第九章 单晶硅制备 杂质分凝和氧污染
- 格式:ppt
- 大小:8.59 MB
- 文档页数:59
单晶硅生产工艺流程原理单晶硅是一种重要的半导体材料,广泛应用于电子器件制造中,特别是在集成电路行业中扮演着关键角色。
单晶硅的制备是一个复杂而精细的工艺过程,需要经过多个步骤才能获得高纯度的单晶硅材料。
下面将介绍单晶硅的生产工艺流程原理。
原料准备单晶硅的生产过程以硅矿石为主要原料。
首先需要将硅矿石经过多道精炼工艺,去除杂质,得到高纯度的硅原料。
这些原料经过淬火、压制等处理后,形成硅棒的初始坯料。
制备硅棒制备硅棒是单晶硅生产的第一步,该过程采用Czochralski法(简称CZ法)或区熔法(简称FZ法)等方法。
在CZ法中,将初始坯料放入石英坩埚中,加热至高温熔化。
然后,在控制的条件下,缓慢降温并用旋转晶稳定法拉出硅棒。
晶棒切割硅棒制备完成后,需要将硅棒切割成薄片,常用的方法是采用金刚石线锯或者线切割机。
这一步骤旨在减小硅片的厚度,方便后续加工。
晶片处理切割后的硅片需要经过多道化学和物理处理,以去除表面杂质和缺陷。
包括去除氧化层、清洗、抛光等工艺,以确保硅片的表面光洁度和纯净度。
晶片生长经过处理后的硅片用作单晶硅的生长基板。
在生长炉中,将硅片加热至高温,通过控制炉内气氛和温度,使硅片逐渐生长为单晶体。
这一步骤需要高度精密的操作和控制,以确保单晶硅的质量和纯度。
晶片切割生长完成后的单晶硅坯料需要进行切割,以得到符合尺寸要求的硅片。
切割方法包括金刚石刀切割、线切割等,确保硅片的准确尺寸和表面光洁度。
清洗和包装最后一步是对切割后的硅片进行清洗和包装。
在超纯水和化学溶剂中清洗硅片表面,去除残留的杂质和可溶性物质,然后精密包装,避免受到环境污染和损坏。
通过以上几个关键步骤,单晶硅的生产工艺流程得以完整实现。
每一个步骤都需要高度精密的操作和控制,以确保最终生产出高纯度、高质量的单晶硅材料,以满足电子器件制造的需求。
单晶硅的生产工艺虽然复杂,但正是这一系列精细工艺的完美结合,才使得单晶硅成为半导体产业中不可或缺的重要材料。
单晶硅生长技术及氧缺陷控制方法摘要:目前电子信息技术以及光伏技术飞速发展,而作为此类技术的基础材料,硅发挥了重要作用。
从某些角度分析,硅(Si)影响了未来科技的发展,是高薪技术进步的基础,因此国家想要发展自身在能源领域以及高新技术领域实力,必须将Si作为战略资源。
作为功能性材料,Si具有各项异性,所以将Si应用于半导体材料需要将其制成硅单晶,并进一步将其加工成为抛光片。
这样才能将Si应用于CI器件的制造中,目前所生产的电子元件中89%以上的均使用硅单晶。
关键词:单晶硅;生长技术;氧缺陷单晶硅的生产需要以半导体单晶硅切割过程中产生的头尾料、单晶硅碎片以及边皮料作为原料。
而生产所用技术目前主要有两种,一种为直拉法,一种则是悬浮区熔法。
制备单晶硅过程中,依照实际的需要还需要添加必要元素,从而增大、减小材料电阻率,掺杂元素主要为第Ⅲ主族元素以及第Ⅴ主族元素。
完成单晶硅材料的制备后,还需要依照半导体材料的需要进行深加工,深加工程序主要包括切片、打磨以及腐蚀和抛光。
而随着单晶硅的生产技术、加工技术的发展,目前的单晶硅逐步向着300mm以上大直径材料发展,且缺陷含量以及杂志含量更低,材料分布更加均匀,且生产成本不断降低、效率更高。
1 单晶硅的概念半导体材料的电学性质和其他物理性质对晶格缺陷以及所含杂质的种类和数量非常敏感。
制作各种半导体器件,尤其是集成电路和大规模集成电路的制作更需要均匀性好的大直径完善单晶。
目前不仅能制造无位错的完善单晶,而且还可以将位错密度控制在一定范围内[1]。
无位错单晶的直径已达到200mm规格化。
2 单晶硅的生长方法2.1 直拉(CZ)法CZ是单晶硅生长中直拉法的简称,其过程相对较为简单,通过从熔硅中利用旋转籽晶对单晶硅进行提拉制备,该种方法生产成本相对较低,且能够大量生产。
因此该项技术在国内太阳能单晶硅片的生产中广泛贵推广开来,直拉法目前使用的技术工艺核心有磁场直拉法、热场构造以及控制氧浓度等。
直拉单晶硅的制备硅、锗等单晶制备,就是要实现由多晶到单晶的转变,即原子由液相的随机排列直接转变为有序阵列;由不对称结构转变为对称结构。
但这种转变不是整体效应,而是通过固液界面的移动而逐渐完成的。
为实现上述转化过程,多晶硅就要经过由固态到熔融态,然后又由熔融态硅到固态晶体硅的转变。
这就是从熔体硅中生长单晶硅所遵循的途径。
从熔体中生长硅单晶的方法,目前应用最广泛的主要有两种:有坩埚直拉法和无坩埚悬浮区熔法。
在讨论这两种制备方法之前,还应讨论在制备单晶过程中必不可少的一些准备工序。
包括掺杂剂的选择、坩埚的选择、籽晶的制备等,分别介绍如下:一、掺杂在制备硅、锗单晶时,通常要加入一定数量杂质元素(即掺杂)。
加入的杂质元素决定了被掺杂半导体的导电类型、电阻率、少子寿命等电学性能。
掺杂元素的选择必须以掺杂过程方便为准,又能获得良好的电学性能和良好晶体完整性为前提。
1掺杂元素的选择(1)根据导电类型和电阻率的要求选择掺杂元素制备N型硅、锗单晶,必须选择Ⅴ族元素(如P、As、Sb、Bi);制备P型硅、锗单晶必须选择Ⅲ族元素(如B、Al、Ga、In、Ti)。
杂质元素在硅、锗晶体中含量的多少决定了硅、锗单晶的电阻率。
电阻率不仅与杂质浓度有关,而且与载流子的迁移率有关。
当杂质浓度较大时,杂质对载流子的散射作用,可使载流子的迁移率大大降低,从而影响材料的导电能力。
考虑到以上因素,从理论上计算了电阻率与杂质浓度的关系曲线,如图9-5所示。
在生产工艺上按电阻率的高低分档。
掺杂有三档:轻掺杂(适用于大功率整流级单晶)、中掺杂(适用于晶体管级单晶)、重掺杂(适用于外延衬底级单晶)。
(2)根据杂质元素在硅、锗中溶解度选择掺杂元素各种杂质元素在硅、锗中溶解度相差颇大。
例如,采用大溶解度的杂质,可以达到重掺杂的目的,又不会使杂质元素在晶体中析出影响晶体性能。
下表列出了常用掺杂元素在硅、锗单晶生长时掺入量的极限,超过了极限量,单晶生长不能进行。
单晶硅工艺流程
《单晶硅工艺流程》
单晶硅是制造集成电路和太阳能电池的重要材料,其工艺流程十分复杂。
下面我们来了解一下单晶硅的工艺流程。
1. 制备高纯度多晶硅
首先,需要制备高纯度多晶硅。
通过氢气还原法将硅矿石还原成多晶硅,再通过碘化法或氯化法提炼成高纯度多晶硅。
2. 生长单晶硅
接下来,将高纯度多晶硅放入石墨坩埚中,加热至熔化点,然后缓慢凝固。
在凝固过程中,通过拉晶法或单晶法,将多晶硅生长成单晶硅棒。
3. 切割晶圆
将生长的单晶硅棒切割成一定厚度的圆片,即晶圆。
晶圆表面需要进行化学机械抛光,以去除切割带来的粗糙和损伤。
4. 污染物去除
在清洗过程中,需要将晶圆表面的氧化膜去除,并除去各种杂质和残留物。
通常采用HF酸、HNO3酸和H2O2的溶液进行腐蚀清洗。
5. 氧化与扩散
将晶圆表面进行氧化处理,形成一层绝缘层。
然后通过掺杂的方式,在晶圆表面形成P型或N型半导体区域。
6. 光刻
将光刻胶覆盖在晶圆表面,然后使用光刻机将光刻胶暴露在紫外光下。
随后,利用显影、蚀刻等方法,在光刻胶上形成芯片图形。
7. 沉积金属
通过化学气相沉积或物理气相沉积等方法,在芯片表面形成金属化层,用于连接电路。
8. 清洁与检测
最后,需要对芯片进行清洁和检测。
清洁可以去除沉积在芯片表面的污染物,检测则是验证芯片性能是否符合要求。
通过以上工艺流程,单晶硅可以制备成各种微电子器件和太阳能电池。
这些工艺流程不仅需要高精度的设备和技术,还需要严格的控制和管理,以确保生产出高质量的单晶硅产品。
单晶硅生长技术及氧缺陷控制方法作者:边智学来源:《中国科技博览》2019年第11期[摘要]随着光伏产业的不断发展,人们对于单晶硅的质量要求也逐渐增高。
经过多年的探索,单晶硅生长技术已经得到了很大的改良。
本文首先分析了单晶硅生长技术,包括区熔法与直拉法,接着对单晶硅生长过程中氧缺陷控制方法做了简单的介绍。
[关键词]单晶硅;区熔法;直拉法;氧缺陷控制中图分类号:O782 文献标识码:A 文章编号:1009-914X(2019)11-0103-01引言现阶段,以大规模集成电路为代表的半导体器件越来越完善,因而单晶硅的制作方法必须更加精良,才能满足光伏生产的要求。
因此,在单晶硅制备过程中,单晶硅生长技术和氧缺陷控制的研究具有重要意义。
1、单晶硅生长技术目前,业内单晶硅的生产主要采用两种技术。
采用这两种方法制备的单晶硅具有不同的特性,同时应用领域也有差异。
利用区熔法制备的单晶硅,主要应用于大功率器件;而利用直拉法制备的单晶硅,主要用于微电子集成电路和太阳能电池。
目前来看,我国的大多数单晶硅是通过直拉法制备的,以满足半导体和光伏产业的需求。
两种方法制备单晶硅的对比情况见表1。
1.1区熔法区域熔融方法在高温氢气氛和诸如热场,电磁场和流场的多场相互作用环境中在硅熔体的固-液界面中产生一定程度的过冷。
结晶的硅原子在籽晶方向上形成,以形成具有确定的原子级的单晶。
生长单晶硅的过程遵循这样的凝固过程:通过生长速率保持固液界面的过冷度,在固液界面处建立一定的温差,整个生长过程处于过冷和凝固的动态平衡状态,确保区域熔化状态并保持晶体的平滑生长。
晶体生长的质量与界面的形状,熔体中的流动效应,热输出和质量传递密切相关。
单晶硅的生长受宏观物理量的控制,例如热场温度和生长速率,根据其法则和过程。
获得“完美”单晶的过程,没有位错,缺陷,形状均匀,杂质含量和电阻率。
其生长过程见图1。
由于分区单晶尺寸的加大,在其生长过程中,具有两个明显的特点。