解直角三角形的应用[下学期]--北师大版
- 格式:pdf
- 大小:1.05 MB
- 文档页数:10
教学内容分析:本节内容是在学习了“锐角三角函数”“勾股定理”等内容的基础上进一步探究如何利用所学知识解直角三角形。
通过直角三角形中边角之间关系的学习,学生将进一步体会数学知识之间的联系,如比和比例、图形的相似、推理证明等。
将为一般性地学习三角形的知识及进一步学习其他数学知识奠定基础。
对部分学生来说,有一定的难度。
教学目标:1、知识技能:使学生掌握直角三角形的边角关系,会选用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
2、数学思维:经历探求直角三角形边角关系的过程,体会三角函数在解决问题过程中的作用,感受理论来源于实践又反作用于实践的唯物主义思想。
3、解决问题:通过利用三角函数解决实际问题的过程,进一步提高学生的逻辑思维能力和分析问题解决问题的能力4、情感态度和价值观形成数形结合的数学思想,体会数学与实践生活的紧密联系。
从而增强学生的数学应用意识,激励学生敢于面对数学学习中的困难。
通过获取成功的体验和克服困难的经历,增进学习数学的信心,养成良好的学习习惯。
教学课时:一课时教学重难点:重点:理解并掌握直角三角形边角之间的关系。
难点:从条件出发,正确选用适当的边角关系解题。
教学过程:一、创设情境:问题1:如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡∠FAE是30°,求大树的高度(结果保留整数。
参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)二、知识回顾:已知:在ΔABC中,∠C=90°,你能说出这个图形有哪些性质吗?1、在一个三角形中,共有几条边?几个角?(引出“元素”这个词语)2、在RtΔABC中,∠C=90°。
a、b、c、∠A、∠B这些元素间有哪些等量关系呢?讨论复习:RtΔABC的角角关系、三边关系、边角关系分别是什么?总结:直角三角形的边角关系(1)两锐角互余:∠A+∠B=90°(2)三边满足勾股定理:a2+b2=c2(3)边与角的关系:sinA=cosB=a/ccosA=sinB=b/ctanA=cotB=a/bcotA=tanB=b/a在直角三角形中由已知元素求出未知元素的过程就是解直角三角形。