沪科版九年级上二次函数与反比例函数测试卷
- 格式:doc
- 大小:340.32 KB
- 文档页数:6
九年级数学试卷一、选择题(此题共 10 小题,每题 4 分,满分 40 分)1. 下边的函数是二次函数的是A . y 3x 1B . y x 22xC . yx D. y22x2. 抛物线 y 3x 2 , y3x 2 , y1 x2 1 共有的性质是3A .张口向上B .对称轴是 y 轴C .极点坐标都是( 0, 0)D .在对称轴的右侧y 随 x 的增大而增大3. 把抛物线 y x 2向左平移 1 个单位,再向上平移3 个单位,则平移后抛物线的分析式为A . y( x 1)23 B . y( x 1)23 C . y( x 1)23D . y( x 1)234. 抛物线 y1 x2 x4 的对称轴是 =-2 =2C. x=-4 =-445. 以下抛物线与 x 轴只有一个公共点的是 A . y1(x 2)2B . y 3x21 C. y 4x22x 1 D. y1(x 3)232(b, c) 在26. 二次函数 yax 2 bx c 的图象如图,则点aA. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 对于随意实数 t ,抛物线 y x 2( 2 t) x t 总经过一个固定的点,这个点是A.(1,0) B (-1 ,0),3)D.( 1,3)8. 在反比率函数y4 的图象中,暗影部分的面积不等于4 的是xA . B. C . D .8.在同向来角坐标系中,函数yax 2 b与y axb( ab 0) 的图象大概如图()yax 2yyy9.二次函数 ybx c 的图象如图,则以下对于 a , b , c 间的函 Ox 数关系判断正确的选项是() O xOOA . ab 0xB . bc x 0C . a b c 0D . a b c 09. 函数 y A b 和 y ax2 bx BC D是axc 在同向来角坐标系内的图象大概10.为了更好保护水资源,造福人类,某工厂计划建一个容积V ( m 3)必定的污水办理池,池的底面积S ( m 2)与其深度h ( m )知足关系式: V=Sh ( V ≠0),则 S 对于 h 的函数图象大概是A .B .C .D .二、填空题(此题共 4 小题,每题5分,满分20分)13.在对物体做功必定的状况下,力F(牛)与此物体在力的方向上挪动的距离s(米)成反比率函数关系,其图象如下图,P(5,1)在图象上,则当力达到10 牛时,物体在力的方向上挪动的距离是_______ 米.14.如图,是二次函数 y=ax2+bx+c( a≠0)的图象的一部分,给出以下命题:① abc < 0;②b> 2a;③ a+b+c= 0 ④ ax 2 +bx+c=0的两根分别为﹣3和 1;⑤ 8a+c > 0.此中正确的命题是?????????????.第14题图第 13题图三.(此题共 2小题,每题 8分,满分 16分)15. 已知: y 与x2成反比率,且当x=2 时, y=4. 求 x= 时的 y 值 .【解】四、(此题共2小题,每题8分,满分16分)17.已知函数y 1 ( x1)2 3 ,求(1)抛物线的极点坐标及对称轴。
沪科版九年级上册数学第21章二次函数与反比例函数含答案一、单选题(共15题,共计45分)1、如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴相交于C点,图中虚线为抛物线的对称轴,则下列正确的是( )A.a<0B.b<0C.c>0D.b 2-4ac<02、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定3、直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系用图象表示大致是()A. B. C. D.4、如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y= (k>0,x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2=10,则k 的值是()A.5B.10C.15D.205、若是反比例函数,则必须满足()A. B. C. 或 D. 且6、小明从图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确信息的个数有()A.2个B.3个C.4个D.5个7、若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣4的值为()A.0B.-2C.2D.-68、二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A. B. C.D.9、一次函数与二次函数在同一平面直角坐标系中的图象可能是()A. B. C.D.10、将抛物线y=2x2平移,得到抛物线y=2(x+4)2+1,下列平移正确的是()A.先向左平移4个单位,再向上平移1个单位B.先向左平移4个单位,再向下平移1个单位C.先向右平移4个单位,再向上平移1个单位 D.先向右平移4个单位,再向下平移1个单位11、将抛物线y=(x﹣2)2+2向左平移2个单位,得到的新抛物线为()A.y=(x﹣2)B.y=(x﹣2)+4C.y=x +2D.y=(x﹣4)+212、已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0B.b>0,c<0C.b<0,c<0D.b<0,c>013、如图,△ABC.的三个顶点分别为A(1,2),B(5,2),C(5,5).若反比例函数在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤25B.2≤k≤10C.1≤k≤5D.10≤k≤2514、将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2B.y=(x+1)2+2C.y=(x-1)2-2D.y=(x+1)2-215、如图,在平面直角坐标系中,点A、B的坐标分别为(-2,3)、(0,1),将线段AB沿x轴的正方向平移m(m>0)个单位,得到线段A' B'。
第1章《二次函数与反比例函数》单元综合测试卷题号一二三总分得分第Ⅰ卷(选择题)一。
选择题(共12小题)1、关于反比例函数y=﹣,下列说法不正确的是( )A、点(3,﹣1)在它的图象上ﻩB、它的图象在第二、四象限C、当x〉3时,﹣1<y<0 D、当x〉0时,y随x的增大而减小2、若点A(﹣5,y1)、B(﹣3,y2)在反比例函数y=的图象上,则y1,y2的大小关系是( )A、y1>y2B、y1<y2C、y1=y2D、无法确定3、某品牌的笔记本成本是7元/本,经销商对其销量与售价的关系进行了调查、整理出如下表所示的4组对应值售价(元/本) 12 13 1415销量(本) 110 100 80 60 为获得最大利润,经销商应将该品牌笔记本售价定为( )(单位:元/本)A、13ﻩB、12C。
14 D、154、下列函数关系中,能够看做二次函数y=ax2+bx+c(a≠0)模型的是( )A、在一定距离内,汽车行驶的速度与行驶的时间的关系ﻩB、正方形周长与边长之间的关系C、正方形面积和正方形边长之间的关系D。
圆的周长与半径之间的关系5、如图,一次函数y=x+分别与x轴、y轴交于A、B两点,点P为反比例函数y=(k≠0,x〈0)图象上一点,过点P作y轴的垂线交直线AB交于C,作PD⊥PC交直线AB于D,若AC•BD=7,则k的值为( )A、﹣2ﻩB、﹣3C、﹣ﻩD、﹣ﻩ6、如图,反比例函数y1=和正比例函数y2═k2x的图象交于A(﹣2,﹣3),B(2,3)两点、若x,则x的取值范围是( )A、﹣2〈x<0ﻩB、﹣2〈x<2ﻩC、x<﹣2或0〈x<2D。
﹣2〈x<0或x>2ﻩ7、如图,将等腰直角三角形OAB放置于平面直角坐标系中,OA=AB=10,∠A=90°,D是AB边上的动点(不与端点A,B重合),作∠ACD=60°,交OA于点C,若点C,D都在双曲线y=(k>0,x>0)上,则k的值为( )A、B。
沪科版九年级数学上册《二次函数与反比例函数》单元检测试卷专项练习及答案解析一、选择题1、下列函数中,属于二次函数的是()A.y=x﹣3 B.y=x2﹣(x+1)2C.y=x(x﹣1)﹣1 D.2、国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,两次降价后的价格为y元,则y与x的函数关系式为( )A.y=36(1-x) B.y=36(1+x)C.y=18(1-x)2D.y=18(1+x2)3、下列函数:①y=-3x2;②y=-3(x+3)2;③y=-3x2-1;④y=-2x2+5;⑤y=-(x-1)2,其中函数图象形状、开口方向相同的是()A.①②③B.①③④C.③④D.②⑤4、如图,已知二次函数的部分图象与坐标轴交于A(3,0)和C(0,2)两点,对称轴为直线,当函数值>0时,自变量的取值范围是( )A.<3 B.0≤<3 C.-2<<3 D.-1<<3(第4题图)(第7题图)(第11题图)5、反比例函数的图象经过点(-2,3),则k的值为().A.-3 B.3 C.-6 D.66、二次函数y=3(x﹣2)2﹣5与y轴交点坐标为()A.(0,2)B.(0,﹣5)C.(0,7)D.(0,3)7、在平面直角坐标系xOy中,二次函数y=x2+x+1的图象如图所示,则方程x2+x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断8、将进货价格为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨2元,其销售量就减少10个.设这种商品的售价为x元时,获得的利润为y元,则下列关系式正确的是()A.y=(x﹣35)(400﹣5x)B.y=(x﹣35)(600﹣10x)C.y=(x+5)(200﹣5x)D.y=(x+5)(200﹣10x)二、填空题9、已知点在反比例函数的图象上,若点P关于y轴对称的点在反比例函数的图象上,则k的值为______。
第21章《二次函数与反比例函数》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.反比例函数y=k−2x过点(1,2),则关于一次函数y=kx+k−5说法正确的是( )A.不过第一象限 B.y随x的增大而增大C.一次函数过点(2,9) D.一次函数与坐标轴围成的三角形的面积是4 2.一次函数y=cx−b与二次函数y=a x2+bx+c在同一平面直角坐标系中的图象可能是( )A.B.C.D.3.已知抛物线y=x2+(m+1)x−14m2−1(m为整数)与x轴交于点A,与y轴交于点B,且OA=OB,则m等于( )A.2+5B.2−5C.2D.−24.已知点A(a,y1),B(a+2,y2),在反比例函数y=|k|+1x的图像上,若y1−y2>0,则a的取值范围为()A.a<0B.a<−2C.−2<a<0D.a<−2或a>05.已知二次函数y=m x2−2mx+2(m≠0)在−2≤x<2时有最小值−2,则m=( )A.−4或−12B.4或−12C.−4或12D.4或126.已知二次函数y=−(x+m−1)(x−m)+1,点A(x1,y1),B(x2,y2)(x1<x2)是图象上两点,下列说法正确的是( )A.若x1+x2>1,则y1>y2B.若x1+x2<1,则y1>y2C.若x1+x2>−1,则y1>y2D.若x1+x2<−1,则y1<y27.如图,点A是反比例函数y=4x图像上的一动点,连接AO并延长交图像的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足()A.mn=−2B.mn=−4C.n=−2m D.n=−4m8.已知抛物线y=a x2+bx+c(a、b、c是常数,a≠0)经过点A(1,0)和点B(0,−3),若该抛物线的顶点在第三象限,记m=2a−b+c,则m的取值范围是( )A.0<m<3B.−6<m<3C.−3<m<6D.−3<m<09.如图是抛物线y=a x2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c−a=n;③抛物线另一个交点(m,0)在−2到−1之间;④当x<0时,a x2+(b+2)x≥0;⑤一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根;其中正确的是()A.①②③B.①④⑤C.②④⑤D.②③⑤10.如图,在平面直角坐标系中,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴正半轴上,反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C、D,若点C的横坐标为6,BE=2DE,则k的值为( )A .372B .725C .965D .18二.填空题(共6小题,满分18分,每小题3分)11.如图,抛物线y =a x 2+bx +c 与直线y =kx +ℎ交于A 、B 两点,则关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为 .12.将二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,则该二次函数图像的顶点的纵坐标为 .13.抛物线y =−12x 2+x +4与x 轴交于A ,B 两点(点A 在点B 的左侧),点C(2,y)在在这条抛物线上.(1)则点C 的坐标为 ;(2)若点P 为y 轴的正半轴上的一点,且△BCP 为等腰三角形,则点P 的坐标为 .14.如图,抛物线y =x 2−2x −3与x 轴交于A 、B 两点,与y 轴交于C 点.点D 是抛物线上的一个点,作DE ∥AB 交抛物线于D 、E 两点,以线段DE 为对角线作菱形DPEQ ,点P 在x 轴上,若PQ =12DE 时,则菱形对角线DE 的长为 .15.如图,点A 1,A 2,A 3…在反比例函数y =1x(x >0)的图象上,点B 1,B 2,B 3,…B n 在y 轴上,且∠B 1O A 1=∠B 2B 1A 2=∠B 3B 2A 3=⋅⋅⋅⋅⋅⋅,直线y =x 与双曲线y =1x交于点A 1,B 1A 1⊥OA 1,B 2A 2⊥B 1A 2,B 3A 3⊥B 2A 3…,则B n (n 为正整数)的坐标是 .16.如图,在平面直角坐标系中,O 为坐标原点,△OAB 是等边三角形,且点B 的坐标为(4,0),点A 在反比例函数y =kx (k >0)的图象上.(1)反比例函数y =kx的表达式为 ;(2)把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1.①若此时另一个反比例函数y =k 1x的图象经过点A 1,则k 和k 1的大小关系是:k k 1(填“<”、“>”或“=”);②当函数y =kx的图象经△O 1A 1B 1一边的中点时,则a = .三.解答题(共7小题,满分52分)17.(6分)如图,一次函数y=x−2与反比例函数y=k(k>0)相交于点A(3,n),与x轴交于x点B,(1)求反比例函数解析式(2)点P是y轴上一动点,连接PA,PB,当PA+PB的值最小时,求P点坐标;(3)在(2)的条件下,C为直线y=x−2的动点,连接PC,将点C绕点P逆时针旋转90°得到点D,在C运动过程中,求PD的最小值.18.(6分)在平面直角坐标系中,已知二次函数y=−x2+bx+c(b,c是常数).(1)当b=−2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,−3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.19.(8分)如图,抛物线y=a x2+bx−5经过A(−1,0),B(5,0)两点.2(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P,使得PA+PC值最小,求最小值;(3)点M为x轴上一动点,在拋物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.20.(8分)如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E的坐标为(−3,−10).运2动员(将运动员看成一点)在空中运动的路线是经过原点O的抛物线.在跳某个规定动作时,),正常情况下,运动员在距水面高度5米以前,必须运动员在空中最高处A点的坐标为(1,54完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式并求出入水处B点的坐标;(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由;(3)在该运动员入水点的正前方有M,N两点,且EM=212,EN=272,该运动员入水后运动路线对应的抛物线解析式为y=a(x−ℎ)2+k,且顶点C距水面4米,若该运动员出水点D在MN 之间(包括M,N两点),请直接写出a的取值范围.21.(8分)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=kx(x<0)的图象相交于点B(−3,1).(1)求这两个函数的表达式;(2)当y 1随x 的增大而增大,且y 1<y 2时,直接写出x 的取值范围;(3)平行于x 轴的直线l 与函数y 1的图象相交于点C 、D (点C 在点D 的右边),与函数y 2的图象相交于点E .若△ACE 与△BDE 的面积相等,求点E 的坐标.22.(8分)如图,在平面直角坐标系中,二次函数y =a x 2+bx −4(a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC =4OB .(1)求直线CA 的表达式;(2)求该二次函数的解析式,并写出函数值y 随x 的增大而减小时x 的取值范围;(3)点P是抛物线上的一个动点,设点P的横坐标为n(0<n<4).当△PCA的面积取最大值时,求点P的坐标;(4)当−1≤x≤m时,二次函数的最大值与最小值的差是一个定值,请直接写出m的取值范围.23.(8分)如图,一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象交于点C(4,m),D(−2,−4).(1)求一次函数和反比例函数表达式;(2)点E为y轴正半轴上一点,当△CDE的面积为9时,求点E的坐标;(3)在(2)的条件下,将直线AB向上平移,平移后的直线交反比例函数图象于点F(2,n),交y 轴于点G,点H为平面直角坐标系内一点,若以点E、F、G、H为顶点的四边形是平行四边形,写出所有符合条件的点H的坐标;并写出求解点H的坐标的其中一种情况的过程.答案解析一.选择题1.B【分析】把点(1,2)代入反比例函数y=k−2x,求出k的值,再把k的值代入一次函数y=kx+k−5,再根据一次函数的性质即可解答.【详解】解:∵反比例函数y=k−2x过点(1,2),∴2=k−2,解得k=4,∴一次函数y=kx+k−5的解析式为y=4x−1,∴函数图像过一三四象限,不过第二象限,故A错误,不符合题意;∵4>0,∴y随x的增大而增大,故B正确,符合题意;∵当x=2时,y=4×2−1=7,∴一次函数不过点(2,9),故C错误,不符合题意;∵y=4x−1与坐标轴的交点为(0,−1),(14,0),∴一次函数与坐标轴围成的三角形的面积为12×1×14=18,故D错误,不符合题意.故选:B.2.D【分析】先假设c<0,根据二次函数y=a x2+bx+c图象与y轴交点的位置可判断A,C是否成立;再假设c>0,b<0,判断一次函数y=cx−b的图象位置及增减性,再根据二次函数y=a x2 +bx+c的开口方向及对称轴位置确定B,D是否成立.【详解】解:若c<0,则一次函数y=cx−b图象y随x的增大而减小,此时二次函数y=a x2 +bx+c的图象与y轴的交点在y轴负半轴,故A,C错;若c>0,b<0,则一次函数y=cx−b图象y随x的增大而增大,且图象与y的交点在y轴正半轴上,此时二次函数y=a x2+bx+c的图象与y轴的交点也在y轴正半轴,若a>0,则对称轴x=−b2a >0,故B错;若a<0,则对称轴x=−b2a<0,则D可能成立.故选:D.3.D【分析】当x=0时,可求得B为(0,−14m2−1),由OA=OB可得A为(−14m2−1,0)或(1 4m2+1,0),将A的坐标代入y=x2+(m+1)x−14m2−1,进行计算即可得到答案.【详解】解:当x=0时,y=−14m2−1,∴抛物线与y轴的交点B为(0,−14m2−1),∵OA=OB,∴抛物线与x轴的交点A为(−14m2−1,0)或(14m2+1,0),∴(−14m2−1)2+(m+1)(−14m2−1)−14m2−1=0或(14m2+1)2+(m+1)(14m2+1)−14m2−1=0,∴(−14m2−1)(−14m2−1+m+1+1)=0或(14m2+1)(14m2+1+m+1−1)=0,∴−14m2−1=0或−14m2−1+m+1+1=0或14m2+1=0或14m2+1+m+1−1=0,解得:m=22+2或m=−22+2或m=−2,∵m为整数,∴m=−2,故选:D.4.D【分析】根据反比例函数的性质分两种情况进行讨论,①当点(a,y1)、(a+2,y2)在图象的同一分支上时;②当点(a,y1)、(a+2,y2)在图象的两支上时,分别求解即可.【详解】解:∵|k|+1>0,∴图像在一、三象限,在反比例函数图像的每一支上,y随x的增大而减小,∵y1−y2>0,∴ y1>y2,①当点(a,y1)、(a+2,y2)在同一象限时,∵y1>y2,i.当在第一象限时,∴0<a<a+2,解得a>0;ii.当在第三象限时,∴a<a+2<0,解得a<−2;综上所述:a<−2或a>0;②当点(a,y1)、(a+2,y2)不在同一象限时,∵y1>y2,∴a>0,a+2<0,此不等式组无解,因此,本题a的取值范围为a<−2或a>0,故选:D.5.B【分析】先求出二次函数对称轴为直线x=1,再分m>0和m<0两种情况,利用二次函数的性质进行求解即可.【详解】解:∵二次函数y=m x2−2mx+2=m(x−1)2−m+2,∴对称轴为直线x=1,①当m>0,抛物线开口向上,x=1时,有最小值y=−m+2=−2,解得:m=4;②当m<0,抛物线开口向下,∵对称轴为直线x=1,在−2≤x<2时有最小值−2,∴x=−2时,有最小值y=9m−m+2=−2,解得:m=−12.故选:B.6.A【分析】将函数化为二次函数的一般形式,可以求得对称轴为x=12,然后根据函数图像上点的坐标与对称轴的关系即可得到答案;【详解】解:∵y=−(x+m−1)(x−m)+1=−x2+x+m2−m+1∴函数图像开口向下,对称轴为x=12当x1+x2=1时,A、B两点关于对称轴对称,此时y1=y2;当x1+x2>1时,A、B在对称轴右侧或分别在对称轴两侧且A到对称轴的距离小于B到对称轴的距离,此时y1>y2;当x1+x2<1时,A、B在对称轴左侧或分别在对称轴两侧,且A到对称轴的距离大于B到对称轴的距离,此时y1<y2;由此可判断选项,只有A选项符合,故选A;7.B【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,根据等腰直角三角形的性质得出OC=OA,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出ΔAOE≅ΔCOF,根据全等三角形的性质,可得出A(−m,n),进而得到−mn=4,进一步得到mn=−4.【详解】解:连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,如图所示:∵由直线AB与反比例函数y=4x的对称性可知A、B点关于O点对称,∴AO=BO,又∵AC⊥BC,AC=BC,∴CO⊥AB,CO=12AB=OA,∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴ΔAOE≅ΔCOF(AAS),∴OE=OF,AE=CF,∵点C(m,n),∴CF=−m,OF=n,∴AE=−m,OE=n,∴A(n,−m),图像上,∵点A是反比例函数y=4x∴−mn=4,即mn=−4,故选:B.8.B【分析】由顶点在第三象限,经过点A(1,0)和点B(0,−3),可得出:a>0,−b<0,即可2a得出0<a<3,又由于m=2a−b+c=2a−(3−a)+(−3)=3a−6,求出3a−6的范围即可.【详解】∵抛物线y=a x2+bx+c过点(1,0)和点(0,−3),∴c=−3,a+b+c=0,即b=3−a,∵顶点在第三象限,经过点A(1,0)和点B(0,−3),∴a>0,−b<0,2a∴b>0,∴b=3−a>0,∴a<3,∴0<a<3∵m=2a−b+c=2a−(3−a)+(−3)=3a−6,∵0<a<3,∴0<3a<9∴−6<3a−6<3,∴−6<m<3.故选:B.9.D【分析】①根据抛物线的对称轴公式即可求解;②当x等于1时,y等于n,再利用对称轴公式即可求解;③根据抛物线的对称性即可求解;④根据抛物线的平移即可求解;⑤根据一元二次方程的判别式即可求解.【详解】解:①因为抛物线的顶点坐标为(1,n),则其对称轴为x=1,即−b2a=1,所以b=−2a,所以①错误;②当x=1时,y=n,所以a+b+c=n,因为b=−2a,所以c−a=n,所以②正确;③因为抛物线的对称轴为x=1,且与x轴的一个交点在点(3,0)和(4,0)之间,所以抛物线另一个交点(m,0)在−2到−1之间;所以③正确;④因为a x2+(b+2)x≥0,即a x2+bx≥−2x,根据图象可知:把抛物线y=a x2+bx+c(a≠0)图象向下平移c个单位后图象过原点,即可得抛物线y=a x2+bx(a≠0)的图象,所以当x<0时,a x2+bx<−2x,即a x2+(b+2)x<0.所以④错误;⑤一元二次方程a x2+(b−12)x+c=0,Δ=(b−12)2−4ac,因为根据图象可知:a<0,c>0,所以−4ac>0,所以Δ=(b−12)2−4ac>0,所以一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根.所以⑤正确.综上,正确的有②③⑤,故选:D.10.C【分析】过点D作DF⊥BC于点F,由勾股定理构造方程求出DE=125,BE=DF=245,再根据反比例函数图像同时经过顶点C、D,即可解答.【详解】解:过点D作DF⊥BC于点F,∵点C的横坐标为6,,∴BC=6.∵四边形ABCD是菱形,∴CD=BC=6.C∵BE=2DE,∴设DE=x,则BE=2x.∴DF=BE=2x,BF=DE=x,FC=BC−BF=6−x.在Rt△DCF中,∵D F2+C F2=C D2,∴(2x)2+(6−x)2=62.解得:x1=0(不合题意,舍去),x2=125,∴DE=125,BE=DF=245.设OB=a,则D(125,a+245),C(6,a)∵反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C,D,∴k=125×(a+245)=6a.解得:a=165.∴k=6a=965.故选C.二.填空题11.x <2或x >4【分析】根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,进而结合函数图象得出x 的取值范围.【详解】解:根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,由图象可得:关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为:x <2或x >4,故答案为:x <2或x >4.12.−8【分析】设设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n 4,再进行变形得出(x 1+x 2)2−4x 1x 2=8,再代入可得m 2−1616=8,进而可得出该二次函数图像的顶点的纵坐标【详解】∵二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,∴翻折前两交点间的距离不变,设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n4,∴|x 1−x 2|=22,∴(x 1−x 2)2=8,∴(x 1+x 2)2−4x 1x 2=8,∴(−m4)2−4×n 4=8,∴m 2−1616=8,又∵y =4x 2+mx +n 的纵坐标为4×4n −m 24×4=16n −m 216,∴16−m 216=−8,即该二次函数图像顶点纵坐标为−8故答案为:−813.(2,4)(0,2),(0,1)2【分析】(1)将点C(2,y)代入函数解析式即可得出结论;(2)令y=0,求得点B的坐标,依据分类讨论的思想方法,利用△BCP为等腰三角形和等腰三角形的解答即可得出结论.【详解】解:(1)∵点C(2,y)在抛物线y=−1x2+x+4上,2∴y=4,∴C(2,4),故答案为:(2,4);(2)令y=0,则−1x2+x+4=0,2解得:x=4或x=−2.∵抛物线y=−1x2+x+4与x轴交于A,B两点,点A在点B的左侧,2∴B(4,0).∵点P为y轴的正半轴上的一点,①当BP=BC时,如图,过点C作CD⊥OB于点D,∵C(2,4),B(4,0),∴CD=4,OB=4,OD=2,∴CD=OB.在Rt△BPO和Rt△BCD中,{BP=BCOB=DC,∴Rt△BPO≌Rt△BCD(HL),∴OP=BD.∵OB=4,OD=2,∴BD=OB−OD=2,∴OP=BD=2,∴P(0,2);②当BP=PC时,如图,过点C作CE⊥y轴于点E,∵C(2,4),B(4,0),∴CE=2,OE=4,OB=4,设点P(0,a),∵点P为y轴的正半轴上的一点,∴OP=a,EP=4−a,∵BP=PC,∴B P2=P C2,∴E P2+C E2=O P2+O B2,∴(4−a)2+22=a2+42,,解得:a=12).∴P(0,12综上,当△BCP为等腰三角形,则点P的坐标为(0,2)或(0,1).2故答案为:(0,2)或(0,1).214.1+652或−1+652【分析】设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM= 12PQ ,设点D 的横坐标为t ,由此表示出DE 的长,PM 的长,进而可得PQ 的长,根据PQ = 12DE 建立方程,求解即可.【详解】解:如图,由抛物线的解析式可知,抛物线y =x 2−2x −3的对称轴为直线x =1,设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM = 12PQ ,∵点D 是抛物线上的一个点,且DE ∥AB ,设点D 的横坐标为t ,∴D (t ,t 2−2t −3),∵DE ∥AB ,∴点D ,点E 关于对称轴对称,∴点P 和点Q 在对称轴上,∴E(2−t ,t 2−2t −3),∴DE =(2−2t),PM=|t 2−2t −3|,∴PQ =2PM =2|t 2−2t −3|,∵PQ =12DE ,∴2|t 2−2t −3|=12(2−2t ),解得t 1= 5−654,t 2= 5+654(舍去),t 3= 3−654,t 4= 3+654(舍去),∴DE =2−2t = 1+652或−1+652.故答案为:1+652或−1+652.15.(0,2n )【分析】如图,过A1作A1H⊥y轴于H,求解A1(1,1),结合题意,△O A1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,想办法求出O B1,O B2,O B3,O B4,…,探究规律,利用规律解决问题即可得出结论.【详解】解:如图,过A1作A1H⊥y轴于H,∵{y=1x y=x,其中x>0,解得:{x=1y=1,即A1(1,1),∴OH=A1H=1,∴∠A1OH=45°,∵B1A1⊥O A1,∴△O A1B1是等腰直角三角形,∴O B1=2;同理可得:△B1A2B2,△B2A3B3,…,都是等腰直角三角形,同理设A2(m,m+2),∴m(2+m)=1,解得m=2−1,(负根舍去)∴O B2=2+22−2=22,同理可得:O B3=23,⋅⋅⋅⋅⋅⋅∴O Bn=2n,∴Bn(0,2n).故答案为:(0,2n).16.y=43x<1或3【分析】(1)如图所示,过点A作AC⊥OB于C,利用等边三角形的性质和勾股定理求出A (2,23),再利用待定系数法求解即可;(2)求出A1(2+a,23),由a>0,得到2+a>2,则k1>43=k;(3)分当函数y=kx 的图象经过O1A1的中点时,当函数y=kx的图象经过A1B1的中点时,两种情况利用两点中点坐标公式和待定系数法求解即可.【详解】解:(1)如图所示,过点A作AC⊥OB于C,∵(4,0),∴OB=4,∵△AOB是等边三角形,∴OC=BC=12OB=2,OA=OB=4,∴AC=O A2−O C2=23,∴A(2,23),∵点A在反比例函数y=kx(k>0)的图象上,∴23=k2,∴k=43,∴反比例函数y=kx 的表达式为y=43x,故答案为:y=43x;(2)①∵把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1,∴A 1(2+a ,23),∵反比例函数y =k 1x的图象经过点A 1,∴23=k 12+a,∴k 1=23(2+a ),∵a >0,∴2+a >2,∴k 1>43=k ,故答案为:<;(3)当函数y =kx 的图象经过O 1A 1的中点时,∵O 1(a ,0),A 1(a +2,23),∴函数y =kx 的图象经过点(a +a +22,232),∴3=43a +1,∴a =3;当函数y =kx 的图象经过A 1B 1的中点时,∵B 1(a +4,0),A 1(a +2,23),∴函数y =k x 的图象经过点(a +4+a +22,232),∴3=43a +3,∴a =1,故答案为:1或3.三.解答题17.(1)解:∵点A (3,n )在一次函数y =x −2的图象上,∴n =3−2=1,∴点A (3,1),∵点A (3,1)在反比例函数y =kx (k >0)的图象上,∴k =3×1=3,∴反比例函数解析式为y =3x ;(2)解:作点B 关于y 轴的对称点B ',连接A B '交y 轴于点P ,此时PA +PB 的值最小,令y =0,则0=x −2,解得x =2,∴点B (2,0),点B '(−2,0),设直线A B '的解析式为y =kx +b ,∴{3k +b =1−2k +b =0,解得{k =15b =25,∴直线A B '的解析式为y =15x +25,令x =0,则y =25,∴P 点坐标为(0,25);(3)解:由旋转的性质知PC =PD ,当PC ⊥AB 时,PC 有最小值,此时PD的值最小,设直线AB交y轴于点E,令x=0,则y=0−2=−2,,点E(0,−2),∴OE=2,OB=2,∴BE=22+22=22,∵S△PBE =12PE×OB=12BE×PC,∴PC=(25+2)×222=625,∴PD的最小值为625.18.(1)解:当b=−2,c=3时,y=−x2−2x+3=−(x+1)2+4,∴此时该函数图象的顶点坐标为(−1,4);(2)解:∵该函数图象经过点(1,−3),∴−1+b+c=−3,则c=−2−b,∵该二次函数图象的顶点坐标是(m,n),∴m=−b2×(−1)=b2,n=4×(−1)×c−b24×(−1)=4c+b24=c+b24,∴b=2m,c=−2−2m,∴n=−2−2m+4m24,即n=m2−2m−2;(3)解:当b=2c+1时,二次函数y=−x2+(2c+1)x+c的对称轴为直线x=2c+12=c+12,开口向下,∵0≤x≤2,∴当0≤c +12≤2即−12≤c ≤32时,该函数的最大值为4×(−1)×c −(2c +1)24×(−1)=c +(2c +1)24=8,即4c 2+8c −31=0,解得c 1=−1+352(不合题意,舍去),c 2=−1−352(不合题意,舍去);当c +12<0即c <−12时,0≤x ≤2时,y 随x 的增大而减小,∴当x =0时,y 有最大值为c =8,不合题意,舍去;当c +12>2即c >32时,0≤x ≤2时,y 随x 的增大而增大,∴当x =2时,y 有最大值为−22+2(2c +1)+c =8,解得c =2,符合题意,综上,满足条件的c 的值为2.19.(1)解:∵抛物线y =a x 2+bx −52经过A (−1,0),B (5,0)两点,∴{a −b −52=025a +5b −52=0,解得:a =12,b =−2,∴此拋物线的解析式为y =12x 2−2x −52;(2)如图,连接BC ,交对称轴于点P ,∵拋物线的解析式为y =12x 2−2x −52,∴其对称轴为直线x =−b2a =−−22×12=2,当x =0时,y =−52,∴C (0,−52),又∵B (5,0),∴设BC 的解析式为y =kx +b (k ≠0),∴{5k +b =0b =−52,解得:k =12,b =−52,∴ BC 的解析式为y =12x −52,当x =2时,y =2×12−52=−32,∴P (2,−32),∴PA +PC =(−1−2)2+(32+0)2+(0−2)2+(−52+32)2=552;(3)存在,如图所示:①当点N 在x 轴下方时,∵抛物线的对称轴为x =2,C (0,−52),∴N 1(4,−52),②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△A N 2D 和△M 2CO 中,{∠N 2AD =∠C M 2OA N 2=C M 2∠N 2DA =∠CO M 2,∴△A N 2D ≌△M 2CO (ASA ), ∴N 2D =OC =52,即N 2点的纵坐标为52∴12x 2−2x −52=52,解得:x =2+14或x =2−14,∴N 2(2+14,52),N 3(2−14,52),综上所述符合条件的N 的坐标有(4,−52),(2+14,52),(2−14,52).20.(1)解:设抛物线的解析式为y =a 0(x −1)2+54将(0,0)代入解析式得:a 0=−54∴抛物线的解析式为y =−54(x −1)2+54令y =−10,则−10=−54(x −1)2+54解得:x 1=−2(舍去),x 2=4∴入水处B 点的坐标(4,−10)(2)解:距点E 的水平距离为5米,对应的横坐标为:x =5−32=72将x =72代入解析式得:y =−54×(72−1)2+54=−10516∵−10516−(−10)=5516<5∴该运动员此次跳水失误了(3)解:∵EM=212,EN =272,点E 的坐标为(−32,−10)∴点M 、N 的坐标分别为:(9,−10),(12,−10)∵该运动员入水后运动路线对应的抛物线解析式为y =a (x −ℎ)2+k ,顶点C 距水面4米y =a (x −132)2−14,∴当抛物线经过点M时,把点M(9,−10)代入得:a=1625同理,当抛物线经过点N(12,−10)时,a=14由点D在MN之间可得:14≤a≤162521.(1)解:∵二次函数y1=x2+mx+1的图像与反比例函数y2=kx(x>0)的图像相交于点B(−3,1),∴(−3)2−3m+1=1,k−3=1,解得m=3,k=−3,∴二次函数的解析式为y1=x2+3x+1,反比例函数的解析式为y2=−3x(x>0).(2)∵二次函数的解析式为y1=x2+3x+1,∴对称轴为直线x=−32,由图象知,当y1随x的增大而增大,且y1<y2时,−32≤x<0(3)由题意作图如下:∵当x=0时,y1=1,∴A(0,1),∵B(−3,1),∴△ACE的CE边上的高与△BDE的DE边上的高相等,∵△ACE与△BDE的面积相等,∴CE=DE,即E点是二次函数的对称轴与反比例函数的交点,当x=−32时,y2=2,∴E(−32,2).22.(1)解:令x=0,则y=−4,∴C(0,−4),∴OC=4,∵OA=OC,∴AO=4,∴A(4,0),设直线AC的解析式为y=kx+b,∴{4k+b=0b=−4,解得{k=1b=−4,∴y=x−4;(2)解:∵OC=4OB,∴OB=1,∴B(−1,0),将A(4,0),B(−1,0)代入y=a x2+bx−4,∴{16a+4b−4=0a−b−4=0,解得{a=1b=−3,∴y=x2−3x−4,∵y=x2−3x−4=(x−32)2−254,a=1>0,∴抛物线开口向上,对称轴为直线x=32,∴函数值y随x的增大而减小时x的取值范围为x<32;(3)解:过点P作PQ∥y轴交AC于点Q,∵点P 的横坐标为n ,∴ P (n ,n 2−3n −4),则Q (n ,n −4),∴ PQ =n −4−(n 2−3n −4)=−n 2+4n ,由(1)得A (4,0),C (0,−4),∴ S △PCA =S △PCQ +S △PAQ=12QP (x P −x C )+12QP (x A −x P )=12QP (x P −x C +x A −x P )=12QP (x A −x C )=12×4×(−n 2+4n )=−2(n −2)2+8,∵ 0<n <4,∴当n =2时,△PCA 的面积有最大值,此时P (2,−6);(4)解:当32≤m ≤4时,二次函数的最大值与最小值的差是一个定值,∵ y =x 2−3x −4=(x −32)2−254,∴抛物线的对称轴为直线x =32,①当−1<m <32时,x =−1,y 有最大值0,x =m ,y 有最小值m 2−3m −4,∴ 0−(m 2−3m −4)=−m 2+3m+4,此时二次函数的最大值与最小值的差随m 的变化而变化;②当32≤m ≤4时,x =32,y 有最小值−254,x =−1,y 有最大值0,∴0−(−254)=254,此时二次函数的最大值与最小值的差是一个定值;③当m>4时,x=32,y有最小值−254,x=m,y有最大值m2−3m−4,∴m2−4m−4+254=m2−3m+94,此时二次函数的最大值与最小值的差随m的变化而变化;综上所述:32≤m≤4时,二次函数的最大值与最小值的差是一个定值.23.(1)∵点C(4,m),D(−2,−4)在反比例函数图象上,∴4m=(−2)×(−4),解得m=2,∴C(4,2),∴反比例函数的解析式为y=8x;设一次函数的解析式为y=kx+b,∴{−2k+b=−44k+b=2,解得{k=1b=−2,∴一次函数的解析式为y=x−2;(2)直线y=x−2与y轴的交点B(0,−2),设E(0,t),t>0,∴EB=t+2,∴SΔCDE =12×BE×(4+2)=9,∴3(t+2)=9,解得t=1,∴E(0,1);(3)设直线AB向上平移后的函数解析式为y=x−2+ℎ,∵F(2,n)在反比例函数图象上,∴n=4,∴F(2,4),将F点代入y=x−2+ℎ,则ℎ=4,∴平移后的直线解析式为y=x+2,∴G(0,2),设H(x,y),①当HE为平行四边形的对角线时,x=2,y+1=6,∴H(2,5);②当HF为平行四边形的对角线时,x+2=0,y+4=3,∴H(−2,−1);③当HG为平行四边形的对角线时,x=2,y+2=5,∴H(2,3);综上所述:H点坐标为(2,5)或(−2,−1)或(2,3).。
沪科版九年级上册数学第21章二次函数与反比例函数单元测试题一、选择题1.以下函数中,正比例函数是〔〕A. y=x-1B. y=C. y=x2+3x+1D. y=【答案】D2.二次函数图象的顶点坐标是〔〕A. (-1,3)B. (1,3)C. (-1,-3)D. (1,-3)【答案】B3. 关于正比例函数,以下说法正确的选项是〔〕A. 图象过〔1,2〕点B. 图象在第一、三象限C. 当x>0时,y随x的增大而减小D. 当x<0时,y随x的增大而增大【答案】D4.如图,顶点为〔﹣3,﹣6〕的抛物线y=ax2+bx+c经过点A,点〔﹣2,m〕和〔﹣5,n〕在该抛物线上,那么以下结论中不正确的选项是〔〕A. >4acB. m>nC. 方程a+bx+c=﹣4的两根为﹣5或﹣1D. a+bx+c≥﹣6【答案】B5.三点P1〔x1,y1〕,P2〔x2,y2〕,P3〔x3,y3〕都在正比例函数y=-的图象上,假定x1<0<x2<x3,那么以下式子正确的选项是〔〕A. y1<y2<y3B. y3<y2<y1C. y2>y3>y1D. y1>y3>y2【答案】D6.假定y﹣4与x2成正比例,当x=2时,y=6,那么y与x的函数关系式是〔〕A. y=x2+4B. y=﹣x2+4C. y=﹣x2+4D. y=x2+4【答案】D7.二次函数y=ax2+bx+c〔a,b,c为常数,且a≠0〕中,x与y的局部对应值如下表:x ﹣3 ﹣2 ﹣1 0y 0 ﹣3 ﹣4 ﹣3以下结论:①ac<0;②当x>1时,y随x的增大而增大;③﹣4是方程ax2+〔b﹣4〕x+c=0的一个根;④当﹣1<x<0时,ax2+〔b﹣1〕x+c+3>0.其中正确结论的个数为〔〕A. 4个B. 3个C. 2个D. 1个【答案】C8.二次函数的图象〔0≤x≤3〕如下图,关于该函数在所给自变量取值范围内,以下说法正确的选项是〔〕A. 有最小值0,有最大值3B. 有最小值﹣1,有最大值0C. 有最小值﹣1,有最大值3D. 有最小值﹣1,无最大值【答案】C9.假定A(-4,y1),B(-3,y2〕,C(1,y3)为二次函数y=x2+4x-5的图象上的三点,那么y1,y2,y3的大小关系是( )A. y1< y2< y3B. y2<y1<y3C. y3<y1<y2D. y1<y3< y2【答案】B10.一块蓄电池的电压为定值,以此蓄电池为电源时,电流I〔A〕与电阻R〔Ω〕之间的函数关系如图,那么电流I关于电阻R的函数解析式为〔〕A. I=B. I=C. I=D. I=-【答案】C11. 点A〔﹣2,y1〕,B〔3,y2〕是正比例函数y=〔k<0〕图象上的两点,那么有〔〕A. y1<0<y2B. y2<0<y1C. y1<y2<0D. y2<y1<0【答案】B12.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点。
九年级数学上册第21章二次函数与反比例函数单元测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.下列函数中,一定是二次函数的是()A .y =(x +1)(x -1)-x 2B .y =ax 2+bx +c C .s =2t 2+1D .y =x +1x 22.下列对二次函数y =-2(x -2)2+1的叙述错误的是()A .图象开口向下B .图象的对称轴是直线x =2C .此函数有最小值1D .当x >2时,y 随x 的增大而减小3.已知双曲线y =k x(k <0)过点(3,y 1),(1,y 2),(-2,y 3),则下列结论正确的是()A .y 3>y 1>y 2B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 2>y 3>y 14.抛物线y =x 2+6x +7可由抛物线y =x 2()A .先向左平移3个单位,再向下平移2个单位得到B .先向左平移6个单位,再向上平移7个单位得到C .先向上平移2个单位,再向左平移3个单位得到D .先向右平移3个单位,再向上平移2个单位得到5.已知二次函数y =ax 2+bx +c 的部分图象如图所示,则关于x 的一元二次方程ax 2+bx +c =0的解为()A .x 1=-3,x 2=0B .x 1=-3,x 2=-1C .x =-3D .x 1=-3,x 2=1(第5题)(第6题)6.如图,直线y =ax +b 与反比例函数y =k x 的图象交于点A (2,3),B (m ,-2),则不等式ax +b >k x的解集是()A .-3<x <0或x >2B .x <-3或0<x <2C .-2<x <0或x >2D .-3<x <0或x >37.如图,在平面直角坐标系中,反比例函数y =-6x (x <0)的图象与直线y =-2x +3交于点P (a ,b ),则1a +2b =()A .-12 B.12C .-2D .2(第7题)(第8题)8.已知反比例函数y =k x(k ≠0)在第一象限内的图象与一次函数y =-x +b 的图象如图所示,则函数y =x 2-bx +k -1的图象可能为()9.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),B ,与y 轴交于点C .下列结论:①abc <0;②2a +b <0;③4a -2b +c >0;④3a +c >0.其中正确的有()A .1个B .2个C .3个D .4个(第9题)(第10题)10.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D ,F 分别在AC ,BC 边上.设CD 的长度为x ,Rt △ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是()二、填空题(本大题共4小题,每小题5分,满分20分)11.抛物线y=x2+2x-3的顶点坐标是________.12.某飞机着陆后滑行的距离y(m)关于着陆后滑行的时间x(s)的函数表达式是y =-2x2+bx(b为常数).若该飞机着陆后滑行20s才停下来,则该飞机着陆后的滑行距离是________m.(k>0)13.如图,▱ABCD的顶点A在x轴上,顶点D在函数y=kx(第13题)的图象上,且AD⊥x轴,CA的延长线交y轴于点E.若S△ABE=5,则k=________.(0≤x≤1).14.已知关于x的二次函数y=x2-ax+a2(1)当a=4时,函数的最大值为________;(2)若函数的最大值为t,则t的最小值为________.三、(本大题共2小题,每小题8分,满分16分)15.已知y=y1+y2,y1与x-1成正比例,y2与x+1成反比例.当x=0时,y=-3,当x=1时,y=-1.求y关于x的函数表达式.(k≠0)的图象交于16.如图,直线y=-x+3与y轴交于点A,与反比例函数y=kx点C,过点C作CB⊥x轴于点B,AO=3BO,求反比例函数的表达式.(第16题)四、(本大题共2小题,每小题8分,满分16分)17.在平面直角坐标系中,二次函数y=x2+bx+c(b,c都是常数)的图象经过点(-1,6)和(0,2).(1)求出二次函数的表达式,并直接写出其图象的顶点坐标;(2)已知点P(m,n)在该函数的图象上,且m+n=1,则点P的坐标为________.18.如图,已知直线y1=x+m与x轴,y轴分别交于A,B两点,与反比例函数(k≠0,x<0)的图象交于C,D两点,且点C的坐标为(-1,2).y2=kx(第18题)(1)分别求出直线AB及反比例函数的表达式;(2)求出点D的坐标;(3)利用图象直接写出:当y1>y2时,自变量x的取值范围.五、(本大题共2小题,每小题10分,满分20分)19.“水幕电影”的工作原理是把影像打在抛物线状的水幕上,通过光学原理折射出图像.水幕是由若干个水嘴喷出的水柱组成的,如图,水柱的最高点为P,AB=2m,BP=8m,水嘴高AD=6m.(1)以点A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立平面直角坐标系,求抛物线的表达式;(2)求水柱落点C与水嘴底部A的距离AC.(第19题)20.某商店十月份销售一种成本价为50元/件的商品,经市场调查发现,该商品每天的销售量y(件)是售价x(元/件)的一次函数,其售价、销售量的两组对应值如下表:售价x/(元/件)5565销售量y/件9070(1)y与x之间的函数表达式为________;(2)十月份销售该商品时,售价定为多少,每天才能获得最大利润?最大利润是多少?六、(本题满分12分)21.如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于点C,且点B(6,0),S△ABC=212.(1)求抛物线对应的函数表达式;(2)P是直线BC下方抛物线上一动点,连接PB,PC,当△PBC的面积最大时,直接写出点P的坐标.(第21题)七、(本题满分12分)22.淮南油酥烧饼是安徽早餐的特色之一,如图①,它的外边缘线的一半恰好呈抛物线形,如图②是半块烧饼的示意图,以AB的中点为原点建立平面直角坐标系,AB的长度为8cm,抛物线最高点与AB的距离为6cm.(第22题)(1)求图②中抛物线的表达式;(2)如图③,小明想在这半块烧饼上切出一块矩形CDEF,使得矩形的一边EF与AB重合,点C,D在抛物线上,求该矩形周长l的最大值;(3)如图④,小明的妹妹想在这半块烧饼上切出若干块宽为1.5cm的矩形,若切出的所有矩形的长与AB平行,直接写出切出的所有矩形的面积之和.(结果保留根号)八、(本题满分14分)23.如图①,抛物线y=-x2+bx+c过点A(-1,0),点B(3,0),与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线ME⊥x轴,交抛物线于点M.(1)抛物线的表达式为________;(2)当m=1时,点D是直线ME上的点且在第一象限内,若△ACD是以CA为斜边的直角三角形,求点D的坐标;(3)如图②,连接BC交ME于点F,连接AF,设△ACF和△BFM的面积分别为S1和S2,当S1=4S2时,求点E的坐标.(第23题)答案一、1.C 2.C3.A4.A5.D6.A 7.A 点拨:将点P (a ,b )的坐标分别代入y =-6x ,y =-2x +3,得b =-6a,b =-2a +3,所以ab =-6,2a +b =3,所以1a +2b =2a +b ab =3-6=-12.8.A 9.B 10.A二、11.(-1,-4)12.80013.10思路点睛:设BC 与x 轴交于点F ,连接DF ,OD ,由平行四边形的性质可得AD ∥BC ,AD =BC .所以易得S △ODF =S △BCE ,S △ADF =S △ABC ,由S △OAD =S △ODF -S △ADF ,S △ABE =S △BCE -S △ABC ,可得S △OAD =S △ABE =5.由k 的几何意义可得12|k |=5.因为k >0,所以k =10.14.(1)2(2)12三、15.解:设y 1=k 1(x -1),y 2=k 2x +1(k 1,k 2均不为0),所以y =y 1+y 2=k 1(x -1)+k 2x +1.因为当x =0时,y =-3,当x =1时,y =-1,3=-k 1+k 2,1=12k 2,1=1,2=-2,所以y 关于x 的函数表达式为y =x -1-2x +1.16.解:因为直线y =-x +3与y 轴交于点A ,所以A (0,3),即OA =3.因为AO =3BO ,所以OB =1,所以B (-1,0).因为CB ⊥x 轴于点B ,所以点C 的横坐标为-1.因为点C 在直线y =-x +3上,所以点C (-1,4).将点C(-1,4)的坐标代入y=kx(k≠0),得4=k-1,所以k=-4,所以反比例函数的表达式为y=-4 x .四、17.解:(1)将点(-1,6),(0,2)的坐标代入y=x2+bx+c -b+c=6,=2,=-3,=2,所以二次函数的表达式为y=x2-3x+2,其图象的顶点坐标为(2)(1,0)18.解:(1)因为直线y1=x+m经过点C(-1,2),所以2=-1+m,解得m=3,所以直线AB的表达式为y1=x+3.因为点C(-1,2)在反比例函数y2=kx(k≠0,x<0)的图象上,所以k=-1×2=-2,所以反比例函数的表达式为y2=-2x(x<0).(2)=x+3,=-2x,=-1,=2=-2,=1,所以D(-2,1).(3)由图象可知:当y1>y2时,自变量x的取值范围是-2<x<-1.五、19.解:(1)由题意得P(2,8),D(0,6),所以可设抛物线的表达式为y=a(x-2)2+8.把点D(0,6)的坐标代入得4a+8=6,所以a=-12,所以y=-12(x-2)2+8.(2)令y=0,则0=-12(x-2)2+8,所以(x-2)2=16,解得x1=6,x2=-2,所以点C(6,0),所以AC=6m.故水柱落点C与水嘴底部A的距离AC为6m.20.解:(1)y=-2x+200(2)设每天获得的利润为W元,则W=(x-50)(-2x+200)=-2x2+300x-10000=-2(x-75)2+1250.因为-2<0,所以当x=75时,W有最大值,最大值为1250.所以当售价定为75元/件时,每天才能获得最大利润,最大利润是1250元.六、21.解:(1)因为抛物线y=ax2+bx-3与y轴交于点C,所以点C的坐标为(0,-3),所以OC=3.因为S△ABC=12AB·OC=212,所以AB=7.因为B(6,0),所以A(-1,0).将点A(-1,0),B(6,0)的坐标代入y=ax2+bx-3,-b-3=0,a+6b-3=0,=12,=-52,所以抛物线对应的函数表达式为y=12x2-52x-3.(2)当△PBC的面积最大时,点P的坐标为(3,-6).七、22.解:(1)由题意知,抛物线的顶点坐标为(0,6),点B的坐标为(4,0).设抛物线的表达式为y=ax2+6,把点B(4,0)的坐标代入,得16a+6=0,解得a=-38,所以抛物线的表达式为y=-38x2+6.(2)由题意知CD∥AB,设,-38m2+m<4),则易得m,-38m2+所以CD=2m cm,DE-38m2+,所以l=m-38m2+=-34m2+4m+12+523,所以当m =83时,l 取最大值,最大值为523.故该矩形周长l 的最大值为523cm.(3)切出的所有矩形的面积之和为(63+62+6)cm 2.八、23.解:(1)y =-x 2+2x +3(2)对于y =-x 2+2x +3,令x =0,则y =3,所以C (0,3).当m =1时,设D (1,y ),因为△ACD 是以CA 为斜边的直角三角形,所以AD 2+CD 2=AC 2,所以22+y 2+12+(3-y )2=12+32,解得y 1=1,y 2=2,所以点D 的坐标为(1,1)或(1,2).(3)设直线BC 的表达式为y =kx +d ,k +d =0,=3,=-1,=3,所以直线BC 的表达式为y =-x +3.因为E (m ,0),ME ⊥x 轴,所以M (m ,-m 2+2m +3),F (m ,-m +3),所以EF =-m +3,MF =-m 2+2m +3-(-m +3)=-m 2+3m .因为A (-1,0),B (3,0),C (0,3),所以AB =3-(-1)=4,OC =3,BE =3-m ,所以S 1=S △ACF =S △ABC -S △ABF =12·(OC -EF )=12×4×[3-(-m +3)]=2m ,S 2=S △BFM =12MF ·BE =12(-m 2+3m )(3-m ).因为S 1=4S 2,所以2m =12(-m 2+3m )(3-m )×4,化简得m (m 2-6m +8)=0.因为0<m <3,所以m 2-6m +8=0,解得m1=2,m2=4(不符合题意,舍去),所以点E的坐标为(2,0).。
一.选择题〔共10小题〕1.如图,在同一平面直角坐标系中,反比例函数y=与一次函数y=kx﹣1〔k为常数,且k>0〕的图象可能是〔〕A.B.C.D.2.以下给出的函数中,其图象是中心对称图形的是〔〕①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是3.抛物线y=x2+2x﹣m﹣2与x轴没有交点,那么函数y=的大致图象是〔〕A.B.C.D.4.反比例函数y=的图象如下图,那么一次函数y=kx+b〔k≠0〕的图象的图象大致是〔〕A.B. C.D.5.一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如下图,那么二次函数y=ax2+bx+c的图象可能是〔〕A.B.C.D.6.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是〔〕A. B. C.D.7.对于二次函数y=﹣〔x﹣1〕2+2的图象与性质,以下说法正确的选项是〔〕A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是28.以下函数中,是反比例函数的为〔〕A.y=B.y=C.y=2x+1 D.2y=x9.假设点A〔1,2〕,B〔﹣2,﹣3〕在直线y=kx+b上,那么函数y=的图象在〔〕A.第一、三象限B.第一、二象限C.第二、四象限D.第二、三象限10.对于二次函数y=x2﹣2mx﹣3,以下结论错误的选项是〔〕A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小二.填空题〔共3小题〕11.对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1〔m、n为常数〕.例如y=x4+x2,那么y'=4x3+2x.:y=x3+〔m﹣1〕x2+m2x.〔1〕假设方程y′=0有两个相等实数根,那么m的值为;〔2〕假设方程y′=m﹣有两个正数根,那么m的取值范围为.12.假设二次函数y=x2﹣4x+n的图象与x轴只有一个公共点,那么实数n=.13.方程3x2﹣5x+m=0的两个实数根分别为x1、x2,且分别满足﹣2<x1<1,1<x2<3,那么m的取值范围是.三.解答题〔共6小题〕14.如图,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一象限内的图象分别交OA、AB于点C和点D,连结OD,假设S=4,△BOD〔1〕求反比例函数解析式;〔2〕求C点坐标.15.:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y的值.16.在平面直角坐标系xOy中,反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A〔1,3〕和B〔﹣3,m〕.〔1〕求反比例函数y1=和一次函数y2=ax+b的表达式;〔2〕点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.假设AC=CD,求点C的坐标.17.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;该商品的进价为每件30元,设销售该商品每天的利润为y 元.〔1〕求出y与x的函数关系式〔2〕问销售该商品第几天时,当天销售利润最大?最大利润是多少?〔3〕该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.18.某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,假如这种水果每千克降价1元,那么每天可多售出20千克.〔1〕设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;〔2〕假设要平均每天盈利960元,那么每千克应降价多少元?19.某企业是一家专门消费季节性产品的企业,经过调研预测,它一年中获得的利润y〔万元〕和月份n之间满足函数关系式y=﹣n2+14n﹣24.〔1〕假设利润为21万元,求n的值.〔2〕哪一个月可以获得最大利润,最大利润是多少?〔3〕当产品无利润时,企业会自动停产,企业停产是哪几个月份?参考答案与试题解析一.选择题〔共10小题〕1.如图,在同一平面直角坐标系中,反比例函数y=与一次函数y=kx﹣1〔k为常数,且k>0〕的图象可能是〔〕A.B.C.D.【分析】先根据k的符号,得到反比例函数y=与一次函数y=kx﹣1都经过第一、三象限或第二、四象限,再根据一次函数y=kx﹣1与y轴交于负半轴,即可得出结果.【解答】解:当k>0时,直线从左往右上升,双曲线分别在第一、三象限,故A、C选项错误;∵一次函数y=kx﹣1与y轴交于负半轴,∴D选项错误,B选项正确,应选:B.【点评】此题主要考察了反比例函数与一次函数的图象,解题时注意:系数k的符号决定直线的方向以及双曲线的位置.2.以下给出的函数中,其图象是中心对称图形的是〔〕①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是【分析】函数①③是中心对称图形,对称中心是原点.【解答】解:根据中心对称图形的定义可知函数①③是中心对称图形.应选C【点评】此题考察正比例函数、反比例函数、二次函数的性质、中心对称图形的定义等知识,解题的关键是理解中心对称图形的定义,属于根底题.3.抛物线y=x2+2x﹣m﹣2与x轴没有交点,那么函数y=的大致图象是〔〕A.B.C.D.【分析】根据抛物线y=x2+2x﹣m﹣2与x轴没有交点,得方程x2+2x﹣m﹣2=0没有实数根求得m<﹣5,再判断函数y=的图象在哪个象限即可.【解答】解:∵抛物线y=x2+2x﹣m﹣2与x轴没有交点,∴方程x2+2x﹣m﹣2=0没有实数根,∴△=4﹣4×1×〔﹣m﹣4〕=4m+20<0,∴m<﹣5,∴函数y=的图象在二、四象限.应选C.【点评】此题考察了反比例函数的图象以及抛物线与x轴的交点问题,掌握反比例函数和二次函数的性质是解题的关键.4.反比例函数y=的图象如下图,那么一次函数y=kx+b〔k≠0〕的图象的图象大致是〔〕A.B. C.D.【分析】根据反比例函数图象可以确定kb的符号,易得k、b的符号,根据图象与系数的关系作出正确选择.【解答】解:∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,A、图象过二、四象限,那么k<0,图象经过y轴正半轴,那么b>0,此时,k,b异号,故此选项不合题意;B、图象过二、四象限,那么k<0,图象经过原点,那么b=0,此时,k,b不同号,故此选项不合题意;C、图象过一、三象限,那么k>0,图象经过y轴负半轴,那么b<0,此时,k,b异号,故此选项不合题意;D、图象过一、三象限,那么k>0,图象经过y轴正半轴,那么b>0,此时,k,b同号,故此选项符合题意;应选:D.【点评】此题主要考察了反比例函数以及一次函数的图象,正确得出k,b的符号是解题关键.5.一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如下图,那么二次函数y=ax2+bx+c的图象可能是〔〕A.B.C.D.【分析】根据反比例函数图象和一次函数图象经过的象限,即可得出a<0、b>0、c<0,由此即可得出:二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y 轴负半轴.应选A.【点评】此题考察了反比例函数的图象、一次函数的图象以及二次函数的图象,根据反比例函数图象和一次函数图象经过的象限,找出a<0、b>0、c<0是解题的关键.6.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是〔〕A. B. C.D.【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项.【解答】解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;应选D.【点评】此题考察了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.7.对于二次函数y=﹣〔x﹣1〕2+2的图象与性质,以下说法正确的选项是〔〕A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是2【分析】根据抛物线的图象与性质即可判断.【解答】解:由抛物线的解析式:y=﹣〔x﹣1〕2+2,可知:对称轴x=1,开口方向向下,所以有最大值y=2,应选〔B〕【点评】此题考察二次函数的性质,解题的关键是正确理解抛物线的图象与性质,此题属于根底题型.8.以下函数中,是反比例函数的为〔〕A.y=B.y=C.y=2x+1 D.2y=x【分析】根据反比例函数的定义答复即可.【解答】解:A、是反比例函数,故A正确;B、不是反比例函数,故B错误;C、是一次函数,故C错误;D、是正比例函数,故D错误.应选:A.【点评】此题主要考察的是反比例函数的定义,掌握反比例函数的定义是解题的关键.9.假设点A〔1,2〕,B〔﹣2,﹣3〕在直线y=kx+b上,那么函数y=的图象在〔〕A.第一、三象限B.第一、二象限C.第二、四象限D.第二、三象限【分析】由点A、B的坐标利用待定系数法可求出一次函数解析式,再根据k>0即可得出反比例函数y=的图象所在的象限.【解答】解:∵点A〔1,2〕,B〔﹣2,﹣3〕在直线y=kx+b上,∴,解得:,∴函数y=的图象在第一、三象限.应选A.【点评】此题考察了反比例函数的图象以及待定系数法求一次函数解析式,根据点A、B的坐标利于待定系数法可求出一次函数解析式是解题的关键.10.对于二次函数y=x2﹣2mx﹣3,以下结论错误的选项是〔〕A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小【分析】直接利用二次函数与x轴交点个数、二次函数的性质以及二次函数与方程之间关系分别分析得出答案.【解答】解:A、∵b2﹣4ac=〔2m〕2+12=4m2+12>0,∴二次函数的图象与x轴有两个交点,故此选项正确,不合题意;B、方程x2﹣2mx=3的两根之积为:=﹣3,故此选项正确,不合题意;C、m的值不能确定,故它的图象的对称轴位置无法确定,故此选项错误,符合题意;D、∵a=1>0,对称轴x=m,∴x<m时,y随x的增大而减小,故此选项正确,不合题意;应选:C.【点评】此题主要考察了抛物线与x轴的交点以及二次函数的性质、根与系数的关系等知识,正确掌握二次函数的性质是解题关键.二.填空题〔共3小题〕11.对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1〔m、n为常数〕.例如y=x4+x2,那么y'=4x3+2x.:y=x3+〔m﹣1〕x2+m2x.〔1〕假设方程y′=0有两个相等实数根,那么m的值为;〔2〕假设方程y′=m﹣有两个正数根,那么m的取值范围为且.【分析】根据新定义得到y′=x3+〔m﹣1〕x2+m2=x2+2〔m﹣1〕x+m2,〔1〕由判别式等于0,解方程即可;〔2〕根据根与系数的关系列不等式组即可得到结论.【解答】解:根据题意得y′=x2+2〔m﹣1〕x+m2,〔1〕∵方程x2﹣2〔m﹣1〕x+m2=0有两个相等实数根,∴△=[﹣2〔m﹣1〕]2﹣4m2=0,解得:m=,故答案为:;〔2〕y′=m﹣,即x2+2〔m﹣1〕x+m2=m﹣,化简得:x2+2〔m﹣1〕x+m2﹣m+=0,∵方程有两个正数根,∴,解得:且.故答案为:且.【点评】此题考察了抛物线与x轴的交点,根的判别式,根与系数的关系,正确的理解题意是解题的关键.12.假设二次函数y=x2﹣4x+n的图象与x轴只有一个公共点,那么实数n=4.【分析】二次函数y=x2﹣4x+n的图象与x轴只有一个公共点,那么b2﹣4ac=0,据此即可求得.【解答】解:y=x2﹣4x+n中,a=1,b=﹣4,c=n,b2﹣4ac=16﹣4n=0,解得n=4.故答案是:4.【点评】此题考察了抛物线与x轴的交点,二次函数y=ax2+bx+c〔a,b,c是常数,a≠0〕的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.13.方程3x2﹣5x+m=0的两个实数根分别为x1、x2,且分别满足﹣2<x1<1,1<x2<3,那么m的取值范围是﹣12<m<2.=3x2﹣5x+m,由题意可得,可得m的取值范围.【分析】设f〔x〕=3x2﹣5x+m,【解答】解:设f〔x〕由题意可得,解得:﹣12<m<2,故答案为:﹣12<m<2.【点评】此题主要考察了抛物线与x轴的交点,利用函数思想是解答此题的关键.三.解答题〔共6小题〕14.如图,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一=4,象限内的图象分别交OA、AB于点C和点D,连结OD,假设S△BOD〔1〕求反比例函数解析式;〔2〕求C点坐标.【分析】〔1〕根据反比例函数y=〔k≠0〕系数k的几何意义得到S=k=4,△BOD求出k即可确定反比例函数解析式;〔2〕先利用待定系数法确定直线AC的解析式,然后把正比例函数解析式和反比例函数解析式组成方程,解方程组即可得到C点坐标.【解答】解:〔1〕∵S=k,△BOD∴k=4,解得k=8,∴反比例函数解析式为y=;〔2〕设直线OA的解析式为y=ax,把A〔4,8〕代入得4a=8,解得a=2,所以直线OA的解析式为y=2x,解方程组得或,所以C点坐标为〔2,4〕.【点评】此题考察了反比例函数y=〔k≠0〕系数k的几何意义:从反比例函数y=kx〔k≠0〕图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.15.:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y的值.【分析】依题意可设出y1、y2与x的函数关系式,进而可得到y、x的函数关系式;此函数图象经过〔1,3〕、〔﹣1,1〕,即可用待定系数法求得y、x的函数解析式,进而可求出x=﹣时,y的值.【解答】解:依题意,设y1=mx2,y2=,〔m、n≠0〕∴y=mx2+,依题意有,∴,解得,∴y=2x2+,当x=﹣时,y=2×﹣2=﹣1.故y的值为﹣1.【点评】考察了待定系数法求二次函数解析式,可以正确的表示出y、x的函数关系式,进而用待定系数法求得其解析式是解答此题的关键.16.在平面直角坐标系xOy中,反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A〔1,3〕和B〔﹣3,m〕.〔1〕求反比例函数y1=和一次函数y2=ax+b的表达式;〔2〕点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.假设AC=CD,求点C的坐标.【分析】〔1〕由点A在反比例函数图象上,利用待定系数法可求出反比例函数的表达式,由点B在反比例函数图象上,可求出点B的坐标,由点A、B的坐标利用待定系数法即可求出一次函数的表达式;〔2〕由BC∥x轴结合点B的坐标可得出点C的纵坐标,再由点A的坐标结合AD⊥BC于点D,即可得出点D的坐标,即得出线段AD的长,在Rt△ADC中,由勾股定理以及线段AC、CD间的关系可求出线段CD的长,再结合点D的坐标即可求出点C的坐标.【解答】解:〔1〕∵反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A 〔1,3〕和B〔﹣3,m〕,∴点A〔1,3〕在反比例函数y1=的图象上,∴k=1×3=3,∴反比例函数的表达式为y1=.∵点B〔﹣3,m〕在反比例函数y1=的图象上,∴m==﹣1.∵点A〔1,3〕和点B〔﹣3,﹣1〕在一次函数y2=ax+b的图象上,∴,解得:.∴一次函数的表达式为y2=x+2.〔2〕按照题意画出图形,如下图.∵BC∥x轴,∴点C的纵坐标为﹣1,∵AD⊥BC于点D,∴∠ADC=90°.∵点A的坐标为〔1,3〕,∴点D的坐标为〔1,﹣1〕,∴AD=4,∵在Rt△ADC中,AC2=AD2+CD2,且AC=CD,∴,解得:CD=2.∴点C1的坐标为〔3,﹣1〕,点C2的坐标为〔﹣1,﹣1〕.故点C的坐标为〔﹣1,﹣1〕或〔3,﹣1〕.【点评】此题考察了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及解直角三角形,解题的关键是:〔1〕根据点的坐标利用待定系数法求函数解析式;〔2〕通过解直角三角形求出线段CD的长.此题属于根底题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数解析式是关键.17.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;该商品的进价为每件30元,设销售该商品每天的利润为y 元.〔1〕求出y与x的函数关系式〔2〕问销售该商品第几天时,当天销售利润最大?最大利润是多少?〔3〕该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.【分析】〔1〕根据单价乘以数量,可得利润,可得答案;〔2〕根据分段函数的性质,可分别得出最大值,根据有理数的比拟,可得答案;〔3〕根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:〔1〕当1≤x<50时,y=〔200﹣2x〕〔x+40﹣30〕=﹣2x2+180x+2000,当50≤x≤90时,y=〔200﹣2x〕〔90﹣30〕=﹣120x+12000;〔2〕当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,当x=50时,y=6000,最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;〔3〕当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】此题考察了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.18.某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,假如这种水果每千克降价1元,那么每天可多售出20千克.〔1〕设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;〔2〕假设要平均每天盈利960元,那么每千克应降价多少元?【分析】〔1〕根据“每天利润=每天销售质量×每千克的利润〞即可得出y关于x 的函数关系式;〔2〕将y=960代入〔1〕中函数关系式中,得出关于x的一元二次方程,解方程即可得出结论.【解答】解:〔1〕根据题意得:y=〔200+20x〕×〔6﹣x〕=﹣20x2﹣80x+1200.〔2〕令y=﹣20x2﹣80x+1200中y=960,那么有960=﹣20x2﹣80x+1200,即x2+4x﹣12=0,解得:x=﹣6〔舍去〕,或x=2.答:假设要平均每天盈利960元,那么每千克应降价2元.【点评】此题考察了二次函数的应用,解题的关键是:〔1〕根据数量关系找出函数关系式;〔2〕将y=960代入函数关系式得出关于x的一元二次方程.此题属于根底题,难度不大,解决该题型题目时结合数量关系找出函数关系式是关键.19.某企业是一家专门消费季节性产品的企业,经过调研预测,它一年中获得的利润y〔万元〕和月份n之间满足函数关系式y=﹣n2+14n﹣24.〔1〕假设利润为21万元,求n的值.〔2〕哪一个月可以获得最大利润,最大利润是多少?〔3〕当产品无利润时,企业会自动停产,企业停产是哪几个月份?【分析】〔1〕把y=21代入,求出n的值即可;〔2〕根据解析式,利用配方法求出二次函数的最值即可;〔3〕根据解析式,求出函数值y等于0时对应的月份,根据开口方向以及增减性,再求出y小于0时的月份即可解答.【解答】解:〔1〕由题意得:﹣n2+14n﹣24=21,解得:n=5或n=9;〔2〕y=﹣n2+14n﹣24=﹣〔n﹣7〕2+25,∵﹣1<0,∴开口向下,y有最大值,即n=7时,y取最大值25,故7月可以获得最大利润,最大利润是25万;〔3〕〕∵y=﹣n2+14n﹣24=﹣〔n﹣2〕〔n﹣12〕,当y=0时,n=2或者n=12.又∵图象开口向下,∴当n=1时,y<0,当n=2时,y=0,当n=12时,y=0,那么该企业一年中应停产的月份是1月、2月、12月.【点评】此题主要考察了二次函数的应用,难度一般,解答此题的关键是纯熟运用配方法求二次函数的最大值,借助二次函数解决实际问题.。
第21章《二次函数与反比例函数》单元测试卷一、选择题(本大题共10小题,每小题3分,共30分).1.已知函数y=(m+3)x2+4是二次函数,则m的取值范围为()A.m>﹣3B.m<﹣3C.m≠﹣3D.任意实数2.将抛物线()先向下平移1个单位长度,再向左平移2个单位长度后所得到的抛物线为y=﹣2(x﹣3)2+1.A.y=﹣2(x﹣5)2+2B.y=﹣2(x﹣1)2C.y=﹣2(x﹣2)2﹣1D.y=﹣2(x﹣4)2+33.已知二次函数y=x2﹣(m﹣2)x+4图象的顶点在坐标轴上,则m的值一定不是()A.2B.6C.﹣2D.04.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.5.若点A(﹣2,y1),B(﹣1,y2),C(3,y3)在反比例函数y=2+3的图象上,则y1,y2,y3的大小关系是()A.y 1<y 2<y 3B.y 3<y 1<y 2C.y 2<y 1<y 3D.y 3<y 2<y 16.函数=−6图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1y 2=﹣3,则x 2y 1值为()A.12B.6C.﹣12D.﹣67.如图,Rt 三角形ABC 位于第一象限,AB =4,AC =2,直角顶点A 在直线y =x 上,其中点A 的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若函数=(≠0)的图象与△ABC 有交点,则k 的最大值是()A.5B.498C.12124D.48.如右图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,函数图象经过点(2,0),x =﹣1是对称轴,有下列结论:①2a ﹣b =0;②9a ﹣3b +c <0;③若(﹣2,y 1),(12,y 2)是抛物线上两点,则y 1<y 2,④a ﹣b +c =﹣9a ;其中正确结论的个数是()A.1个B.2个C.3个D.4个9.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:m 3)与旋钮的旋转角度x (单位:度)(0°<x ≤90°)近似满足函数关系y =ax 2+bx +c (a ≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18°B.36°C.41°D.58°10.已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点,(x1,0),(x2,0),则下列说法正确的是()①该函数图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:65<m<2;③当m>2,且1≤x≤2时,y的最大值为:4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1,x2满足﹣3<x1<﹣2,﹣1<x2<0时,m的取值范围为:214<m<11.A.①②③④B.①②④C.①③④D.②③④二、填空题(本大题共8小题,每小题3分,共24分)11.如图,P是反比例函数y=图象上一点,矩形OAPB的面积是6,则k=.12.在平面直角坐标系中,一次函数y=2x与反比例函数y=(k≠0)的图象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是.13.汽车在高速公路刹车后滑行的距离y(米)与行驶的时间x(秒)的函数关系式是y=﹣3x2+36x,汽车刹车后,会继续向前滑行直至静止,那么汽车静止前2秒内滑行的距离是米.14.为了在校运会中取得更好的成绩,小丁积极训练,在某次试投中铅球所经过的路线是如图所示的抛物线的一部分.已知铅球出手处A距离地面的高度是1.68米,当铅球运行的水平距离为2米时,达到最大高度2米的B处,则小丁此次投掷的成绩是米.15.反比例函数y=3和y=1在第一象限的图象如图所示.点A,B分别在y=3和y=1的图象上,AB∥y轴,点C是y轴上的一个动点,则△ABC的面积为.16.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)17.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①abc<0;②4a+c<2b;③m(am+b)+b>a(m≠﹣1);④方程ax2+bx+c﹣3=0的两根为x1,x2(x1<x2),则x2<1,x1>﹣3,其中正确结论的是.18.某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是元.三、解答题(本大题共8小题,共66分.)19.如图,在平面直角坐标系中,直线y1=x+b与双曲线y2=(k>0)相交于点A,B两点,已知点A坐标(1,2).(1)求反比例函数与一次函数的表达式;(2)求点B的坐标,并观察图象,写出当y1<y2时,x的取值范围.20.我们已经学习过反比例函数y=1对函数y=1|U的图象和性质进行探索,并解决下列问题:(1)该函数的图象大致是.(2)关于此函数,下列说法正确的是.(填写序号)①在各个象限内,y随着x增大而减小;②图象为轴对称图形;③函数值始终大于0;④函数图象是中心对称图形.(3)写出不等式1|U−3>0的解集.21.已知抛物线y=ax2+bx+1(其中a,b是常数,且a≠0),其自变量x与函数值y的部分对应值如下表所示:x…﹣3﹣2﹣101…y…﹣2m﹣21n…(1)求这个抛物线的解析式及m、n的值;(2)在给出的平面直角坐标系中画出这个抛物线的图象;(3)如果直线y=k与该抛物线有交点,那么k的取值范围是.22.若已知二次函数y=ax2+bx+c(a≠0)的图象经过原点但不关于y轴对称,(1)求证:二次函数始终与x轴有2个交点;(2)若a>0且b=2a﹣2,①当x≥﹣3时,y≥﹣a恒成立,求a的取值范围;②当a,n都为正整数时,若在﹣n﹣2≤x≤﹣n﹣1范围内,函数的值有且只有13个整数,求a的值.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)24.商场出售一批进价为2元的贺卡,在市场营销中发现此商品日销售单价x(元)与日销售量y(张)之间有如下关系:x/元3456y/张20151210(1)根据表中的数据在平面直角坐标系中描出实数对(x,y)的对应点;(2)猜想并确定y关于x的函数解析式,并画出函数图象;(3)设经营此贺卡的日销售利润为W(元),试求出W关于x的函数解析式,若物价局规定此贺卡的日销售单价最高不能超过10元/张,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?25.在平面直角坐标系xOy中,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点A,将点A向右平移1个单位长度,得到点B.直线y=34x﹣3与x轴,y轴分别交于点C,D.(1)求抛物线的对称轴;(2)若点A与点D关于x轴对称,①求点B的坐标;②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.26.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求三角形ACE面积的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.答案一、选择题C.A.D.C.C.C.B.B.C.B.二、填空题11.612.0.13.12.14.7.15.1.16.①③④.17.①②③.18.1800.三、解答题19.(1)直线y 1=x +b 与双曲线y 2=(k >0)相交于点A (1,2),∴2=1+b ,2=1,∴b =1,k =2,∴反比例函数与一次函数的表达式分别为y =2,y =x +1;(2)解方程组=+1=2得=1=2或=−2=−1,则B (﹣2,﹣1),由图象可知,当x <﹣2或0<x <1时,y 1<y 2.20.(1)∵在函数y =1|U 中,|x |>0,∴y >0,当x >0时,y 随着x 的增大而减小;当x <0时,y 随着x 的增大而增大,∴函数图象在第一、二象限;故答案为:D ;(2)由函数y =1|U 的图象可知此图象具有以下性质:函数的图象在一、二象限,当x >0时,y 随x 增大而减小;当x <0时,y 随x 增大而增大;函数的图象关于y 对称;故说法正确的是②③,故答案为②③:(3)y =3时,即:1|U =3,解得:x =±13,根据函数的图象和性质得,不等式1|U −3>0,即1|U >3的解集为:−13<<0或0<<13,因此:不等式1|U −3>0的解集为:−13<<0或0<<13.21.(1)把(﹣3,﹣2),(﹣1,﹣2),(0,1)代入y =ax 2+bx +c ,得:9−3+=−2−+=−2=1,解得:=1=4=1,∴抛物线解析式为y =x 2+4x +1,把x =﹣2代入得y =﹣3,把x =1代入得y =6,∴m =﹣3,n =6;(2)描点、连线画出抛物线图象如图:(3)由图象可知,如果直线y =k 与该抛物线有交点,那么k 的取值范围是k ≥﹣3.故答案为k ≥﹣3.22.(1)∵二次函数y =ax 2+bx +c (a ≠0)的图象经过原点但不关于y 轴对称,∴b ≠0,把(0,0)代入y =ax 2+bx +c ,得c =0,∵Δ=b 2﹣4ac >0,∴二次函数y =ax 2+bx +c 的图象与x 轴始终有2个交点;(2)函数对称轴为x =﹣1+1>−1,抛物线的顶点为:[﹣1+1,−(K1)2],①当x≥﹣3时,y≥﹣a恒成立,而函数对称轴为x=﹣1+1>−1,则−(K1)2≥−a,∴(2a﹣2)2≤4a2,解得:a≥12;函数不关于y轴对称,则b=2a﹣2≠0,故a≠1,综上,a≥12且a≠1;②当x=﹣n﹣2时,y1=a(n+2)2﹣b(n+2),当x=﹣n﹣1时,y2=a(n+1)2﹣b(n+1)△y=y1﹣y2=a(2n+1)+2;则△y有13个整数,即a(2n+1)+2=12,解得:a=2.23.(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(60,100)、(70,80)代入一次函数表达式得:100=60+80=70+,解得:=−2=220,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为w元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.24.(1)对应点如图所示:(2)根据图象猜测y关于x的函数解析式为=(≠0),∵x=3时,y=20,∴3=20,解得k=60,∴=60,∵把实数对(4,15),(5,12),(6,10)代入=60都符合,∴y关于x的解析式为=60(>0),其图象是第一象限内的双曲线的一支,如图2所示.(3)=(−2)⋅60=60−120,∵x≤10,∴当x=10时,W有最大值,最大日销售利润为60﹣12=48(元)∴当日销售单价定为10元时,才能获得最大日销售利润.25.(1)抛物线的对称轴为:x=−2=−−22=1;(2)①∵直线y=34x﹣3与x轴,y轴分别交于点C,D.∴点C的坐标为(4,0),点D的坐标为(0,﹣3).∵抛物线与y轴的交点A与点D关于x轴对称,∴点A的坐标为(0,3).∵将点A向右平移1个单位长度,得到点B,∴点B的坐标为(1,3);②抛物线顶点为P(1,3﹣a).(ⅰ)当a>0时,如图1.令x=4,得y=16a﹣8a+3=8a+3>0,即点C(4,0)总在抛物线上的点E(4,8a+3)的下方.∵yP <yB,∴点B(1,3)总在抛物线顶点P的上方,结合函数图象,可知当a>0时,抛物线与线段CB恰有一个公共点.(ⅱ)当a<0时,如图2.当抛物线过点C (4,0)时,16a ﹣8a +3=0,解得a =−38.结合函数图象,可得a ≤−38.综上所述,a 的取值范围是:a ≤−38或a >026.(1)令y =0,解得x 1=﹣1或x 2=3,∴A (﹣1,0)B (3,0),将C 点的横坐标x =2代入y =x 2﹣2x ﹣3得y =﹣3,∴C (2,﹣3),∴直线AC 的函数解析式是y =﹣x ﹣1;(2)设P 点的横坐标为x (﹣1≤x ≤2),则P 、E 的坐标分别为:P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),∵P 点在E 点的上方,PE =(﹣x ﹣1)﹣(x 2﹣2x ﹣3)=﹣x 2+x +2=﹣(x −12)2+94,∴当x =12时,PE 的最大值=94,则△ACE 的面积的最大值是:12×【2﹣(﹣1)】×94=278;(3)存在4个这样的点F ,分别是F 1(1,0),F 2(﹣3,0),F 3(4+7,0),F 4(4−7,0),①如图,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(﹣3,0);②如图,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);③如图,此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1+7,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=﹣x+h,将G点代入后可得出直线的解析式为y=﹣x+4+7,因此直线GF与x轴的交点F的坐标为(4+7,0);④如图,同③可求出F的坐标为(4−7,0).总之,符合条件的F点共有4个.。
沪科版2020-2021九年级上数学单元测试卷(含答案)第21章二次函数与反比例函数(三、四节)一、选择题(本题10小题,每小题3分,满分30分)1、若二次函数y=x2+4x+n的图像与x轴只有一个公共点,则实数n的值是()A 1B 3C 4D 62、关于抛物线y=(x+1)2-2,下列结论中正确的是()A 对称轴为直线x=1B 当x<-3时,y随x的增大而减小C 与x轴没有交点D 与y轴交于点(0,-2)3、小兰画了函数y=x2+ax+b的图像如图,则关于x的方程x2+ax+b=0的解是()A 无解B x=1C x=-4D x1=-1,x2=4第3题第8题4、已知抛物线y=x2-x-1,与x轴的一个交点为(m,0),则代数式m2-m+2020的值为()A 2018B 2019C 2020D 20215、如图,点A(2.18,-0.51)、B(2.68,0.54),在二次函数y=ax2+bx+c(a≠0)的图像上,则方程ax2+bx+c=0的一个近似值可能是()A 2.18B 2.68C -0.51D 2.456、心理学家发现:学生对提出概念的接受能力y与提出概念的时间x(min)之间满足二次函数关系y=-0.1x2+2.6x+43 则使学生对概念的接受能力最大,则提出概念的时间应为()A 13minB 26minC 52minD 59.9min7、二次函数y=ax2+bx+c的值永远为负值的条件是()A.a>0,b2-4ac<0 B.a<0,b2-4ac>0 C.a>0,b2-4ac>0 D.a<0,b2-4ac<0 8、如图,抛物线y=ax2+bx+c与两坐标轴的交点分别为A、B、C,且OA=OC=1,则下列关系中正确的是()A.a+b=-1 B.a-b=-1 C .b<2a D.ac<09、因疫情影响,有时企业会被迫停产,经过调研,某企业一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n-24,则该企业停产的月份为()A.2月和12月 B.2月至12月 C.1月 D.1月、2月和12月10、如图,点G、D、C在直线a上,点E、F、A、B在直线b上,若a//b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是()A. B. C. D.12二、填空题(每小题4分,满分20分)11、已知二次函数y=x 2-6x-c 的图像与x 轴的一个交点坐标为(2,0),则它与x 轴的另一个交点的坐标为 12、抛物线y=ax 2-2ax-3与x 轴交于两点,分别是(m ,0)、(n ,0),则m+n 的值为13、直线y=x+m 和抛物线y=x 2+bx+c 都经过点A (1,0)、B (3,2),观察图像直接写出不等式x 2+bx+c <x+m 的解集14、如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米,那么当水位下降1米后,水面的宽度为 米。
2023-2024学年九年级数学上册第21章《二次函数与反比例函数》检测题(满分120分)一、单选题(本大题共12小题,每小题3分,共36分)1.抛物线()221y x c =-+过()12,y -,()20,y ,35,2y ⎛⎫ ⎪⎝⎭三点,则y1,y2,y3的大小关系是()A .231y y y >>B .132y y y =>C .132y y y >>D .312y y y >>2.抛物线22y x =-经过平移得到22(1)5y x =-+-,平移方法是()A .向左平移1个单位,再向下平移5个单位B .向左平移1个单位,再向上平移5个单位C .向右平移1个单位,再向下平移5个单位D .向右平移1个单位,再向上平移5个单位3.用配方法将二次函数286y x x =--化为()2y a x h k =-+的形式为()A .()2410y x =-+B .()2422y x =--C .()2422y x =+-D .()2410y x =++4.在平面直角坐标系xOy 中,点(,)(0,0)A a b a b >>在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为()A .1-B .0C .1D .25.已知()()()1233,2,,1,y y y --,是抛物线2312y x x m =++上的点,则123,,y y y 的大小关系为()A .231y y y <<B .123y y y <=C .213y y y <<D .321y y y <<6.在经历了一次函数的学习后,同学们掌握了利用图象来分析函数性质的方法.某位同学打算探究函数2y x -=的性质,他先通过列表、描点、连线得到该函数的图象(如图),然后通过观察图象得到“在x 的取值范围内,无论x 取何值,函数值恒大于0,”的结论.其中所蕴含的数学思想是()A .演绎思想B .分类讨论思想C .公理化思想D .数形结合思想7.已知抛物线的顶点坐标是(-1,-3),则m 和n 的值分别是()A .2,4B .-2,-4C .2,-4D .-2,08.若函数22y x x b =-+的图象与坐标轴有三个交点,则b 的取值范围是()A .1b <且0b ≠B .1b >C .01b <<D .1b <9.已知二次函数y =ax2+bx+c (a≠0)的图像如图所示,且关于x 的一元二次方程ax2+bx+c ﹣m =0没有实数根,则下列结论:①b2﹣4ac >0;②ac <0;③m >2,其中正确结论的个数是()A .0B .1C .2D .310.已知点P 为抛物线y=x2+2x ﹣3在第一象限内的一个动点,且P 关于原点的对称点P′恰好也落在该抛物线上,则点P′的坐标为()A .(﹣1,﹣1)B .(﹣2C ﹣1)D 11.已知抛物线y =ax2﹣2ax+3不经过第四象限.当﹣1≤x≤2时,y 的最大值与最小值的差是12,则a 的值是()A .﹣3B .3C .4D .1212.用60m 长的篱笆围成矩形场地,矩形的面积S 随着矩形的一边长L 的变化而变化,要使矩形的面积最大,L 的长度应为().A .B .15mC .20mD .二、填空题(本大题共8小题,每小题3分,共24分)13.如图用一段长为16m 的篱笆围成一个一边靠墙的矩形围栏(墙长9m ),则这个围栏的最大面积为2m .14.把二次函数()()y 412x x 3=-+-化为一般形式为:.15.把抛物线2y x =向左平移2个单位,则平移后所得抛物线的解析式为.16.如图,在平面直角坐标系中,抛物线214y x mx=-+与x 轴正半轴交于点A ,点B 是y 轴负半轴上一点,点A 关于点B 的对称点C 恰好落在抛物线上,过点C 作//CD x 轴,交抛物线于点D ,连结OC 、AD .若点C 的横坐标为4-,则四边形OCDA 的面积为.17.如图,正方形ABCD 的边长为5,点A 的坐标为(4,0),点B 在y 轴上,若反比例函数(0)ky k x =≠的图象过点C ,则k 的值为.18.如图所示,已知双曲线y=5x (x <0)和y=k x (x >0),直线OA 与双曲线y=5x 交于点A ,将直线OA 向下平移与双曲线y=5x 交于点B ,与y 轴交于点P ,与双曲线y=k x 交于点C ,S △ABC=6,12BP CP =,则k=.19.如图,矩形OABC 的两边OA 、OC 分别在x 轴和y 轴上,以AC 为边作平行四边形ACDE ,E 点在CB 的延长线上,反比例函数()0ky x x =>过B 点且与CD 交于F 点,3CFDF =,6ABF S = ,则k 的值为.20.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式2(6)y a x h =-+.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m .若球能越过球网,又不出边界,则h 的取值范围为.三、解答题(本大题共5小题,每小题8分,共40分)21.如图是反比例函数y=kx的图象的一个分支.(1)k的值是;(2)当x在什么范围取值时,y是小于3的正数?(3)如果自变量x取值范围为2≤x≤3,求y的取值范围.22.中国小将杨倩在2021东京奥运会射击比赛中,拿下中国第一枚金牌.某网店顺势推出纪念T恤衫,成本为30元/件,经市场调查发现每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)直接写出y与x之间的函数关系式.(2)当销售单价为多少时,每天获得的利润最大?最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出160元给希望工程,为了保证捐款后每天利润不低于3800元,求该纪念T恤衫的销售单价x的取值范围.23.[阅读理解]对于任意正实数a、b.20,0a b≥∴+-a b∴+≥只有当a=b时,等号成立.[数学认识]在a b+≥a、b均为正实数)中,若ab为定值k,则a b+≥只有当a=b时,a+b有最小值[解决问题](1)若0x >,149x x +有最小值为___,此时x=.(2)如图,已知直线1l :112y x =+与x 轴交于点A ,过点A 的另一直线2l 与双曲线8y x =-(x>0)相交于B (2,m ),若点C 为双曲线上任意一点,作CD//y 轴交直线1l 于式求当线段CD 最短时,△ACD面积.24.某蛋糕店出售网红“奶昔包”,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,当以40元每件出售时,每天可以卖300件,当以55元每件出售时,每天可以卖150件.(1)求y 与x 之间的函数关系式;(2)如果规定每天“奶昔包”的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该蛋糕店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试直接写出该“奶昔包”销售单价的范围.25.如图,抛物线y =12-x2+mx+m (m >0)的顶点为A ,交y 轴于点C .(1)求出点A 的坐标(用含m 的式子表示);(2)若直线y =﹣x +n 经过点A ,与抛物线交于另一点B ,证明:AB 的长是定值;(3)连接AC ,延长AC 交x 轴于点D ,作直线AD 关于x 轴对称的直线,与抛物线分别交于E 、F 两点.若∠ECF =90°,求m 的值.参考答案:1.C2.A3.B4.B5.C6.D7.B8.A9.D10.D11.B12.B 13.3214.2y 8x 20x 12=-++15.()22y x =+或244y x x =++;16.6417.3-18.﹣419.2820.83h ≥21.(1)12;(2)x >4;(3)4≤y≤622.(1)10700y x =-+;(2)当销售单价为50元时,每天获得的利润最大,最大值为4000元;(3)4852x ≤≤23.(1)43,16.(2)S △ACD=15.24.(1)y=-10x+700;(2)当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)当45≤x≤55时,捐款后每天剩余利润不低于3600元.25.(1)2,2m A m m ⎛⎫+ ⎪⎝⎭;(2)22;(3)。
第21章二次函数与反比例函数检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.如果反比例函数y的图象经过点,,则k的值是( )A.2B. C D.32.已知二次函数的图象如图所示,则对应a,k的符号正确的是()A. B.C. D.3.(2014·重庆中考)如图,反比例函数6yx=-在第二象限的图象上有两点A、B,它们的横坐标分别为-1、-3,直线AB与x轴交于点C,则△AOC的面积为()A.8B.10C.12D.244.(2012·兰州中考)在反比例函数y=(k<0)的图象上有两点(-1,y1),(14-,y2),则y1-y2的值是()A.负数B.非正数C.正数D.不能确定5.(2015·安徽中考)如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y =ax2+(b1)x+c的图象可能为()第2题图第3题图第5题图 A B C D6. (2015·天津中考)已知抛物线y=-+x+6与x 轴交于点A,点B ,与y 轴交于点C ,若D为AB 的中点,则CD 的长为( ) A.B.C.D.7. 如图,A 为反比例函数xk y =图象上一点,AB 垂直x 轴于点B ,若S △AOB =3,则k 的值为 ( ) A.6 B.3C.23D.不能确定8.已知M 、N 两点关于y 轴对称,且点M 在双曲线y =上,点N 在直线y =x +3上,设点M 的坐标为(a,b ),则二次函数y =-abx 2+(a +b )x ( )A.有最大值,最大值为B.有最大值,最大值为C.有最小值,最小值为D.有最小值,最小值为9.(2015·湖北孝感中考)如图 ,二次函数y ax 2+bx+c(a ≠0)的图象与x 轴交于A,B 两点,与y 轴交于点C ,且OA=OC.则下列结论: ①abc<0;②0;③ac-b+1 0;④OA ·OB=.其中正确结论的个数是( )第9题图A.4B.3C.2D.110.在函数xa y 12--=(a 为常数)的图象上有三点(-3,y 1),(-1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是( )A. 132y y y <<B. 123y y y <<C. 321y y y <<D. 213y y y <<二、填空题(每小题3分,共24分)11.点P 在反比例函数y =(k ≠0)的图象上,点Q (2,4)与点P 关于y 轴对称,则此反比例函数的关系式为 .12. 将抛物线3)3(22+-=x y 向右平移2个单位后,再向下平移5个单位,所得抛物线的顶点坐标为_______.13.试写出图象位于第二、四象限的一个反比例函数的关系式 .14.若反比例函数xk y 3-=的图象位于第一、三象限,正比例函数x k y )92(-=的图象过第二、四象限,则k 的整数值是________.15.抛物线 在 轴上截得的线段长度是 .16.设 、 、 三点依次分别是抛物线 与 轴的交点以及与 轴的两个交点,则△ 的面积是 .17.把二次函数y =(x -1)2+2的图象绕原点旋转180°后得到的图象的关系式为 .18.若M (2,2)和N (b ,-1-n 2)是反比例函数y =xk图象上的两点,则一次函数y =kx +b 的图象经过第 象限. 三、解答题(共46分)19.(6分)(2014·北京中考)在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (0, -2),B (3, 4).(1)求抛物线的表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A, B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.20.(6分)如图所示,一个运动员推铅球,铅球在点A 处出手,出手时球离地面约.铅球落地点在B 处,铅球运行中在运动员前4 m 处(即 m)达到最高点,最高点高3 m.已知铅球经过的路线是抛物线,根据图示的直角坐标系,你能算出该运动员的成绩吗? 21.(6分)(2015·贵州安顺中考)如图,在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与反比例函数y=的图象交于A (2,3)、B (-3,n )两点.第21题图(1)求一次函数和反比例函数的解析式;(2)若P 是y 轴上一点,且满足△PAB 的面积是5,直接写出OP 的长.B22.(7分)如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与反比例函数2ky x =(x )的图象分别交于点C 、D ,且点C 的坐标为(1-,2).(1)分别求出直线AB 及反比例函数的关 系式;(2)求出点D 的坐标;(3)利用图象直接写出:当x 在什么范围内取值时,1y >2y . 23.(7分)已知函数 的图象经过点(3,2). (1)求这个函数的关系式;(2)画出它的图象,并指出图象的顶点坐标; (3)当 时,求使得 ≥ 的 的取值范围.24.(7分)(2015•湖北襄阳中考)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式; (2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少? (3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6 000元的利润,那么超市每天至少销售粽子多少盒?25.(7分)(2015·山东青岛中考)如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用c bx x y ++-=261表示,且抛物线上的点C 到墙面OB 的水平距离为3 m ,到地面OA 的距离为217m. (1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离.(2)一辆货运汽车载一长方体集装箱后高为6 m ,宽为4 m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米?第25题图第21章 二次函数与反比例函数检测题参考答案一、选择题1.D 解析:把( , )代入得-2=,∴ k =3.2. D 解析:二次函数 的图象开口向上时 开口向下时 图象交于y 轴正半轴时 交于y 轴负半轴时3.C 解析: ∵ 点A 、B 都在反比例函数的图象上,∴ A (-1,6),B (-3,2).设直线AB 的表达式为0)y kx b k =+≠(,则6,23,k b k b =-+⎧⎨=-+⎩解得2,8,k b =⎧⎨=⎩∴ 直线AB 的表达式为28y x =+,∴ C (-4,0).在△AOC 中,OC =4,OC 边上的高(即点A 到x 轴的距离)为6,∴ △AOC 的面积14612.2=⨯⨯=在平面直角坐标系中求三角形的面积时,一般要将落在坐标轴上的一边作为底.4. A 解析:由题意知y 1=-k,y 2= 4k.∵ k <0,∴ y 1-y 2=-k-(-4k )=3k <0.5.A 解析:一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象有两个交点,且都在第一象限,可知一元二次方程ax 2+bx +c=x ,即ax 2+(b -1)x +c=0有两个不相等的正实数根,所以函数y =ax 2+(b -1)x +c 的图象与x 轴的正半轴有两个不同的交点,故选项A 符合题意.6. D 解析:令y=0,即-+x+6=0,解得 =-3, =12,所以A 、B 两点的坐标为(-3,0)、(12,0),所以点D 的横坐标为x== ,所以OD=(O 为坐标原点).因为抛物线与y 轴交于点C ,所以点C 的坐标为(0,6),所以OC=6.在Rt △COD 中,CD===.故选D.7.A 解析:设A 点的坐标为,k a a ⎛⎫⎪⎝⎭,则OB =a ,AB =k a ,则113,22AOBSOB AB k =⋅== 则k =6.8.B 解析:∵ 点M 的坐标为(a,b ),∴ 点N 的坐标为(-a,b ).∵ 点M 在双曲线y =12x 上,∴ ab =12. ∵ 点N (-a,b )在直线y =x +3上,∴ -a +3=b.∴ a +b =3.∴ 二次函数y =-abx 2+(a +b)x =12-x 2+3x =12-(x-3)2+92.∴ 二次函数y =-abx 2+(a +b)x 有最大值,最大值为92.9.B 解析:因为抛物线开口向下,与y 轴交于正半轴,对称轴x>0,且与x 轴有两个交点,所以a <0,b >0,c >0,24b ac ->0,所以abc<0,244b aca-<0,故①正确,②错误.因为OA=OC,所以点A 的坐标可表示为(-c,0),代入解析式得20ac bc c -+=,所以10ac b -+=,故③正确.10. D 解析:21a y x--=∵ 是反比例函数,且0)1(122<+-=--a a , ∴ 双曲线的图象在第二、四象限,在各个象限内,y 随x 的增大而增大.1 (3)y -∵,和2(1)y -,在第二象限,且-<-31,∴ 0<y 1<y 2. 又∵ 点(2,y 3)在第四象限,∴ y 3<0. 因此y 1,y 2,y 3的大小关系是y 3<y 1<y 2. 二、填空题11.y =解析:设点P (x,y ),∵ 点P 与点Q (2,4)关于y 轴对称,则P ( ,4), ∴ k xy 2×4=-8.∴ y =.12. (52)-,13. 答案不唯一,如解析:设反比例函数的关系式为y =,∵ 反比例函数的图象位于第二、四象限,∴ k <0,据此写出一个函数关系式即可,如k =-1,则.14.4 解析:由反比例函数xk y 3-=的图象位于第一、三象限,得 0,即 3.又正比例函数x k y )92(-=的图象过第二、四象限,所以 0,所以 92.所以 的整数值是4.15.4 解析:由 得 , ,所以抛物线在 轴上截得的线段长度是 .16. 解析:令 ,得 ( , ),令 ,得 , 所以 ,所以△ 的面积是21 21 . 17.y =-(x +1)2-2 解析:抛物线绕原点旋转180°后,开口方向与原抛物线开口方向相反,开口大小不变,顶点坐标变为( , ),∴ 旋转180°后得到的函数图象的关系式为y =-(x +1)2-2. 18.一、三、四 解析:把M (2,2)代入y =x k 得2=2k,解得k =4. 把N (b ,-1-n 2)代入y =x 4得-1-n 2=b 4,即﹣(1+n 2)=b4,∴ b <0,∴ y =kx +b 中,k =4>0,b <0,∴ 图象经过第一、三、四象限.三、解答题19.解:(1)∵ 22y x mx n =++经过点A(0,-2),B(3,4),代入得2,1834,n m n =-⎧⎨++=⎩∴ 4,2.m n =-⎧⎨=-⎩∴ 抛物线的表达式为224 2.y x x =--222242221214y x x x x x =--=--=--()(),∴ 其对称轴为直线x=-1.(2)由题意可知C (-3,-4),二次函数2242y x x =--的最小值为-4.第19题答图由图象可以看出D 点纵坐标最小值即为-4, 最大值即BC 与对称轴交点的纵坐标. 设直线BC 的函数表达式为y=kx +b,根据题意得34,34,k b k b +=⎧⎨-+=-⎩解得0,4,3b k =⎧⎪⎨=⎪⎩∴ 直线BC 的函数表达式为4.3y x = 当x=1时,4.3y =∴ 点D 纵坐标t 的取值范围是44.3t -≤≤20.解:能.∵ OC=4 m ,CD=3 m ,,∴ 顶点 的坐标为(4,3). 设 +3,把代入上式,得,∴,∴即. 令 ,得∴ (舍去),故该运动员的成绩为 .21.解:(1)∵ 反比例函数y=的图象经过点A (2,3), ∴ m=6.∴ 反比例函数的解析式是y=. ∵ 点B (-3,n )在反比例函数y=的图象上, ∴ n=-2.∴ B (-3,-2).∵ 一次函数y=kx+b 的图象经过A (2,3)、B (-3,-2)两点, ∴ , 解得 , ∴ 一次函数的解析式是y=x+1. (2)OP 的长为3或1.22.解:(1)将点C 坐标(1-,2)代入1y x m =+,得 ,所以13y x =+;将点C 坐标(1-,2)代入2k y x =,得 =- ,所以22y x=-. (2)联立方程组 ,x 2-,解得1,2x y =-⎧⎨=⎩或2,1.x y =-⎧⎨=⎩ 所以点D 坐标为(-2,1).(3)当1y >2y 时,一次函数图象在反比例函数图象上方,此时x 的取值范围是21x -<<-.23.解: (1)将点(3,2)代入 ,得 ,解得 .所以函数关系式为 .(2)图象如图所示,其顶点坐标为( , ).(3)当 时,由 ,解得 , .当 时,由图象可知当 时, ≥ .所以 的取值范围是 .24.解:(1)y=700-20(x-45)=-20x+1 600.(2)P=(x-40)(-20x+1 600)=-20 +2 400x-64 000=-20 +8 000. ∵ x ≥45,a=-20<0,∴ 当x=60时, 最大值=8 000(元).即当每盒售价定为60元时,每天销售的利润最大,最大利润为8 000元.(3)由题意,得-20 +8 000=6 000,解这个方程,得 =50, =70.∵ 抛物线P=-20 +8 000的开口向下,∴ 当50≤x ≤70时,每天销售粽子的利润不低于6 000元.又∵ x ≤58,∴ 50≤x ≤58.∵ 在y=-20x+1 600中,k=-20<0,∴ y 随x 的增大而减小.∴ 当x=58时, 最小值=-20×58+1 600=440.即超市每天至少销售粽子440盒.25.解:(1)由题意知,点17(0,4),3,2B C ⎛⎫ ⎪⎝⎭在抛物线上, 所以4,17193,26c b c ==-⨯++⎧⎪⎨⎪⎩解得24b c ==⎧⎨⎩, 所以抛物线的函数关系式是12246y x x =-++(0≤x ≤12).221442246610, 61011242466b ac b x D a a ⎛⎫⨯-⨯- ⎪-⎝⎭=-=-===⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭当时,所以顶点 的坐标为(,). 答:该抛物线的函数关系式为42612++-=x x y (0≤x ≤12),拱顶D 到地面OA 的距离为10 m.(2)由题意知,当车最外侧与地面OA 的交点为(2,0)(或(10,0)), 当)10(2==x x 或时,6322>=y ,所以可以通过. (3)令8=y ,即842612=++-x x , 可得024122=+-x x ,解得326,32621-=+=x x . 所以3421=-x x . 答:两排灯的水平距离最小是34 m.。
2023年秋沪科版九年级上册数学第21章《二次函数与反比例函数》单元测试题A .①③B .只有2.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最少的是( )A .甲B .乙3.已知二次函数y =ax 2+bx A .a =1,b =2B .4.如图,点是函数连接,,.若A .4A y =-AB CA CB AB5.如图,已知顶点为(﹣3,﹣6)的抛物线y =ax 2+bx +c 经过点(﹣1,﹣4),则下列结论中错误的是( )A .b 2>4acB .ax 2+bx +c ≥﹣6C .若点(﹣2,m ),(﹣5,n )在抛物线上,则m >nD .关于x 的一元二次方程ax 2+bx +c =﹣4的两根为﹣5和﹣16.如图,已知二次函数的图象如图所示,对于下列结论,其中正确结论的个数是( )①;②;③;④若m 为任意实数;则.A .1B .2C .3D .47.如图,正方形ABCD 的边长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A→B→C 和A→D→C 的路径向点C 运动,设运动时间为x (单位:s ),四边形PBDQ 的面积为y (单位:cm 2),则y 与x (0≤x≤8)之间函数关系可以用图象表示为()20y ax bx c a =++≠0abc >()220a c b +-=30a c +=26am bm b a +->-.....已知二次函数的图象如图所示,关于的方程,则下列选项正确的是(A .B .9.如图,在平面直角坐标系中,二次函数将该抛物线经过平移,使其顶点为A.C .10.二次函数的图像可以由二次函数A .先向左平移2个单位,再向上平移C .先向右平移2个单位,再向上平移二、填空题(共8小题,满分32分)2y ax bx =+x )β31αβ-<<<3-()21222y x =--+()2222y x =+-243y x x =++13.如图,过作共点,则k 的取值范围是14.如图,在平面直角坐标系中,平行四边形象上,B 点在x 轴的负半轴上,延长(2,1)C AC(1)求反比例函数的表达式;(2)求的面积(3)在反比例函数第一象限图象上是否存在一点的横坐标23.已知:在平面直角坐标系中,抛物线AOB V C参考答案:OP==2;。
二次函数与反比例函数测试卷
一、填空题(每题2分,共20分)
1、抛物线y =-2x 2
-1的对称轴是 ,顶点坐标是
2、把二次函数y=-2x 2+4x+3化成y=a (x+m )2
+k 的形式是 ,其开口方向向
3.如果函数2
2
(1)m
y m x -=-是反比例函数,那么m 的值是
.
4、抛物线y =-2x 2
-x+3与y 轴交点的坐标是 ,与x 轴的交点坐标是
5.在平面直角坐标系中,如果双曲线(0)k
y k x
=
≠经过点(21)-,,那么k = .
6、函数y=2x 2
的图象向左平移2个单位,再向上平移3个单位得到的函数关系式是
7.反比例函数k y x
=
图象上一点(P a 、)b ,且a 、b 是方程2
430m m -+=的两个根,则k = .
8.已知(-2,y 1),(-1,y 2),(3,y 3)是二次函数y=x 2
-4x+m 上的点,则y 1,y 2,y 3从小到大用 “<”排列是 .
9、若反比例函数1
y x
=-的图象上有两点1(1)A y ,,2(2)B y ,,则1y ______2y (填“>”或“=”或“<”).
10、已知抛物线c bx ax y ++=2
与抛物线1272
+--=x x y 的形状相同,顶点在直线
1=x ,且顶点到x 轴的距离为3,则此抛物线的解析式为 。
二、选择题(每题3分,共36分)
1、已知点(a ,8)在抛物线y=ax 2上,则a 的值为( ) A 、±2 B 、±22 C 、2 D 、-2 2.已知(1)a
y a x =-是反比例函数,则它的图象在(
)
A.第一,三象限; B.第二,四象限; C.第一,二象限; D.第三,四象限
3
、二次函数c bx ax y ++=2的图象如图(1( ) A a>0 b<0 c>0 B a<0 b<0 c>0
C a<0 b>0 c<0
D a<0 b>0 c>0
4、形状与抛物线22--=x y 相同,对称轴是x )
A 、342++=x x y
B 、342+--=x x y
C 、342++-=x x y
D 、342++=x x y 或342+--=x x y
5.某反比例函数的图象经过点(23)-,,则此函数图象也经过点( ) A .(23)-,
B .(33)--,
C .(23),
D .(46)-,
6.已知反比例函数y=
2
x
,下列结论中,不正确...的是( ) A .图象必经过点(1,2) B .y 随x 的增大而减少 C .图象在第一、三象限内
D .若1x >,则2y <
7、下列四个函数:
① (0);y kx k k =>为常数, ② (,0);y kx b k b k =+>为常数, ③ (0);k
y k k x
=
>为常数, ④)2,0(2)2(2<<+-=x a a x a y 为常数, 其中,函数y 的值随着x 值得增大而减少的是( ) A 、 ① B 、② C 、③ D 、④
8.如图,四个二次函数的图像中,分别对应的是①y = ax2;②y = bx2;③y = cx2; ④y =dx2.则a 、b 、c 、d 的大小关系为( )
A.a>b>c>d
B. a>b>d> c
C.b > a >c>d
D.b>a>d> c
9.在同一坐标系中,作22y x =+2、2
2y x =--1、2
12
y x =
的图象,则它们 ( ) A .都是关于y 轴对称 B .顶点都在原点 C .都是抛物线开口向上 D .以上都不对 10.一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系中的图像可能是 ( )
11.如图(2),过反比例函数2
(0)y x x
=
>的图象上任意两点A ,B 分别作x 轴的垂线,垂足为A ',B ',连接OA ,OB ,设AA '与OB 的交点为P ,AOP △与梯形PA B B
''的面积分别为1S ,2S ,比较它们的大小,可有(
A.12S S > B.12S S = C.12S S <
D.大小关系不能确定
12.二次函数c bx x y ++=2的图像向右平移3个单位,再向下平移2个单位,得到函数图像的解析式为122+-=x x y ,则b 与c 分别等于( )
A 、6、4
B 、-8、14
C 、4、6
D 、-8、-14
三、解答题 1、(3×5=15分)求满足下列条件的对应的函数的关系式。
(1)抛物线经过(4,0),(0,-4),和(-2,3)三点。
(2)抛物线与x 轴的交点横坐标为1和5,并且经过点(0,6)。
(3)已知反比例函数x
k y =的图象经过抛物线142
+-=x x y 的顶点, 求这个反比例函数的解析式.
2、(8分)在直角坐标平面内,二次函数图象的顶点为(1
4)A -,,且过点(30)B ,. (1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.
3.(8分)如图(3),已知一次函数y kx b =+的图象与反比例函数8
y x
=-
的图象交于A ,B 两点,且点A 的横坐标和B 点的纵坐标都是2-.求:
(1)一次函数解析式; (2)求AOB △的面积.
图(3)
4、(12分)如图(4),已知二次函数24y ax x c =-+的图像经过点A 和点B .
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
Q 均在该函数图像上(其中m >0),且这两点关于抛物线的对称Q 到x 轴的距离 图(4)
5、(8分)如图,矩形的长是4cm ,宽是3cm 。
如果将矩形的长和宽都增加cm x ,那么面积增加2cm y 。
①求y 与x 之间的函数关系式;
②求当边长增加多少时,面积增加82
cm 。
(1)以x 作为点的横坐标,p 作为纵坐标,把表中的
数据,在图(6)中的直角坐标系中描出相应的点,观察连结 各点所得的图形,判断p 与x 的函数关系式; (
2)如果这种运动服的买入件为每件40元,试求销售
利润y (元)与卖出价格x (元/件)的函数关系式 (销售利润=销售收入-买入支出);
(3)在(2
x
附加题
1、(10分)二次函数62
5
412+-=
x x y 的图象与x 轴从左到右两个交点依次为A 、B ,与y 轴交于点C ,
(1)求A 、B 、C 三点的坐标;
(2)如果P(x ,y)是抛物线AC 之间的动点,O 为坐标原点,试求△POA 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;
(3)是否存在这样的点P ,使得PO=PA ,若存在,求出点P 的坐标;若不存在,说明理由。