单晶硅制备方法
- 格式:doc
- 大小:29.50 KB
- 文档页数:6
单晶硅的生产过程单晶硅的生产过程单晶硅, 生产一、单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。
熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。
单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅棒的市场需求也呈快速增长的趋势。
单晶硅圆片按其直径分为6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。
直径越大的圆片,所能刻制的集成电路越多,芯片的成本也就越低。
但大尺寸晶片对材料和技术的要求也越高。
单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。
直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。
直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。
目前晶体直径可控制在Φ3~8英寸。
区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。
目前晶体直径可控制在Φ3~6英寸。
外延片主要用于集成电路领域。
由于成本和性能的原因,直拉法(CZ)单晶硅材料应用最广。
在IC工业中所用的材料主要是CZ抛光片和外延片。
存储器电路通常使用CZ抛光片,因成本较低。
逻辑电路一般使用价格较高的外延片,因其在IC制造中有更好的适用性并具有消除Latch-up的能力。
单晶硅也称硅单晶,是电子信息材料中最基础性材料,属半导体材料类。
单晶硅已渗透到国民经济和国防科技中各个领域,当今全球超过2000亿美元的电子通信半导体市场中95%以上的半导体器件及99%以上的集成电路用硅。
二、硅片直径越大,技术要求越高,越有市场前景,价值也就越高。
日本、美国和德国是主要的硅材料生产国。
中国硅材料工业与日本同时起步,但总体而言,生产技术水平仍然相对较低,而且大部分为2.5、3、4、5英寸硅锭和小直径硅片。
单晶硅工艺流程图单晶硅是目前最常用的半导体材料,广泛应用于集成电路、太阳能电池等领域。
下面是一幅简化的单晶硅工艺流程图,以便更好地了解单晶硅的生产过程。
第一步:原料准备原料通常为高纯度的二氧化硅(SiO2)。
首先将原料粉碎成较小的颗粒并进行筛分,以得到精细的粉末。
接下来,将粉末与一定比例的还原剂(如石煤)混合,以便在高温下还原。
第二步:气相法制备单晶硅将经过还原处理的粉末置于石英坩埚中,将坩埚放入高温炉中。
通过高温炉中的加热源(如电炉)提供热能,使粉末在适当的温度下融化。
在炉中引入气体流,使气体通过石英坩埚并与粉末反应。
反应产物是硅烷(SiH4),通过引入氢气(H2),使硅烷沿着一定的路径扩散并沉积在高温炉中的石英坩埚内壁上。
在此过程中,硅烷会发生化学反应以生成单晶硅。
第三步:生长单晶硅将生长的单晶硅棒置于单晶硅生长炉中,棒内壁为活性炭涂层,通过外加热源提供热能。
加热棒中心温度上升,熔融的硅逐渐凝固成为单晶硅。
生长的单晶硅棒沿着纵向方向生长,直至达到所需长度。
在单晶硅棒的生长过程中,需要定期添加掺杂剂(如磷、硼等),以调节单晶硅的导电性质。
第四步:切割硅锭将生长的单晶硅棒切割成所需的硅锭。
切割主要通过研磨和切割机器完成,将单晶硅棒分割成合适长度的硅锭。
切割出的硅锭表面需要经过打磨和抛光等处理,以获得平整的表面。
第五步:切割片材将硅锭进一步切割成更薄的硅片材料。
切割过程主要使用刀片或线锯,依靠机械力将硅锭切割成薄片。
切割出的硅片需要进行清洗和抛光等后续处理,以获得平整、干净的硅片。
第六步:高温退火与清洗将切割好的硅片通过高温退火炉进行热处理。
退火过程中,硅片经过一定的温度和时间,以消除内部应力和杂质,提高硅片的电学性能。
之后,将硅片进行清洗,以去除表面的杂质和污染物。
第七步:环接触涂覆为了与其他材料进行粘附和封装,硅片表面需要涂覆一层环接触剂。
这一层涂覆能够提供良好的粘接性能,并且能够防止硅片表面的氧化和污染。
单晶硅的工艺流程
单晶硅是一种非常重要的半导体材料,广泛用于制造太阳能电池、集成电路等高科技产品中。
下面将介绍单晶硅的工艺流程。
单晶硅的制备主要分为以下几个步骤:
1. 矽源材料准备:以石英为主要原料,经过破碎、洗涤等工艺处理,得到高纯度的二氧化硅(SiO2)粉末。
2. 熔融石英:将高纯度二氧化硅粉末与硼酸、陶瓷颗粒等添加剂混合,装入石英坩埚中,通过高温熔化形成熔池。
3. 制取单晶种子:在石英坩埚上方的熔池表面,引入单晶硅种子棒。
种子棒通过旋转和升降动作,让熔池中的熔液附着在棒上,形成单晶硅颗粒。
4. 拉扩晶体:通过旋转、升降等运动,将单晶硅颗粒逐渐拉伸并扩展成一根完整的晶体。
在这个过程中,需要控制温度、引入定向凝固等技术,以保证晶体的纯度和结构完整性。
5. 切割晶体:将拉扩出的单晶硅晶体切割成片,通常使用金刚石锯片进行切割。
切割后的晶片称为硅片。
6. 表面处理:将硅片进行表面处理,通常使用化学气相沉积(CVD)等技术,对表面进行清洁、极细加工等处理,以便
后续工序的制造需要。
7. 清洗和检测:对硅片进行严格的清洗和检测,确保硅片的质量和性能指标符合要求。
涉及的检测项目包括晶格缺陷、杂质浓度、电阻率、表面平整度等。
8. 制作器件:根据具体需求,将硅片制作成太阳能电池、集成电路等不同的器件。
这些器件的制作过程包括光刻法、离子注入、扩散等工艺步骤,具体流程根据不同的器件类型而有所不同。
以上就是单晶硅的主要工艺流程。
通过以上工艺步骤的连续进行,我们可以得到高质量的单晶硅材料,并在此基础上制造出各种半导体器件,推动信息技术、能源等领域的发展进步。
太阳能电池单晶硅
太阳能电池单晶硅是目前最常见的太阳能电池类型之一。
它由单晶硅制成,具有较高的转换效率和较长的使用寿命,广泛应用于家庭光伏发电系统、商业光伏电站、太阳能灯、太阳能电池板等领域。
太阳能电池单晶硅的制作工艺比较复杂,需要经过多个步骤才能完成。
下面是太阳能电池单晶硅的制作过程:
1. 硅单晶体生长:将硅原料熔化,然后通过种晶的方式让硅原子在晶体种子上逐渐生长,最终形成硅单晶体。
2. 切割硅片:将硅单晶体切割成厚度为0.3-0.4mm的硅片,通常采用金刚石线锯进行切割。
3. 清洗硅片:用酸洗液对硅片进行清洗,去除表面的氧化物和杂质。
4. 晶体硅片制备:将硅片放入炉中,在高温下进行扩散、氧化等处理,形成PN结。
5. 制作电极:在硅片表面涂上铝等金属,形成正负极。
6. 焊接:将多个硅片按照一定方式组合起来,形成太阳能电池板。
太阳能电池单晶硅的转换效率在20%左右,比其他太阳能电池类型高。
但由于制作过程复杂,成本较高,因此在大规模应用中仍存在一定的限制。
单晶硅生产工艺流程
单晶硅生产工艺流程如下:
1. 原料准备:将硅矿石经过破碎、筛分、洗涤等处理,得到纯度高的硅矿石粉末。
2. 炼制硅棒:将硅矿石粉末与氢气在高温下反应,得到气相硅,再通过化学气相沉积法(CVD)或物理气相沉积法(PVD)将气相硅沉积在硅棒上,形成单晶硅棒。
3. 切割硅片:将单晶硅棒用钻头切割成薄片,厚度通常为200-300微米。
4. 清洗硅片:将硅片放入酸碱溶液中清洗,去除表面杂质。
5. 氧化硅层形成:将硅片放入高温氧气中,形成氧化硅层,用于保护硅片表面。
6. 晶圆制备:将硅片切割成圆形,形成晶圆。
7. 掩膜制备:将晶圆涂上光刻胶,然后用光刻机进行曝光和显影,形成掩膜。
8. 沉积金属层:将晶圆放入金属蒸发器中,沉积金属层,形成电路。
9. 蚀刻:将晶圆放入蚀刻液中,去除未被金属层覆盖的氧化硅层和硅片,形成电路。
10. 清洗:将晶圆放入酸碱溶液中清洗,去除蚀刻液和其他杂质。
11. 封装:将晶圆封装在芯片封装中,形成芯片。
单晶硅直接法制备方法嘿,朋友们!今天咱就来唠唠单晶硅直接法制备方法。
单晶硅啊,那可是个厉害的玩意儿,在好多高科技领域都有着至关重要的地位呢!直接法制备单晶硅,就像是一场神奇的魔法表演。
想象一下,把一些原材料放进一个特别的“魔法盒子”里,经过一系列奇妙的过程,就能变出亮晶晶的单晶硅啦!首先呢,得有高纯度的硅原料。
这就好比做饭得有好食材一样,要是原料不行,那可做不出美味的“单晶硅大餐”哟!然后,把这些硅原料加热到超级高的温度,让它们融化成液体。
这时候,就像是一锅滚烫的岩浆,充满了能量。
接下来,就是关键的步骤啦!要让这液体硅慢慢冷却,在冷却的过程中,硅原子就会乖乖地排列起来,形成那漂亮的单晶硅结构。
这就好像是一群小朋友在排队,整整齐齐的。
在这个过程中,可不能出岔子哟!温度得控制得恰到好处,不然单晶硅的质量可就没法保证啦。
这就跟烤蛋糕似的,火候不对,蛋糕可就不好吃啦。
而且啊,制备单晶硅的环境也得特别干净、特别纯净。
不能有一点儿杂质混进去,不然就像一锅好汤里掉进了一粒老鼠屎,那可就全毁啦!直接法制备单晶硅虽然听起来挺复杂,但咱科学家们可厉害啦,他们就像神奇的魔法师,能把这个过程掌控得稳稳的。
他们不断地研究、改进,让单晶硅的制备越来越完美。
你说,这单晶硅直接法制备是不是特别神奇?它让我们的生活变得更加丰富多彩,从电子设备到太阳能电池,到处都有它的身影。
咱可得好好珍惜这些科技成果呀!总之呢,单晶硅直接法制备就是一个充满挑战和惊喜的过程,它需要科学家们的智慧和努力,也需要我们对科技的尊重和热爱。
让我们一起为这些伟大的科技点赞吧!。
制备单晶硅的方法
制备单晶硅的方法主要有以下两种:
1. CZ法制备单晶硅:该方法是目前工业化生产单晶硅的主要方法之一。
首先将高纯度硅块加热,使其融化,然后通过降温的方式,使硅液沉淀晶核,最终长成单晶硅棒。
这个过程中需要使用特殊的棒拉机、炉子和电阻炉等设备,同时需要精确控制温度和加料速率等参数,才能制备高质量的单晶硅。
2. FZ法制备单晶硅:该方法通过向高纯度硅的熔体中注入电流,形成一段高温高浓度的区域,然后用石英棒快速拉出,拉出的硅在拉伸的过程中,沿着拉伸方向固定,形成单晶硅。
与CZ法相比,FZ法的优点在于能够制备高纯度的单晶硅,但该方法的缺点是制备速度慢且制备成本高。
单晶硅生产工艺单晶硅生产工艺一、单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。
熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。
单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅棒的市场需求也呈快速增长的趋势。
单晶硅圆片按其直径分为 6 英寸、8 英寸、12 英寸(300 毫米)及 18 英寸(450 毫米)等。
直径越大的圆片,所能刻制的集成电路越多,芯片的成本也就越低。
但大尺寸晶片对材料和技术的要求也越高。
单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。
直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。
直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。
目前晶体直径可控制在Φ3~8 英寸。
区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。
目前晶体直径可控制在Φ3~6 英寸。
外延片主要用于集成电路领域。
由于成本和性能的原因,直拉法(CZ)单晶硅材料应用最广。
在 IC 工业中所用的材料主要是 CZ 抛光片和外延片。
存储器电路通常使用 CZ 抛光片,因成本较低。
逻辑电路一般使用价格较高的外延片,因其在 IC 制造中有更好的适用性并具有消除 Latch-up 的能力。
单晶硅也称硅单晶,是电子信息材料中最基础性材料,属半导体材料类。
单晶硅已渗透到国民经济和国防科技中各个领域,当今全球超过 2000 亿美元的电子通信半导体市场中95%以上的半导体器件及 99%以上的集成电路用硅。
二、硅片直径越大,技术要求越高,越有市场前景,价值也就越高。
日本、美国和德国是主要的硅材料生产国。
中国硅材料工业与日本同时起步,但总体而言,生产技术水平仍然相对较低,而且大部分为 2.5、3、4、5 英寸硅锭和小直径硅片。
金属1001 覃文远3080702014单晶硅制备方法我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。
单晶硅,英文,Monocrystallinesilicon。
是硅的单晶体。
具有基本完整的点阵结构的晶体。
不同的方向具有不同的性质,是一种良好的半导材料。
纯度要求达到99.9999%,甚至达到99.9999999%以上。
用于制造半导体器件、太阳能电池等。
用高纯度的多晶硅在单晶炉内拉制而成。
用途:单晶硅具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随着温度升高而增加,具有半导体性质。
单晶硅是重要的半导体材料。
在单晶硅中掺入微量的第ЩA族元素,形成P型半导体,掺入微量的第VA族元素,形成N型,N型和P型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。
单晶硅是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。
在开发能源方面是一种很有前途的材料。
单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。
直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。
直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。
直拉法直拉法又称乔赫拉尔基斯法(Caochralski)法,简称CZ法。
它是生长半导体单晶硅的主要方法。
该法是在直拉单晶氯内,向盛有熔硅坩锅中,引入籽晶作为非均匀晶核,然后控制热场,将籽晶旋转并缓慢向上提拉,单晶便在籽晶下按照籽晶的方向长大。
拉出的液体固化为单晶,调节加热功率就可以得到所需的单晶棒的直径。
其优点是晶体被拉出液面不与器壁接触,不受容器限制,因此晶体中应力小,同时又能防止器壁沾污或接触所可能引起的杂乱晶核而形成多晶。
直拉法是以定向的籽晶为生长晶核,因而可以得到有一定晶向生长的单晶。
直拉法制成的单晶完整性好,直径和长度都可以很大,生长速率也高。
所用坩埚必须由不污染熔体的材料制成。
因此,一些化学性活泼或熔点极高的材料,由于没有合适的坩埚,而不能用此法制备单晶体,而要改用区熔法晶体生长或其他方法。
直拉法单晶生长工艺流程如图所示。
在工艺流程中,最为关键的是“单晶生长”或称拉晶过程,它又分为:润晶、缩颈、放肩、等径生长、拉光等步骤。
图1:直拉法工艺流程1、将多晶硅和掺杂剂置入单晶炉内的石英坩埚中。
掺杂剂的种类应视所需生长的硅单晶电阻率而定。
2、熔化当装料结束关闭单晶炉门后,抽真空使单晶炉内保持在一定的压力范围内,驱动石墨加热系统的电源,加热至大于硅的熔化温度(1420℃),使多晶硅和掺杂物熔化。
3、引晶当多晶硅熔融体温度稳定后,将籽晶慢慢下降进入硅熔融体中(籽晶在硅熔体中也会被熔化),然后具有一定转速的籽晶按一定速度向上提升,由于轴向及径向温度梯度产生的热应力和熔融体的表面张力作用,使籽晶与硅熔体的固液交接面之间的硅熔融体冷却成固态的硅单晶。
4、缩径当籽晶与硅熔融体接触时,由于温度梯度产生的热应力和熔体的表面张力作用,会使籽晶晶格产生大量位错,这些位错可利用缩径工艺使之消失。
即使用无位错单晶作籽晶浸入熔体后,由于热冲击和表面张力效应也会产生新的位错。
因此制作无位错单晶时,需在引晶后先生长一段“细颈”单晶(直径2~4毫米),并加快提拉速度。
由于细颈处应力小,不足以产生新位错,也不足以推动籽晶中原有的位错迅速移动。
这样,晶体生长速度超过了位错运动速度,与生长轴斜交的位错就被中止在晶体表面上,从而可以生长出无位错单晶。
无位错硅单晶的直径生长粗大后,尽管有较大的冷却应力也不易被破坏。
5、放肩在缩径工艺中,当细颈生长到足够长度时,通过逐渐降低晶体的提升速度及温度调整,使晶体直径逐渐变大而达到工艺要求直径的目标值,为了降低晶棒头部的原料损失,目前几乎都采用平放肩工艺,即使肩部夹角呈180°。
6、等径生长在放肩后当晶体直径达到工艺要求直径的目标值时,再通过逐渐提高晶体的提升速度及温度的调整,使晶体生长进入等直径生长阶段,并使晶体直径控制在大于或接近工艺要求的目标公差值。
在等径生长阶段,对拉晶的各项工艺参数的控制非常重要。
由于在晶体生长过程中,硅熔融体液面逐渐下降及加热功率逐渐增大等各种因素的影响,使得警惕的散热速率随着晶体的长度增长而递减。
因此固液交接界面处的温度梯度变小,从而使得晶体的最大提升速度随着警惕长度的增长而减小。
7、收尾晶体的收尾主要是防止位错的反延,一般讲,晶体位错反延的距离大于或等于晶体生长界面的直径,因此当晶体生长的长度达到预定要求时,应该逐渐缩小晶体的直径,直至最后缩小成为一个点而离开硅熔融体液面,这就是晶体生长的的收尾阶段。
直拉法晶体生长设备的炉体,一般由金属(如不锈钢)制成。
利用籽晶杆和坩埚杆分别夹持籽晶和支承坩埚,并能旋转和上下移动,坩埚一般用电阻或高频感应加热。
制备半导体和金属时,用石英、石墨和氮化硼等作为坩埚材料;而对于氧化物或碱金属、碱土金属的卤化物,则用铂、铱或石墨等作坩埚材料。
炉内气氛可以是惰性气体也可以是真空。
使用惰性气体时压力一般是一个大气压,也有用减压的(如5~50毫托)。
对于在高温下易于分解且其组成元素容易挥发的材料(如GaP,InP),一般使用“液封技术”,即将熔体表面覆盖一层不与熔体和坩埚反应而且比熔体轻的液体(如拉制GaAs单晶时用B2O3),再在高气压下拉晶,借以抑制分解和挥发。
为了控制和改变材料性质,拉晶时往往需要加入一定量的特定杂质,如在半导体硅中加入磷或硼,以得到所需的导电类型(N型或P型)和各种电阻率。
此外,熔体内还有来自原料本身的或来自坩埚的杂质沾污。
这些杂质在熔体中的分布比较均匀,但在结晶时就会出现分凝效应。
如果在拉晶时不往坩埚里补充原料,从杂质分凝来说,拉晶就相当于正常凝固。
不同分凝系数的杂质经正常分凝后杂质浓度的分布如图2。
由图可见,分凝系数在接近于1的杂质,其分布是比较均匀的。
K远小于1或远大于1的杂质,其分布很不均匀(即早凝固部分与后凝固部分所含杂质量相差很大)。
连续加料拉晶法可以克服这种不均匀性。
如果所需单晶体含某杂质的浓度为c,则在坩埚中首先熔化含杂质为c/K的多晶料。
在拉单晶的同时向坩埚内补充等量的、含杂浓度为c的原料。
这样,坩埚内杂质浓度和单晶内杂质量都不会变化,从而可以得到宏观轴向杂质分布均匀的单晶。
例如,使用有内外两层的坩埚。
内层、外层中熔体杂质浓度分别为c/K和c。
单晶自内坩埚拉出,其杂质浓度为c。
内外层之间有一细管连通,因而内坩埚的熔体减少可以由外坩埚补充。
补充的熔体杂质浓度是c,所以内坩埚熔体浓度保持不变。
双层坩埚法可得到宏观轴向杂质分布均匀的单晶。
为了控制硅单晶中氧的含量及其均匀性,提高硅单晶的质量和生产效率,在传统的直拉硅单晶生长工艺基础上又派生出磁场直拉硅单晶生长工艺和连续加料的直拉硅单晶生长工艺,称为磁拉法。
在普通直拉炉中总是存在着热对流现象,因而不稳定。
利用外加磁场可以抑制热对流而使热场稳定。
磁拉法已用于硅和其他半导体材料的单晶制备,可提高单晶的质量。
区熔法悬浮区熔法(float zone method, 简称FZ法)是在20世纪50年代提出并很快被应用到晶体制备技术中,即利用多晶锭分区熔化和结晶来生长单晶体的方法。
在悬浮区熔法中,使圆柱形硅棒用高频感应线圈在氩气气氛中加热,使棒的底部和在其下部靠近的同轴固定的单晶籽晶间形成熔滴,这两个棒朝相反方向旋转。
然后将在多晶棒与籽晶间只靠表面张力形成的熔区沿棒长逐步移动,将其转换成单晶。
区熔法可用于制备单晶和提纯材料,还可得到均匀的杂质分布。
这种技术可用于生产纯度很高的半导体、金属、合金、无机和有机化合物晶体(纯度可达10-6~10-9)。
在区溶法制备硅单晶中,往往是将区熔提纯与制备单晶结合在一起,能生长出质量较好的中高阻硅单晶。
区熔法制单晶与直拉法很相似,甚至直拉的单晶也很相象。
但是区熔法也有其特有的问题,如高频加热线圈的分布、形状、加热功率、高频频率,以及拉制单晶过程中需要特殊主要的一些问题,如硅棒预热、熔接。
区溶单晶炉主要包括:双层水冷炉室、长方形钢化玻璃观察窗、上轴(夹多晶棒)、下轴(安放籽晶)、导轨、机械传送装置、基座、高频发生器和高频加热线圈、系统控制柜真空系统及气体供给控制系统等组成。
区域熔化法是按照分凝原理进行材料提纯的。
杂质在熔体和熔体内已结晶的固体中的溶解度是不一样的。
在结晶温度下,若一杂质在某材料熔体中的浓度为c L,结晶出来的固体中的浓度为c s,则称K=c L/c s为该杂质在此材料中的分凝系数。
K的大小决定熔体中杂质被分凝到固体中去的效果。
K<1时,则开始结晶的头部样品纯度高,杂质被集中到尾部;K>1时,则开始结晶的头部样品集中了杂质而尾部杂质量少。
晶体的区熔生长可以在惰性气体如氩气中进行,也可以在真空中进行。
真空中区熔时,由于杂质的挥发而更有助于得到高纯度单晶。
水平区熔法将原料放入一长舟之中,其应采用不沾污熔体的材料制成,如石英、氧化镁、氧化铝、氧化铍、石墨等。
舟的头部放籽晶。
加热可以使用电阻炉,也可使用高频炉。
用此法制备单晶时,设备简单,与提纯过程同时进行又可得到纯度很高和杂质分布十分均匀的晶体。
但因与舟接触,难免有舟成分的沾污,且不易制得完整性高的大直径单晶。
垂直浮带区熔法用此法拉晶时,先从上、下两轴用夹具精确地垂直固定棒状多晶锭。
用电子轰击、高频感应或光学聚焦法将一段区域熔化,使液体靠表面张力支持而不坠落。
移动样品或加热器使熔区移动(图3)。
这种方法不用坩埚,能避免坩埚污染,因而可以制备很纯的单晶和熔点极高的材料(如熔点为3400℃的钨),也可采用此法进行区熔。
大直径硅的区熔是靠内径比硅棒粗的“针眼型”感应线圈实现的。
为了达到单晶的高度完整性,在接好籽晶后生长一段直径约为2~3毫米、长约10~20毫米的细颈单晶,以消除位错。
此外,区熔硅的生长速度超过约5~6毫米/分时,还可以阻止所谓漩涡缺陷的生成(图4)。
多晶硅区熔制硅单晶时,对多晶硅质量的要求比直拉法高:(1)直径要均匀,上下直径一致(2)表面结晶细腻、光滑(3)内部结构无裂纹(4)纯度要高Note2:区熔前要对多晶硅材料进行以下处理:( 1 ) 滚磨(2)造型(3)去油、腐蚀、纯水浸泡、干燥单晶硅建设项目具有巨大的市场和广阔的发展空间。
在地壳中含量达25.8%的硅元素,为单晶硅的生产提供了取之不尽的源泉。
各种晶体材料,特别是以单晶硅为代表的高科技附加值材料及其相关高技术产业的发展,成为当代信息技术产业的支柱,并使信息产业成为全球经济发展中增长最快的先导产业。
单晶硅作为一种极具潜能,亟待开发利用的高科技资源,正引起越来越多的关注和重视。
与此同时,鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家正掀起开发利用太阳能的热潮并成为各国制定可持续发展战略的重要内容。