最基本的图形-点和线
- 格式:ppt
- 大小:1.36 MB
- 文档页数:29
4.5 最基本的图形——点和线学习目标1. 认识点和线,会表示点和线,知道奇妙的图形都是由最基本的图形构成的。
2. 掌握线段公理和直线公理的内容。
知识详解1.点与线点常用来表示那些大小尺寸可以忽略的物体。
在日常生活中,一根拉紧的绳子、一根竹竿,人行横道线都给我们以线段的形象。
线段公理:两点之间,直线段最短。
把线段向一方无限延伸所形成的图形叫做射线。
把线段向两方无限延伸所形成的图形就是直线。
直线公理:经过两点有一条直线,并且只有一条直线。
2. 线段的长短比较(1)叠合法:先把两条线段的一端重合,另一端点落在同一侧,从而确定两条线段的长短,这是从“形”的方面进行比较. 当两条线段能够放在一起而又不要求知道相差的具体数值时,可用此法. 将线段AB放到线段CD上,使点A和点C重合,点B和点D在重合点的同侧.①如果点B和点D重合,如图,就说线段AB与线段CD相等,记作AB=CD.②如果点B在线段CD上,如图,就说线段AB小于线段CD,记作AB<CD.③如果点B在线段CD外,如图,就说线段AB大于线段CD,记作AB>CD.(2)度量法:先分别量出每条线段的长度,再根据度量的结果确定两条线段的大小,这是从“数”的方面进行比较. 当两条线段的长短差别不太明显,而又不便放在一起比较,或需要求出相差的具体数值时,可用此法.把一条险段分成两条相等线段的点,叫做这条线段的中点。
【典型例题】例1:下列说法正确的有( ).①画一条射线等于5 cm;②线段AB为直线AB的一部分;③在直线、射线、线段中,线段最短;④射线与其反向延长线形成一条直线.A.1个B.2个C.3个D.4个【答案】B【解析】例2:射线OA,OB表示同一条射线,下面的图形正确的是( ).【答案】D【解析】例3A.都错误B.都正确C.只有一个正确D.有两个正确【答案】D【解析】直线可以用两个大写字母或一个小写字母表示.【误区警示】易错点1:直线的性质1. 建房屋垒墙时,建筑工人都要在墙的两端固定绳子,请利用所学的知识,说明其中道理. 【答案】拉紧的绳子可以近似看成一条直线,固定在墙的两端是固定的两点,因为过两点有且只有一条直线,所以这样垒出的墙是直的.【解析】利用直线的性质“经过两点有且只有一条直线”进行说明.易错点2:线段的长短比较2. 如图,已知AB>CD,则AC与BD的大小关系为( ).A.AC>BDB.AC=BDC.AC<BDD.AC和BD的大小不能确定【答案】A【解析】运用叠合法或度量法直接比较,可以发现AC与BD的大小关系为AC>BD.【综合提升】针对训练1. 甲、乙两地之间有四条路可走(如图),那么最短路线的序号是()A.①B.②C.③D.④2. 某公司员工分别住在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C 区有10人. 三个区在一条直线上,位置如图所示. 公司的接送打算在此间只设一个停靠点,要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在( )A.A 区B.B 区C.C 区D.不确定3. 如图,点A 、B 、C 顺次在直线l 上,点M 是线段AC 的中点,点N 是线段BC 的中点. 若想求出MN 的长度,那么只需条件( )A.AB=12B.BC=4C.AM=5=21.【答案】B【解析】由图可知,甲乙两地之间的四条路只有②是线段,故最短路线的序号是②.2.【答案】A【解析】根据题意分别计算停靠点分别在各点是员工步行的路程和,选择最小的即可解3.【答案】A【解析】根据点M 是线段AC 的中点,点N 是线段BC 的中点,可知:MN =MC −NC =,继而即可得出答案.【中考链接】(2012年菏泽)已知线段AB=8cm ,在直线AB 上画线段BC ,使BC=3cm ,则线段AC=___________.【答案】11或5【解析】由于是在直线AB 上画线段BC ,BC 可能画在线段AB 的外部,也可能画在线段AB 上,所以AC=AB+BC=8+3=11cm 或AC=AB-BC=8-3=5cm.课外拓展十七世纪法国数学家费尔玛提出了一个“光行最短原理”,即“光线由A 点到B 点的路线,是所有路线中距离最短的路线”,光线可以在各种错综复杂的环境中找到“最短的路线”,所以光线被某一物体所阻挡时,这一部分光线就射不过去了,相应地在障碍物后面便形成了一12AB个“影子”。
4.5 最基本的图形——点和线1.点与线段通过前面的学习,大家一定会感叹,生活中有那么多奇妙的图形!其实不管是什么样的图形,它都是由一些基本的图形构成的.下面先看两个最基本的图形.点(point)通常表示一个物体的位置.例如,在中国地图上,点用来表示城市的位置;而在电视屏幕上,点用来组成一幅幅画面.在日常生活中,一根拉紧的绳子、一根竹竿,人行横道线都给我们以线段(line segment)的形象.我们可以用图4.5.1的方式来表示点和线段.图4.5.1想一想如图4.5.2,从A地到B地有三条路径,你会选择哪一条?在实际的情况中,我们都希望走的路越短越好,当然选择笔直的路线.这条路线就是线段AB.这也就是我们平时所说的,两点之间,直线段最短.图4.5.2此时线段AB的长度,就是AB两点间的距离.做一做:图4.5.3中,A、B之间有一条弯曲的马路,请量出图上A、B之间的直接距离.把线段向一方无限延伸所形成的图形(如图4.5.4)叫做射线(ray).图4.5.4手电筒的光线和激光灯的光束(图4.5.5),也就是一种射线的形象.图4.5.5把线段向两方无限延伸所形成的图形(如图4.5.6)就是直线line, (Straight line).图4.5.6试一试:在纸上画出一点A和一点B,过A点你能能画出几条直线?经过A、B两点画直线,你又可以画几条?通过试一试你是否得到了这样的结论:经过两点有一条直线,并且只有一条直线.练习1.要在墙上钉牢一根木条,至少要钉几颗钉子?为什么?2.请举出生活中运用“两点之间,线段最短”的几个例子.2.线段的长短比较记得你和同学是怎么比个子高矮的吗?可能大家通常会有两种办法:要么让两人都说出自己的高度,对比一下;要么让两人背对背地站在同一块平地上,脚底平齐,观看两人的头顶,直接比出高矮,而且这第二种方法更为实用.线段也可以通过类似的两种方法来比较它们的长短.对于图 4.5.8中的线段AB、CD,我们用刻度尺量一下,那么就可以知道它们谁长谁短了.图4.5.8如果AB比CD短,我们可以很简单的记为AB<CD(或CD>AB).比较两条线段的长短,第二种方法与比个子高矮一样,就是把其中的一条线段移到另一条线段上去加以比较.如图4.5.9,将线段AB放到线段CD上,点A和C放在一起,线段AB与线段CD叠合.这样从图中我们就可以直接看出线段AB比CD短,也就是AB<CD.观察下图中的几条线段,估计一下,哪一条最长,哪一条最短?图4.5.9将一条线段分成两条相等的线段的点,叫做这条线段的中点(middle point).在图4.5.10中,点C 是线段AB 的中点.AB=4cm,那么AC=CB=2(cm),AC+CB=AB=4(cm).图4.5.10又如图4.5.11,AB=6cm ,点C 是线段AB 的中点,点D 是线段BC 的中点,那么AD 有多长呢?图4.5.11做一做在一张纸上任意画一条线段,折叠纸片,使这条线段的两个端点重合在一起,那么折痕与线段的交点就是线段的中点. AC = CB=21AB = 3(cm), CD = 21CB = 1.5(cm) AD = AC+CD = 4.5(cm). 练习1.做两个三角形纸片,用折纸的方法比较线段AB 与线段AC 的长短.2.观察下列一组图形,比较线段的长短.再用直尺量一下,看看你的观察结果是否正确.读一读:光线光在两点之间传播时,光是走直线的,也就是两点间的最短距离.十七世纪法国数学家费尔玛提出了一个“光行最短原理”.即“光线由A 点到B 点的路线,是所有路线中距离最短的路线”.光线可以在各种错综复杂的环境中找到“最短的路线”.所以光线被某一物体所阻挡时,这一部分光线就射不过去了,相应地在障碍物后面便形成了一个“影子”.在太阳光的照射下,房屋、树木或你自身都会在地上投出影子.习题4.51. 如图,有A、B、C,O四个点,分别画出以O点为端点,经过A、B、C各点的射线,并分别用字母表示.想一想,图中可以画出几条射线?线段?直线?指出其中最长的一条线段.2.画出长度为5cm 的线段AB,并用刻度尺找出它的中点.3.在一条直线上顺次取A、B、C三点,使AB=5cm,BC=2 cm,并且取线段AC的中点O,求线段OB的长.4.直线l上有一个点,在直线l上以这个点为端点的不同射线共有多少条?5.读下列语句,并画出图形:(1) 点A在直线l上,点B在直线l外:(2) 在纸上任意画一点P,过点P画直线PQ;(3) 在纸上任意画A、B两点,过A、B两点画直线;(4) 在纸上任意画A、B、C三点,过A、C两点画直线l.又问此时点B是否一定在这一条直线上?。
最基本的图形——点和线教学课例与评析城北初级中学房金余设计理念本课教学过程的设计,力求改变过去照本宣科、注重传授的传统教学模式,让学生从身边的事例出发,从具体到抽象,经历、体验知识的形成的过程,并在活动中感悟知识在实际生活中的应用。
培养学生的竞争意识和健全的人格。
教学目标(1)让学生经历对日常事物的表象的讨论过程,抽象出点、线段、射线、直线的概念及图形特征。
在实验观察、思考、比较、分析的基础上,归纳出线段公理、直线公理。
(2)通过学生参与实验、探索、讨论、争辨、游戏等一系列学习活动,培养学生合作交流能力和竞争的意识。
教学重点线段公理、直线公理教学难点两点间的距离教学实录一、创设问题情境,引导学生观察、思考、导入新课T:通过前面的学习,我们感叹生活中有那么多奇妙的图形!其实不管是什么样的图形,它都是由一些基本的图形构成的,这些基本图形是什么呢?下面请大家看挂图:(1)珠泪点点(2)泪如雨线S:哈哈大笑,议论纷纷T:今天,天气这么好,同学们的学习劲头这样高。
居然,有人哭泣,请问挂图中的眼泪给人以何种平面图的形象!S1:挂图(1)、(2)分别给人以点、线的形象。
T:板书“点和线”,呈现挂图(3)一泪流满面和(4)一本块,请问(3)(4)各给我们哪些图形的形象?S:学生观察(1)(2)(3)(4),分组交流。
S3:点动成线,点组成面:线构成面;点和线最基本的图形,体只不过是点、线、面的集合体。
T:板书课题:最基本的图形——点和线。
二、丰富认识,动手实践,理解点和线段T:在中华人民共和国地图上,你难看到北京城的全貌吗?S1:看不到北京城的全貌会图上用一个点表示北京城所处的位置。
T:为了区别不同的点,点可以用一个大写字母表示,如“.”(点A)、“.”(点B)。
请在纸上表明城北中学,天元大酒店、电缆厂、桃园小学、检察院的大致位置。
(教师在黑板左边画一矩形框,标明正北方向,请一学生板演)S2:板演T:这位同学标注得很好!5个地方分别用了5个点表示,谁来将这5个点读一读?S3:点A、点B、点C……T:北中到电缆厂的道路又怎么画呢?S4:将点A、点B连结起来。
图形与几何的知识点在数学中,图形与几何是一门重要的学科。
它涉及到平面图形和立体图形的性质、分类以及相关的计算方法。
本文将详细介绍一些图形与几何的知识点。
一、二维图形1. 点、线、面在几何中,点是最基本的图形,它没有大小和维度,只有位置。
线由无数个点连接而成,它有长度但没有宽度。
面是由无数个线组成的,具有长度和宽度。
2. 常见的平面图形- 线段:两个点之间的部分。
线段的长度可以通过两个点的坐标计算得出。
- 直线:无数个点连成的一条无限延伸的线段。
- 射线:有一个起点,无限延伸的线段。
- 角:由两条线段的公共起点和终点组成。
角可以根据其度数分为锐角、直角和钝角。
- 三角形:由三条线段组成的图形。
三角形的分类有很多种,如等边三角形、等腰三角形等。
- 四边形:由四条线段组成的图形。
它的种类繁多,如矩形、正方形、长方形等。
3. 图形的周长与面积周长是指封闭图形的边界长度,可以通过将每条边的长度相加得到。
面积是指图形所围成的平坦区域的大小,可以通过相应的公式计算得到。
常见图形的周长和面积计算公式如下:- 线段的长度就是其本身的长度。
- 圆的周长和面积分别由半径决定,周长为2πr,面积为πr²。
- 三角形的面积可以通过底边和高的乘积再除以2得到。
- 矩形的周长为2(a+b),面积为a×b,其中a和b分别为矩形的两条边的长度。
二、三维几何1. 空间几何的基本概念- 点:在三维空间中,点是最基本的图形,具有位置但没有大小。
- 线段:连接两个点的部分,有起点和终点。
- 面:由无数个线段组成,具有长度和宽度。
- 体:由无数个面组成,具有长度、宽度和高度。
2. 常见的立体图形- 球体:由三维空间中所有到一个固定点的距离相等的点组成。
它的表面积公式为4πr²,体积公式为(4/3)πr³,其中r为半径。
- 圆柱体:由两个平行圆面和连接它们的侧面组成。
它的侧面积公式为2πrh,底面积为πr²,体积为πr²h,其中r为底面半径,h为高度。
平面几何知识点总结大全一、基本图形。
1. 点。
- 点是平面几何中最基本的元素,没有大小、长度、宽度或厚度。
它通常用一个大写字母表示,如点A。
2. 线。
- 直线。
- 直线没有端点,可以向两端无限延伸。
直线可以用直线上的两个点表示,如直线AB;也可以用一个小写字母表示,如直线l。
- 经过两点有且只有一条直线(两点确定一条直线)。
- 射线。
- 射线有一个端点,它可以向一端无限延伸。
射线用表示端点的字母和射线上另一点的字母表示,端点字母写在前面,如射线OA。
- 线段。
- 线段有两个端点,有确定的长度。
线段用表示两个端点的字母表示,如线段AB;也可以用一个小写字母表示,如线段a。
- 两点之间,线段最短。
3. 角。
- 由公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
角通常用三个大写字母表示(顶点字母写在中间),如∠AOB;也可以用一个大写字母表示(这个大写字母表示顶点,且以这个顶点为顶点的角只有一个时),如∠ O;还可以用一个数字或希腊字母表示,如∠1、∠α。
- 角的度量单位是度、分、秒,1^∘=60',1' = 60''。
- 角的分类:- 锐角:大于0^∘而小于90^∘的角。
- 直角:等于90^∘的角。
- 钝角:大于90^∘而小于180^∘的角。
- 平角:等于180^∘的角。
- 周角:等于360^∘的角。
二、相交线与平行线。
1. 相交线。
- 对顶角。
- 两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角。
对顶角相等。
- 邻补角。
- 两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角互补,即和为180^∘。
- 垂直。
- 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 在同一平面内,过一点有且只有一条直线与已知直线垂直。