔板流量计的流量系数和雷诺数之间有确定的关系,当质量流量变化时,雷诺数成正比变化,因而引起流量系数的变化。
5、蒸汽质量流量的计算,孔板流量计测量蒸汽时,先由差压信号求得流量值,再由蒸汽温度,压力值查表得出密度,来计算蒸汽流量质量。
以上内容,是关于提高孔板流量计测量精度方法的介绍。
在实行方法之前,需要对孔板流量计测量精度不精准的原因进行分析和了解。
—专业分析仪器服务平台,试验室仪器设备交易网,仪器行业专业网络宣扬媒体。
相关热词:等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
超声波流量计原理及应用1、概述利用超声波测量流速、流量的技术不仅用于工业计量,而且在医疗、海洋观测、河流等的各种计量测试中有着广泛的应用,这里主要说明在工业计量测试中使用的超声波流量计。
超声流量计是超声检测技术的一种运用,超声检测是一种无损检测。
超声波可以穿透电磁波、光波无法穿透的物体,同时又能在两种物质(声阻抗不同的物质)交界面上反射,由于物体内部的不均匀性,使超声波衰减变弱,从而可分体内的裂纹、疏松、气泡、沙眼、夹渣、未焊透和脱层等缺陷。
所以,检测超声技术应用非常广泛。
它的突出优点是检测可靠、测定迅速、操作简便、便于在现场使用,对人体无害,对系统不改变运行状态,超声仪器可用性好,寿命长,携带方便。
在国外已成功应用于船舶、冶金、机械、石油、化工、食品、电子、航天、建筑、农林、水产及医疗等领域。
原理一般所谓超声波流量计的测量原理如图表1所示。
测量原理是多种多样的,如传播速度差法――声循环法,时间差法和多普勒法,这里对其他方法则只做简单的说明。
从古至今一直在研究利用声波测量液体和气体的流速,但直到二次世界大战为止没有太大的进展。
战后爆发的技术革新首先在美国兴起,继相位差法之后,应用声循环法(两组型)的马克森流量计于1995年首先作为航空燃料用流量计得到应用。
这刺激了利用超声波测量流量、流速技术的迅速进步,如上所述,在很多方面进行了研制,结果出现了时间差法和射束位移法等等。
以后一段时期虽然继续进行了研制,但实用的计量测试仪器并未占有牢固的地位。
进入二十世纪七十年代以后,由于IC(集成电路)技术的迅猛发展,可以使用高性能、工作非常稳定的PLL(锁相环路)回路技术,因此产生了将这种技术用于流量计的设想,结果,陆续出现了作为实用计量测试仪器的超声波流量计。
而现在,随着声循环法的发展,以PLL(锁相环路)技术为基础的超声波流量计在实际中也得到了应用。
另一方面,在苏联虽然也广泛地进行了理论研究,论述了基于流速分布的流量修正系数问题,而一般来说,包括西欧各国在内,其研究创新不如美国进行的活跃。