北京2019高三数学文分类汇编(主城区一模及上年末)专项10:概率.doc
- 格式:doc
- 大小:871.09 KB
- 文档页数:16
高考数学精品复习资料2019.5北京市部分区高三上学期考试数学理试题分类汇编统计与概率一、选择、填空题1、(朝阳区高三上学期期末)某校高三(1)班32名学生全部参加跳远和掷实心球两项体育测试.跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩都不合格的有3人,则这两项成绩都合格的人数是A .23 B . 20 C . 21 D .192、(西城区高三上学期期末)10名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序.比赛结束后,10名选手的得分各不相同,且第二名的得分是最后五名选手得分之和的45.则第二名选手的得分是____.3、(北京市高三春季普通高中会考)某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为( ) A .120 B .40 C.30 D .204、(北京市高三春季普通高中会考)在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介绍一年中时令、气候、物候等方面的变化规律,那么甲同学被选中的概率为( ) A . 1 B .13 C. 12 D .235、(北京市高三春季普通高中会考)甲乙两名篮球运动员在4场比赛中的得分情况如图所示.12,v v 分别表示甲、乙二人的平均得分,12,s s 分别表示甲、乙二人得分的方差,那么1v 和2v ,1s 和2s 的大小关系是( )A .1212v v s s >>,B .1212v v s s <>, C. 1212v v s s ><, D .1212v v s s <<,二、解答题1、(昌平区高三上学期期末)A 、B 两个班共有65名学生,为调查他们的引体向上锻炼情况,通过分层抽样获得了部分学生引体向上的测试数据(单位:个),用茎叶图记录如下:10198531956775B 班A 班(I ) 试估计B 班的学生人数;(II ) 从A 班和B 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,B 班选出的人记为乙,假设所有学生的测试相对独立,比较甲、乙两人的测试数据得到随机变量ξ.规定: 当甲的测试数据比乙的测试数据低时,记1ξ=-, 当甲的测试数据与乙的测试数据相等时,记0ξ=, 当甲的测试数据比乙的测试数据高时,记1ξ=. 求随机变量ξ的分布列及期望.(III )再.从A 、B 两个班中各随机抽取一名学生,他们引体向上的测试数据分别是10,8(单位:个),这2个新数据与表格中的数据构成的新样本的平均数记1μ,表格中数据的平均数记为0μ,试判断0μ和1μ的大小(结论不要求证明).2、(朝阳区高三上学期期末)甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84乙:92 95 80 75 83 80 90 85(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同学参加较为合适?并说明理由;(Ⅲ)若对甲同学在今后的3次测试成绩进行预测,记这3次成绩中高于80分的次数为ξ(将甲8次成绩中高于80分的频率视为概率),求ξ的分布列及数学期望Eξ.3、(丰台区高三上学期期末)数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如下表所示:为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.4、(海淀区高三上学期期末)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一周期......,下表为该水站连续十二周(共三个周期)的诚信度数据统计:第一周第二周第三周第四周第一个周期95% 98% 92% 88%第二个周期94% 94% 83% 80%第三个周期85% 92% 95% 96%(Ⅰ)计算表中十二周“水站诚信度”的平均数x;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.5、(石景山区高三上学期期末)2016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿.微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18-36岁之间.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:(Ⅰ)求a,b,c的值;(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市.....大学生中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX.6、(通州区高三上学期期末)某小组共10人,利用假期参加义工活动.已知参加义工活动的次数与相对应的人数的对应关系如下表:现从这10人中随机选出2人作为该组代表在活动总结会上发言.(Ⅰ)设A为事件“选出的2人参加义工活动次数之和为6”,求事件A发生的概率;(Ⅱ)设X为选出的2人参加义工活动次数之和,求随机变量X的分布列和数学期望. 7、(西城区高三上学期期末)手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间.为了解A,B两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A,B两个型号的手机各7台,在相同条件下进行测试,统计结果如下:其中,a,b是正整数,且a b<.(Ⅰ)该卖场有56台A型手机,试估计其中待机时间不少于123小时的台数;(Ⅱ)从A型号被测试的7台手机中随机抽取4台,记待机时间大于123小时的台数为X,求X的分布列;(Ⅲ)设A,B两个型号被测试手机待机时间的平均值相等,当B型号被测试手机待机时间的方差最小时,写出a,b的值(结论不要求证明).8、(北京昌平临川育人学校高三上学期期末)某赛季甲乙两名篮球运动员每场比赛得分的原始记录如下:甲运动员得分:30,27,9,14,33,25,21,12,36,23,乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39(1)根据两组数据完成甲乙运动员得分的茎叶图,并通过茎叶图比较两名运动员成绩的平均值及稳定程度;(不要求计算出具体数值,给出结论即可)(2)若从甲运动员的十次比赛的得分中选出2个得分,记选出的得分超过23分的个数为ξ,求ξ的分布列和数学期望.参考答案一、选择、填空题1、B2、163、B4、D5、C二、解答题1、解:(Ⅰ)由题意可知,抽出的13名学生中,来自B班的学生有7名.根据分层抽样方法,B班的学生人数估计为7653513⨯=(人) (3)分(Ⅱ)122(1)677Pξ=-==⨯;42(0)6721Pξ===⨯;13(1)1(1)(0)21P P Pξξξ==-=--==则ξ的概率分布为:101721213E ξ=-⨯+⨯+⨯= . ……………11分(Ⅲ)10μμ>. ……………13分 2、解:(Ⅰ)作出茎叶图如下:…………………………………4分(Ⅱ)派甲参赛比较合适.理由如下:()1x 70280490289124835858=⨯+⨯+⨯++++++++=甲, ()1x 70180490350035025858=⨯+⨯+⨯++++++++=乙,()()()()()2222221s 788579858185828584858⎡=-+-+-+-+-+⎣甲()()()22288859385958535.5⎤-+-+-=⎦,()()()()()2222221s 758580858085838585858⎡=-+-+-+-+-+⎣乙 ()()()22290859285958541.⎤-+-+-=⎦因为 x =甲x 乙,22s s <乙甲,所以,甲的成绩较稳定,派甲参赛比较合适. …………………………8分注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样给分.如 派乙参赛比较合适.理由如下:从统计的角度看,甲获得85分以上(含85分)的频率为138f =,乙获得85分以上(含85分)的频率为24182f ==. 因为21f f >,所以派乙参赛比较合适.(Ⅲ)记“甲同学在一次数学竞赛中成绩高于80分”为事件A ,()63A 84P ==. ……………………………………………………… 9分随机变量ξ的可能取值为0,1,2,3,且3(3,)4ξB ∼.∴()3331C 44kkk P k ξ-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,k 0,1,2,3=.所以变量的分布列为:11分19272790123646464644Eξ=⨯+⨯+⨯+⨯=. (或393.44nP Eξ==⨯=)………………………………………………13分 3、解:(Ⅰ)由题意知,四所中学报名参加数独比赛的学生总人数为100名,抽取的样本容量与总体个数的比值为30310010=, 所以甲、乙、丙、丁四所中学各抽取的学生人数分别为9,12,6,3. (3)分(Ⅱ)设“从30名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件A ,从30名学生中随机抽取两名学生的取法共有230435C =种, ………………5分来自同一所中学的取法共有222291263120C C C C +++=. ………………7分所以1208()43529P A ==. 答:从30名学生中随机抽取两名学生来自同一所中学的概率为829. ………………8分 (Ⅲ)由(Ⅰ)知,30名学生中,来自甲、丙两所中学的学生人数分别为9,6.依题意得,X 的可能取值为0,1,2, ………………9分262151(0)7C P X C === ,119621518(1)35C C P X C === ,2921512(2)35C P X C ===. ……………12分所以的分布列为:……………….14分4、解:(Ⅰ)十二周“水站诚信度”的平均数为x=95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X==⨯⨯=32112112314(1)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X==⨯⨯=随机变量X的分布列为X0 1 2 3P 1327321532932171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分) 情况四:结论:第二次主题活动效果好于第一次主题活动.(1分) 理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化) 情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分) 情况六: 以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”. 给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.②以下情况不得分. 情况七: 结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的. 例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.5、解:(Ⅰ)030305100a ++++=解得35a =,5110020b ==,35710020c ==.…………………3分 (Ⅱ)记“2人中恰有1人微信群个数超过15个”为事件A ,则114060210016()33C C P A C ==. 所以,2人中恰有1人微信群个数超过15个的概率为1633. ……………7分 (Ⅲ)依题意可知,微信群个数超过15个的概率为25P =. X 的所有可能取值0,1,2,3. ……………8分则()033270()(1)2255125P X C ==-=,()1123541()(1)2255125P X C ==-=, ()2213362()(1)2255125P X C ==-=,()333083()(22551)125P X C ==-=.其分布列如下:所以,01231251251251255EX =⨯+⨯+⨯+⨯=.……………13分 6、解: (Ⅰ)从这10人中随机选出2人的基本事件个数为:21045C =个,设选出的2人参加义工活动次数之和为事件A ,设选出的2人中1人参加2次另一人参加4次为事件M , 设选出的2人均参加3次为事件N .事件M 所含基本事件的个数为11414C C ⋅=个,事件N 所含基本事件的个数为246C =个,根据古典概型可知,4()=45P M ,6()=45P N因为M 和N 互斥事件,且A =M +N 所以102()=()()()459P A P M N P M P N +=+== ……………….6分 另:直接计算事件A 的基本事件个数,利用古典概型计算也可。
[学生用书P273(单独成册)]一、选择题1.设事件A ,B ,已知P (A )=15,P (B )=13,P (A ∪B )=815,则A ,B 之间的关系一定为( )A .两个任意事件B .互斥事件C .非互斥事件D .对立事件解析:选B .因为P (A )+P (B )=15+13=815=P (A ∪B ),所以A ,B 之间的关系一定为互斥事件.故选B .2.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.08解析:选C .记抽检的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而所求概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.3.从3个红球、2个白球中随机取出2个球,则取出的2个球不全是红球的概率是( ) A .110B .310C .710D .35解析:选C .“取出的2个球全是红球”记为事件A ,则P (A )=310.因为“取出的2个球不全是红球”为事件A 的对立事件,所以其概率为P (A )=1-P (A )=1-310=710.4.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为9元,被随机分配为1.49元,1.31元,2.19 元,3.40元,0.61元,共5份,供甲、乙等5人抢,每人只能抢一次, 则甲、乙二人抢到的金额之和不低于4元的概率是( )A .12B .25C .34D .56解析:选B .设事件A 为“甲、乙二人抢到的金额之和不低于4元”,甲、乙两人抢到红包的所有结果为{1.49,1.31},{1.49,2.19},{1.49,3.40},{1.49,0.61},{1.31,2.19},{1.31,3.40},{1.31,0.61},{2.19,3.40},{2.19,0.61},{3.40,0.61},共10种情况.其中事件A 的结果一共有4种情况,根据古典概型概率计算公式,得P (A )=410=25,即甲、乙二人抢到的金额之和不低于4元的概率是25.故选B .5.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为( ) A .15B .25C .16D .18解析:选B .如图,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率P =615=25.6.已知集合M ={1,2,3,4},N ={(a ,b )|a ∈M ,b ∈M },A 是集合N 中任意一点,O 为坐标原点,则直线OA 与y =x 2+1有交点的概率是( )A .12B .13C .14D .18解析:选C .易知过点(0,0)与y =x 2+1相切的直线为y =2x (斜率小于0的无需考虑),集合N 中共有16个元素,其中使OA 斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,由古典概型知概率为416=14.二、填空题7.某城市2017年的空气质量状况如下表所示:轻微污染,则该城市2017年空气质量达到良或优的概率为________.解析:由题意可知2017年空气质量达到良或优的概率为P =110+16+13=35.答案:358.口袋内装有一些除颜色不同之外其他均相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,若红球有21个,则黑球有________个.解析:摸到黑球的概率为1-0.42-0.28=0.3.设黑球有n 个,则0.4221=0.3n ,故n =15.答案:159.从2名男生和2名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生,星期日安排一名女生的概率为________.解析:将2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1,A 2A 1共12种情况,而星期六安排一名男生,星期日安排一名女生共有A 1B 1,A 1B 2,A 2B 1,A 2B 2这4种情况,则其发生的概率为412=13.答案:1310.现有7名数理化成绩优秀者,分别用A 1,A 2,A 3,B 1,B 2,C 1,C 2表示,其中A 1,A 2,A 3的数学成绩优秀,B 1,B 2的物理成绩优秀,C 1,C 2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则A 1和B 1不全被选中的概率为________.解析:从这7人中选出数学、物理、化学成绩优秀者各1名,所有可能的结果组成的12个基本事件为:(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2).设“A 1和B 1不全被选中”为事件N ,则其对立事件N -表示“A 1和B 1全被选中”,由于N -={(A 1,B 1,C 1),(A 1,B 1,C 2)},所以P (N -)=212=16,由对立事件的概率计算公式得P (N )=1-P (N -)=1-16=56.答案:56三、解答题11.如图,从A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(1)试估计(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人), 所以用频率估计相应的概率为44÷100=0.44. (2)选择L 1的有60人,选择L 2的有40人,故由调查结果得频率为(3)设A 1,A 2121,B 2L 1和L 2时,在50分钟内赶到火车站.由(2)知P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5,因为P (A 1)>P (A 2),所以甲应选择L 1 . 同理,P (B 1)=0.1+0.2+0.3+0.2=0.8, P (B 2)=0.1+0.4+0.4=0.9, 因为P (B 1)<P (B 2),所以乙应选择L 2.12.根据我国颁布的《环境空气质量指数(AQI)技术规定》:空气质量指数划分为0~50、51~100、101~150、151~200、201~300和大于300六级,对应空气质量指数的六个级别,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数小于等于150时,可以进行户外运动;空气质量指数为151及以上时,不适合进行旅游等户外活动,下表是济南市2017年10月上旬的空气质量指数情况:(1)(2)一外地游客在10月上旬来济南旅游,想连续游玩两天,求适合连续旅游两天的概率. 解:(1)该试验的基本事件空间Ω={1,2,3,4,5,6,7,8,9,10},基本事件总数n =10. 设事件A 为“市民不适合进行户外活动”,则A ={3,4,9,10},包含基本事件数m =4.所以P (A )=410=25, 即10月上旬市民不适合进行户外活动的概率为25.(2)该试验的基本事件空间Ω={(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10)},基本事件总数n =9,设事件B 为“适合连续旅游两天的日期”,则B ={(1,2),(5,6),(6,7),(7,8)},包含基本事件数m =4, 所以P (B )=49,所以适合连续旅游两天的概率为49.1.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.2.以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法,目前,国内青蒿人工种植发展迅速,调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x ,y ,z ,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x +y +z 评定人工种植的青蒿的长势等级:若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级.为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10个青蒿人工种植地,得到如下结果:(2)从长势等级为一级的青蒿人工种植地中随机抽取2个,求这2个人工种植地的综合指标ω均为4的概率.解:(1)计算10个青蒿人工种植地的综合指标,可得下表:编号A1A2A3A4A5A6A7A8A9A10综合指标1446245353由上表可知,长势等级为三级的种植地只有A1一个,其频率为110,用样本的频率估计总体的频率,可估计这些种植地中长势等级为三级的个数约为180×110=18.(2)由(1)可知,长势等级是一级的青蒿人工种植地有A2,A3,A4,A6,A7,A9,共6个,从中随机抽取2个,所有的可能结果为(A2,A3),(A2,A4),(A2,A6),(A2,A7),(A2,A9),(A3,A4),(A3,A6),(A3,A7),(A3,A9),(A4,A6),(A4,A7),(A4,A9),(A6,A7),(A6,A9),(A7,A9),共计15个,综合指标ω=4的有A2,A3,A6,共3个,则符合题意的可能结果为(A2,A3),(A2,A6),(A3,A6),共3个,故所求概率P=315=1 5.。
北京市高考数学一模试卷(文科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<3},集合B={x|x2>4},则集合A∩B等于()A.{x|2<x<3} B.{x|x>1} C.{x|1<x<2} D.{x|x>2}2.圆心为(0,1)且与直线y=2相切的圆的方程为()A.(x﹣1)2+y2=1 B.(x+1)2+y2=1 C.x2+(y﹣1)2=1 D.x2+(y+1)2=13.执行如图所示的程序框图,输出的x的值为()A.4 B.3 C.2 D.14.若实数a,b满足a>0,b>0,则“a>b”是“a+lna>b+lnb”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为()A.B.C.D.36.在△ABC上,点D满足,则()A.点D不在直线BC上B.点D在BC的延长线上C.点D在线段BC上D.点D在CB的延长线上7.若函数的值域为[﹣1,1],则实数a的取值范围是()A.[1,+∞) B.(﹣∞,﹣1] C.(0,1] D.(﹣1,0)8.如图,在公路MN两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数z=a(1+i)﹣2为纯虚数,则实数a= .10.已知等比数列{a n}中,a2a4=a5,a4=8,则公比q= ,其前4项和S4= .11.若抛物线y2=2px的准线经过双曲线的左焦点,则实数p= .12.若x,y满足则的最大值是.13.已知函数f(x)=sinωx(ω>0),若函数y=f(x+a)(a>0)的部分图象如图所示,则ω=,a的最小值是.14.阅读下列材料,回答后面问题:在2014年12月30日CCTV13播出的“新闻直播间”节目中,主持人说:“…加入此次亚航失联航班QZ8501被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为,你的理由是.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{a n}满足a1+a2=6,a2+a3=10.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n+a n+1}的前n项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a,b两种“共享单车”(以下简称a型车,b型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a型车,3人租到b型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a型车的用户中,在第4个月有60%的用户仍租a型车.,b两种车型的用户比例为1:1,根据表格提供的信息,估计4月该地区租用两种车型的用户比例.17.在△ABC中,A=2B.(Ⅰ)求证:a=2bcosB;(Ⅱ)若b=2,c=4,求B的值.18.在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别是PB,PD的中点.(Ⅰ)求证:PB∥平面FAC;(Ⅱ)求三棱锥P﹣EAD的体积;(Ⅲ)求证:平面EAD⊥平面FAC.19.已知椭圆C:=1(a>b>0)的左、右顶点分别为A,B,且|AB|=4,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设点Q(4,0),若点P在直线x=4上,直线BP与椭圆交于另一点M.判断是否存在点P,使得四边形APQM为梯形?若存在,求出点P的坐标;若不存在,说明理由.20.已知函数f(x)=e x﹣x2+ax,曲线y=f(x)在点(0,f(0))处的切线与x 轴平行.(Ⅰ)求a的值;(Ⅱ)若g(x)=e x﹣2x﹣1,求函数g(x)的最小值;(Ⅲ)求证:存在c<0,当x>c时,f(x)>0.参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<3},集合B={x|x2>4},则集合A∩B等于()A.{x|2<x<3} B.{x|x>1} C.{x|1<x<2} D.{x|x>2}【考点】交集及其运算.【分析】解不等式求出集合B,根据交集的定义写出A∩B.【解答】解:集合A={x|1<x<3},集合B={x|x2>4}={x|x<﹣2或x>2},则集合A∩B={x|2<x<3}.故选:A.2.圆心为(0,1)且与直线y=2相切的圆的方程为()A.(x﹣1)2+y2=1 B.(x+1)2+y2=1 C.x2+(y﹣1)2=1 D.x2+(y+1)2=1【考点】直线与圆的位置关系.【分析】根据题意设圆方程为x2+(y﹣1)2=r2,由圆心到直线的距离得到半径r,代入即可得到所求圆的方程【解答】解:设圆方程为x2+(y﹣1)2=r2,∵直线y=2与圆相切,∴圆心到直线的距离等于半径r,∴r=1故圆的方程为:x2+(y﹣1)2=1,故选:C3.执行如图所示的程序框图,输出的x的值为()A.4 B.3 C.2 D.1【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量x 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=0,y=5不满足条件=,执行循环体,x=1,y=4不满足条件=,执行循环体,x=2,y=2满足条件=,退出循环,输出x的值为2.故选:C.4.若实数a,b满足a>0,b>0,则“a>b”是“a+lna>b+lnb”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】据a,b的范围结合函数的单调性确定充分条件,还是必要条件即可.【解答】解:设f(x)=x+lnx,显然f(x)在(0,+∞)上单调递增,∵a>b,∴f(a)>f(b),∴a+lna>b+lnb,故充分性成立,∵a+lna>b+lnb”,∴f(a)>f(b),∴a>b,故必要性成立,故“a>b”是“a+lna>b+lnb”的充要条件,故选:C5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为()A.B.C.D.3【考点】由三视图求面积、体积.【分析】将该几何体放入在长方体中,且长、宽、高为2、1、1,该三棱锥中最长棱为长方体的一条对角线,即可得出结论.【解答】解:将该几何体放入在长方体中,且长、宽、高为2、1、1,该三棱锥中最长棱为长方体的一条对角线,长度为=,故选B.6.在△ABC上,点D满足,则()A.点D不在直线BC上B.点D在BC的延长线上C.点D在线段BC上D.点D在CB的延长线上【考点】向量的三角形法则.【分析】据条件,容易得出,可作出图形,并作,并连接AD′,这样便可说明点D和点D′重合,从而得出点D在CB的延长线上.【解答】解:==;如图,作,连接AD′,则:=;∴D′和D重合;∴点D在CB的延长线上.故选D.7.若函数的值域为[﹣1,1],则实数a的取值范围是()A.[1,+∞) B.(﹣∞,﹣1] C.(0,1] D.(﹣1,0)【考点】分段函数的应用.【分析】根据函数f(x)的解析式,讨论x≤a和x>a时,f(x)∈[﹣1,1],即可求出a的取值范围.【解答】解:函数的值域为[﹣1,1],当x≤a时,f(x)=cosx∈[﹣1,1],满足题意;当x>a时,f(x)=∈[﹣1,1],应满足0<≤1,解得x≥1;∴a的取值范围是[1,+∞).故选:A.8.如图,在公路MN两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③【考点】进行简单的合情推理.【分析】根据最优化问题,即可判断出正确答案.【解答】解:因为A、D、E点各有一个工厂相连,B,C,各有两个工厂相连,把工厂看作“人”.可简化为“A,B,C,D,E处分别站着1,2,2,1,1个人(如图),求一点,使所有人走到这一点的距离和最小”.把人尽量靠拢,显然把人聚到B、C最合适,靠拢完的结果变成了B=4,C=3,最好是移动3个人而不要移动4个人.所以车站设在C点,且与各段小公路的长度无关故选C.二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数z=a(1+i)﹣2为纯虚数,则实数a= 2 .【考点】复数代数形式的乘除运算.【分析】利用纯虚数的定义即可得出.【解答】解:复数z=a(1+i)﹣2=a﹣2+ai为纯虚数,∴a﹣2=0,a≠0,则实数a=2故答案为:2.10.已知等比数列{a n}中,a2a4=a5,a4=8,则公比q= 2 ,其前4项和S4= 15 .【考点】等比数列的前n项和;等比数列的通项公式.【分析】设等比数列{a n}的公比为q,由a2a4=a5,a4=8,可得q2=a2q3,=8,解得a2,q,利用求和公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵a2a4=a5,a4=8,∴q2=a2q3,=8,解得a2=q=2.∴a1=1.其前4项和S4==15.故答案为:2,15.11.若抛物线y2=2px的准线经过双曲线的左焦点,则实数p= 4 .【考点】抛物线的简单性质.【分析】求出抛物线的准线x=﹣经过双曲线的右焦点(﹣2,0),即可求出p.【解答】解:因为抛物线y2=2px的准线经过双曲线的左焦点,∴p>0,所以抛物线的准线为x=﹣,依题意,直线x=﹣经过双曲线的右焦点(﹣2,0),所以p=4故答案为:4.12.若x,y满足则的最大值是.【考点】简单线性规划.【分析】根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值.【解答】解:满足约束条件的可行域如下图中阴影部分所示:则的几何意义表示平面区域内的点与点(0,0)的斜率的最大值,由解得A(1,)显然过A时,斜率最大,最大值是,故答案为:.13.已知函数f(x)=sinωx(ω>0),若函数y=f(x+a)(a>0)的部分图象如图所示,则ω= 2 ,a的最小值是.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】首先由图象最高点横坐标与零点的距离求函数的周期,从而由周期公式求ω,然后由图象过的已知点求出a.【解答】解:由已知函数图象得到π,所以T=π,所以=2,又y=f(x+a))=sinω(x+a)且(,1)在图象上,所以sin2(+a)=1,所以+2a=2kπ,k∈Z,所以k取0时a的最小值为;故答案为:2;.14.阅读下列材料,回答后面问题:在2014年12月30日CCTV13播出的“新闻直播间”节目中,主持人说:“…加入此次亚航失联航班QZ8501被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为①,你的理由是数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.【考点】收集数据的方法.【分析】根据题意,利用数据的收集,分类,归纳,分析可得结论【解答】解:选①,理由为:数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.故答案为:①;数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{a n}满足a1+a2=6,a2+a3=10.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n+a n+1}的前n项和.【考点】数列的求和;数列递推式.【分析】(I)利用等差数列的通项公式即可得出.(II)利用等差数列的通项公式与求和公式即可得出.【解答】解:(Ⅰ)设数列{a n}的公差为d,因为a1+a2=6,a2+a3=10,所以a3﹣a1=4,所以2d=4,d=2.又a1+a1+d=6,所以a1=2,所以a n=a1+(n﹣1)d=2n.(Ⅱ)记b n=a n+a n+1,所以b n=2n+2(n+1)=4n+2,又b n+1﹣b n=4(n+1)+2﹣4n﹣2=4,所以{b n}是首项为6,公差为4的等差数列,其前n项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a,b两种“共享单车”(以下简称a型车,b型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a型车,3人租到b型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a型车的用户中,在第4个月有60%的用户仍租a型车.,b两种车型的用户比例为1:1,根据表格提供的信息,估计4月该地区租用两种车型的用户比例.【考点】列举法计算基本事件数及事件发生的概率.【分析】(Ⅰ)依题意租到a型车的4人为A1,A2,A3,A4;租到b型车的3人为B1,B2,B3;设事件A为“7人中抽到2人,至少有一人租到a型车”,则事件为“7人中抽到2人都租到b型车”.利用列举法能求出抽取的2人中至少有一人在市场体验过程中租到a型车的概率.(Ⅱ)依题意,市场4月份租用a型车的比例为50%60%+50%50%=55%,租用b 型车的比例为50%40%+50%50%=45%,由此能同市场4月租用a,b型车的用户比例.【解答】解:(Ⅰ)依题意租到a型车的4人为A1,A2,A3,A4;租到b型车的3人为B1,B2,B3;设事件A为“7人中抽到2人,至少有一人租到a型车”,则事件为“7人中抽到2人都租到b型车”.如下列表格所示:从7人中抽出2人共有21种情况,事件发生共有3种情况,所以事件A概率.(Ⅱ)依题意,市场4月份租用a型车的比例为50%60%+50%50%=55%,租用b型车的比例为50%40%+50%50%=45%,所以市场4月租用a,b型车的用户比例为.17.在△ABC中,A=2B.(Ⅰ)求证:a=2bcosB;(Ⅱ)若b=2,c=4,求B的值.【考点】余弦定理的应用.【分析】(Ⅰ)由正弦定理,得,即可证明:a=2bcosB;(Ⅱ)若b=2,c=4,利用余弦定理,即可求B的值.【解答】(Ⅰ)证明:因为A=2B,所以由正弦定理,得,得,所以a=2bcosB.(Ⅱ)解:由余弦定理,a2=b2+c2﹣2bccosA,因为b=2,c=4,A=2B,所以16cos2B=4+16﹣16cos2B,所以,因为A+B=2B+B<π,所以,所以,所以.18.在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别是PB,PD的中点.(Ⅰ)求证:PB∥平面FAC;(Ⅱ)求三棱锥P﹣EAD的体积;(Ⅲ)求证:平面EAD⊥平面FAC.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(Ⅰ)连接BD,与AC交于点O,连接OF,推导出OF∥PB,由此能证明PB∥平面FAC.(Ⅱ)由PA⊥平面ABCD,知PA为棱锥P﹣ABD的高.由S△PAE=S△ABE,知,由此能求出结果.(Ⅲ)推导出AD⊥PB,AE⊥PB,从而PB⊥平面EAD,进而OF⊥平面EAD,由此能证明平面EAD⊥平面FAC.【解答】证明:(Ⅰ)连接BD,与AC交于点O,连接OF,在△PBD中,O,F分别是BD,PD的中点,所以OF∥PB,又因为OF⊂平面FAC,PB⊄平面FAC,所以PB∥平面FAC.解:(Ⅱ)因为PA⊥平面ABCD,所以PA为棱锥P﹣ABD的高.因为PA=AB=2,底面ABCD是正方形,所以=,因为E为PB中点,所以S△PAE=S△ABE,所以.证明:(Ⅲ)因为AD⊥平面PAB,PB⊂平面PAB,所以AD⊥PB,在等腰直角△PAB中,AE⊥PB,又AE∩AD=A,AE⊂平面EAD,AD⊂平面EAD,所以PB⊥平面EAD,又OF∥PB,所以OF⊥平面EAD,又OF⊂平面FAC,所以平面EAD⊥平面FAC.19.已知椭圆C:=1(a>b>0)的左、右顶点分别为A,B,且|AB|=4,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设点Q(4,0),若点P在直线x=4上,直线BP与椭圆交于另一点M.判断是否存在点P,使得四边形APQM为梯形?若存在,求出点P的坐标;若不存在,说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由|AB|=4,得a=2.又,b2=a2﹣c2,联立解出即可得出.(Ⅱ)假设存在点P,使得四边形APQM为梯形.由题意知,显然AM,PQ不平行,可得AP∥MQ,,.设点M(x1,y1),P(4,t),过点M作MH⊥AB于H,可得,解得x1,代入椭圆方程,即可得出.【解答】解:(Ⅰ)由|AB|=4,得a=2.又因为,所以c=1,所以b2=a2﹣c2=3,所以椭圆C的方程为.(Ⅱ)假设存在点P,使得四边形APQM为梯形.由题意知,显然AM,PQ不平行,所以AP∥MQ,所以,所以.设点M(x1,y1),P(4,t),过点M作MH⊥AB于H,则有,所以|BH|=1,所以H(1,0),所以x1=1,代入椭圆方程,求得,所以P(4,±3).20.已知函数f(x)=e x﹣x2+ax,曲线y=f(x)在点(0,f(0))处的切线与x 轴平行.(Ⅰ)求a的值;(Ⅱ)若g(x)=e x﹣2x﹣1,求函数g(x)的最小值;(Ⅲ)求证:存在c<0,当x>c时,f(x)>0.【考点】利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求得f(x)的导数,可得切线的斜率,由条件可得a的方程,解方程可得a的值;(Ⅱ)求出g(x)的导数,可得单调区间和极值,且为最值;(Ⅲ)显然g(x)=f'(x),且g(0)=0,运用零点存在定理可得g(x)的零点范围,可设g(x)=f'(x)存在两个零点,分别为0,x0.讨论x<0时,0<x<x0时,x>x0时,g(x)的符号,可得f(x)的极值,进而得到f(x)在(﹣∞,0)上单调递增,即可得证.【解答】解:(Ⅰ)函数f(x)=e x﹣x2+ax的导数为:f′(x)=e x﹣2x+a,由已知可得f′(0)=0,所以1+a=0,得a=﹣1.(Ⅱ)g'(x)=e x﹣2,令g'(x)=0,得x=ln2,所以x,g'(x),g(x)的变化情况如表所示:.(Ⅲ)证明:显然g(x)=f'(x),且g(0)=0,由(Ⅱ)知,g(x)在(﹣∞,ln2)上单调递减,在(ln2,+∞)上单调递增.又g(ln2)<0,g(2)=e2﹣5>0,由零点存在性定理,存在唯一实数x0∈(ln2,2),满足g(x0)=0,即,,综上,g(x)=f'(x)存在两个零点,分别为0,x0.所以x<0时,g(x)>0,即f'(x)>0,f(x)在(﹣∞,0)上单调递增;0<x<x0时,g(x)<0,即f'(x)<0,f(x)在(0,x0)上单调递减;x>x0时,g(x)>0,即f'(x)>0,f(x)在(x0,+∞)上单调递增,所以f(0)是极大值,f(x0)是极小值,,因为g(1)=e﹣3<0,,所以,所以f(x0)>0,因此x≥0时,f(x)>0.因为f(0)=1且f(x)在(﹣∞,0)上单调递增,所以一定存在c<0满足f(c)>0,所以存在c<0,当x>c时,f(x)>0.。
【海淀】17.(本小题满分14分)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X 表示学生的考核成绩,并规定85X ≥为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率; (Ⅱ)从图中考核成绩满足[80,89]X ∈的学生中任取2人,求至少有一人考核优秀的概率; (Ⅲ)记()P a X b ≤≤表示学生的考核成绩在区间[,]a b 的概率,根据以往培训数据,规定当85(1)0.510X P -≤≥时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.17.解:(Ⅰ)设这名学生考核优秀为事件A由茎叶图中的数据可以知道,30名同学中,有7名同学考核优秀所以所求概率()P A 约为730(Ⅱ)设从图中考核成绩满足[80,89]X ∈的学生中任取 2人,至少有一人考核成绩优秀为事件B因为表中成绩在[80,89]的6人中有2个人考核为优所以基本事件空间Ω包含15个基本事件,事件B 包含9个基本事件所以93()155P B == (Ⅲ)根据表格中的数据,满足85110X -≤的成绩有16个, 所以8516810.5103015X P ⎛⎫-≤==>⎪⎝⎭所以可以认为此次冰雪培训活动有效【西城】17.(本小题满分13分)为保障食品安全,某地食品药监管部门对辖区内甲、乙两家食品企业进行检查,分别从这两家企业生产的某种同类产品中随机抽取了100件作为样本,并以样本的一项关键质量指标值为检测依据.已知该质量指标值对应的产品等级如下:根据质量指标值的分组,统计得到了甲企业的样本频率分布直方图和乙企业的样本频数分布表(图表如下,其中).甲企业乙企业(Ⅰ)现从甲企业生产的产品中任取一件,试估计该件产品为次品的概率;(Ⅱ)为守法经营、提高利润,乙企业开展次品生产原因调查活动. 已知乙企业从样本里的次品中随机抽取了两件进行分析,求这两件次品中恰有一件指标值属于的产品的概率;(Ⅲ)根据图表数据,请自定标准,对甲、乙两企业食品质量的优劣情况进行比较.17.(本小题满分13分)解:(Ⅰ)由,得, ………… 2分所以甲企业的样本中次品的频率为,故从甲企业生产的产品中任取一件,该产品是次品的概率约为. ……… 5分0a >[40,45](0.0200.0220.0280.0420.080)51a +++++⨯=0.008a =(0.020)50.14a +⨯=0.14频率组距(Ⅱ)记“从乙企业样本里的次品中任取两件产品,恰有一件产品是指标值属于的产品”为事件M ,……………… 6分记质量指标值在[15,20)内的2件产品样本分别为,质量指标值在[40,45]内的 2件产品样本分别为,则从乙企业样本里的次品中任取两件产品,所有可能结果有6种,即,,,,,,而事件M 的结果有4种,它们是,,,,……8分 所以. 即从乙企业样本里的次品中任取两件产品,恰有一件产品指标值属于的产品的概率为. ………………10分(Ⅲ)答案不唯一,只要言之有理便可得分(下面给出几种参考方案).(1)以产品的合格率...(非次品的占有率)为标准,对甲、乙两家企业的食品质量进行比较.由图表可知:甲企业产品的合格率约为,乙企业产品的合格率约为,即乙企业产品的合格率高于甲企业产品的合格率, 所以可以认为乙企业的食品生产质量更高.(2)以产品次品率...为标准对甲、乙两家企业的食品质量进行比较(略). (3)以产品中一等品的概率为标准,对甲乙两家企业的食品质量进行比较.根据图表可知,甲企业产品中一等品的概率约为;乙企业产品中一等品的概率约为,即乙企业产品中一等品的概率高于甲企业产品中一等品的概率, 所以乙企业的食品生产质量更高. ……………… 13分【东城】(17)(本小题13分)某中学有学生500人,学校为了解学生课外阅读时间,从中随机抽取了50名学生,收集了他们2018年10月课外阅读时间(单位:小时)的数据,并将数据进行整理,分为5[40,45]12,A A 12,B B 12(,)A A 11(,)A B 12(,)A B 21(,)A B 22(,)A B 12(,)B B 11(,)A B 12(,)A B 21(,)A B 22(,)A B 42()63P M ==[40,45]230.860.960.40.48组:[10,12),[12,14),[14,16),[16,18),[18,20],得到如图所示的频率分布直方图.(Ⅰ)试估计该校所有学生中,2018年10月课外阅读时间不小于16小时的学生人数; (Ⅱ)已知这50名学生中恰有2名女生的课外阅读时间在[18,20],现从课外阅读时间在[18,20]的样本对应的学生中随机抽取2人,求至少抽到1名女生的概率;(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,试估计该校学生2018年10月课外阅读时间的平均数. (17)(共13分)解:(Ⅰ)0.1020.0520.30⨯+⨯=,即课外阅读时间不小于16小时的样本的频率为0.30. 因为5000.30150⨯=,所以估计该校所有学生中,2018年10月课外阅读时间不小于16小时的学生人数为150. …………………………………………………………………………………………….5分(Ⅱ)阅读时间在[18,20]的样本的频率为0.0520.10⨯=.因为500.105⨯=,即课外阅读时间在[18,20]的样本对应的学生人数为5. 这5名学生中有2名女生,3名男生,设女生为A ,B ,男生为C ,D ,E , 从中抽取2人的所有可能结果是: (,)A B ,(,)A C ,(,)A D ,(,)A E ,(,)B C , (,)B D ,(,)B E ,(,)C D ,(,)C E ,(,)D E . 其中至少抽到1名女生的结果有7个,所以从课外阅读时间在[18,20]的样本对应的学生中随机抽取2人,至少抽到1名女生的所求概率为710. ……………………………..11分(Ⅲ)根据题意,0.082110.122130.152150.10217创+创+创+创0.0521914.68+创=(小时).由此估计该校学生2018年10月课外阅读时间的平均数为14.68小时…….13分【朝阳】17. (本小题满分13分)(Ⅰ)求B市5个销售点小麦价格的中位数;(Ⅱ)甲从B市的销售点中随机挑选一个购买1吨小麦,乙从C市的销售点中随机挑选一个购买1吨小麦,求甲花费的费用比乙高的概率;(Ⅲ)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A、B、C 三个城市按照小麦价格差异性从大到小进行排序(只写出结果).17. (本小题满分13分)解:(Ⅰ)B市一共有5个销售点,价格分别为:2500,2500,2500,2450,2460按照价格从低到高排列为:2450,2460,2500,2500,2500B市5个销售点小麦价格的中位数为2500. …………………3分(Ⅱ)记事件“甲的费用比乙高”为AB市5个销售点按照价格从低到高排列为:2450,2460,2500,2500,2500C市一共有4个销售点,价格分别为:2580,2470,2540,2400按照价格从低到高排列为:2400,2470,2540,2580甲乙两个购买小麦分别花费的可能费用有如下组合:(2450,2400),(2460,2400),(2500,2400),(2500,2400),(2500,2400),(2450,2470),(2460,2470),(2500,2470),(2500,2470),(2500,2470),(2450,2540),(2460,2540),(2500,2540),(2500,2540),(2500,2540),(2450,2580),(2460,2580),(2500,2580),(2500,2580),(2500,2580),一共有20组.其中满足甲的费用高于乙的有如下组合:(2450,2400),(2460,2400),(2500,2400),(2500,2400),(2500,2400),(2500,2470),(2500,2470),(2500,2470)一共有8组.所以,甲的费用比乙高的概率为:82()205P A==. ………………10分(Ⅲ)三个城市按照价格差异性从大到小排列为:C,A,B. ………………13分【丰台】18.(本小题13分)2018年11月5日上午,首届中国国际进口博览会拉开大幕,这是中国也是世界上首次以进口为主题的国家级博览会.本次博览会包括企业产品展、国家贸易投资展.其中企业产品展分为7个展区,每个展区统计了备受关注百分比,如下表:备受关注百分比指:一个展区中受到所有相关人士关注(简称备受关注)的企业数与该展区的企业数的比值.(Ⅰ)从企业产品展7个展区的企业中随机选取1家,求这家企业是选自“智能及高端装备”展区备受关注的企业的概率;(Ⅱ)某电视台采用分层抽样的方法,在“消费电子及家电”展区备受关注的企业和“医疗器械及医药保健”展区备受关注的企业中抽取6家进行了采访,若从受访企业中随机抽取2家进行产品展示,求恰有1家来自于“医疗器械及医药保健”展区的概率.18.(共13分)解:(Ⅰ)7个展区企业数共400+60+70+650+1670+300+450=3600家,其中备受关注的智能及高端装备企业共40025%100⨯=家,设从各展区随机选1家企业,这家企业是备受关注的智能及高端装备为事件A ,所以 1001()360036P A ==. ………………5分 (Ⅱ)消费电子及家电展区备受关注的企业有6020%12⨯=家,医疗器械及医药保健展区备受关注的企业有3008%24⨯=家,共36家.所以抽取的6家企业中,来自消费电子及家电展区企业有612236⨯=家,记为1A ,2A ;来自医疗器械及医药保健展区企业有624436⨯=家,记为1B ,2B ,3B ,4B . 抽取两家进行产品展示的企业所有可能为:12A A ,11A B ,12A B ,13A B ,14A B ,21A B ,22A B ,23A B ,24A B ,12B B ,13B B ,14B B ,23B B ,24B B ,34B B 共15种;其中满足恰有1家来自于医疗器械及医药保健展区的有11A B ,12A B ,13A B ,14A B ,21A B ,22A B ,23A B ,24A B ,共8种;设恰有1家来自于医疗器械及医药保健展区为事件B , 所以 8()15P B =. ………………13分【石景山】17. (本小题13分)2018年9月,某校高一年级新入学有360名学生,其中200名女生,160名男生.学校计划为家远的高一新生提供10间女生宿舍和8间男生宿舍,每间宿舍可住2名同学.该校“数学与统计”社团的同学为了解全体高一学生家庭居住地与学校的距离情况,按照性别进行分层抽样,其中共抽取20名女生家庭居住地与学校的距离数据(单位:km )如下:5 6 7 7.5 8 8.4 4 3.5 4.5 4.3 5432.541.666.55.55.7(Ⅰ)根据以上样本数据推断,若女生甲家庭居住地与学校距离为8.3km ,她是否能住宿?说明理由;(Ⅱ)通过计算得到女生家庭居住地与学校距离的样本平均值为5.1km ,男生家庭居住地与学校距离的样本平均值为4.875km ,则所有样本数据的平均值为多少?(Ⅲ)已知某班有4名女生安排在两间宿舍中,其中有一对双胞胎,如果随机分配宿舍,求双胞胎姐妹被分到同一宿舍的概率. 17.(本小题13分)解:(Ⅰ)能住宿. (Ⅱ)根据分层抽样的原则,抽取男生样本数为16人.所有样本数据平均值为20 5.116 4.87552016⨯+⨯=+.(Ⅲ)解法一:记住宿的双胞胎为12,A A ,其他住宿女生为12,B B .考虑1A 的室友,共有212,,A B B 三种情况,所以双胞胎姐妹被分到同一宿舍的概率为13.解法二:记住宿的双胞胎为12,A A ,其他住宿女生为12,B B .随机分配宿舍,共有121211221221[(,),(,)],[(,),(,)],[(,),(,)]A A B B A B A B A B A B 三种情况,满足题意得有1212[(,),(,)]A A B B 一种情况,所以双胞胎姐妹被分到同一宿舍的概率为13.。
2019年北京各区高三一模文科数学分类汇编----解析几何1.(2019海淀一模文科)抛物线2:4W y x =的焦点为F ,点A 在抛物线形上,且点A 到直线3x =-的距离是线段AF 长度的2倍,则线段AF 的长度为 B (A)1 (B)2 (C)3 (D)42.(2019海淀一模文科)已知椭圆221:14x C y +=和双曲线2222:1(0)x C y m m-=>.经过1C 的左顶点A 和上顶点B 的直线与2C 的渐近线在第一象限的交点为P ,且AB BP =,则椭圆1C 的离心率1e = ,双曲线2C 的离心率2e =,23.(2019海淀一模文科)已知椭圆2222:1(0)x y C a b a b+=>>的左顶点为(2,0)A -,两个焦点与短轴一个顶点构成等腰直角三角形,过点(1,0)P 且与x 轴不重合的直线l 与椭圆交于,M N 不同的两点.(I)求椭圆P 的方程;(Ⅱ)当AM 与MN 垂直时,求AM 的长;(Ⅲ)若过点P 且平行于AM 的直线交直线52x =于点Q ,求证:直线NQ 恒过定点. 解:(Ⅰ)因为(2,0)A -,所以2a =因为两个焦点与短轴一个顶点构成等腰直角三角形,所以b c = 又222b c a +=所以b c = ,所以椭圆方程为22142x y +=(Ⅱ)方法一: 设(,)m m M x y 1m MP m y k x =-,=2m AM m yk x + 1AM MP k k ⋅=-22112142m m m mm m y y x x x y ⎧⋅=-⎪-+⎪⎨⎪+=⎪⎩m m x y =⎧⎪⎨=⎪⎩20m mx y =-⎧⎨=⎩(舍)所以AM 方法二: 设(,)m m M x y , 因为AM 与MN 垂直,所以点M 在以AP 为直径的圆上, 又以AP 为直径的圆的圆心为1(,0)2-,半径为32,方程为2219()24x y ++=222219()24142m m m m x y x y ⎧++=⎪⎪⎨⎪+=⎪⎩,m m x y =⎧⎪⎨=⎪⎩20m mx y =-⎧⎨=⎩(舍)所以AM 方法三:设直线AM 的斜率为k ,:(2)AM l y k x =+ ,其中 0k ≠22(2)142y k x x y =+⎧⎪⎨+=⎪⎩ 化简得2222(12)8840k x k x k +++-=当0∆>时,228412A M k x x k -⋅=+得222412M k x k -=+ ,2421M k y k =+ 显然直线,AM MN 存在斜率且斜率不为0.因为AM 与MN 垂直,所以222421=24112MPk k k k k +=--+1k=- 得212k =,k =, 0M x =所以2M AM + (Ⅲ)直线NQ 恒过定点(2,0) 设11(,)M x y ,22(,)N x y ,由题意,设直线MN 的方程为1x my =+,由 221,240x my x y =+⎧⎨+-=⎩得22(2)230m y my ++-=,显然,0∆>,则12222m y y m -+=+,12232y y m -=+,因为直线PQ 与AM 平行,所以112PQ AM y k k x ==+, 则PQ 的直线方程为11(1)2y y x x =-+, 令52x =,则111133222(3)y y y x my ==++,即1135(,)22(3)y Q my + 121122112232(3)2635(3)(23)2NQ y y my my y y y k my my x -++-==+--, 直线NQ 的方程为12212221221263()2639my y y y y y x x m y y my my +--=-+-- 12211221222212211221263(263)(1)26392639my y y y my y y y my y x y m y y my my m y y my my +-+-+=-++--+--122112212212211221263215326392639my y y y my y y y x m y y my my m y y my my +-+-=-+--+--令0y =,得122112212153263my y y y x my y y y +-=+-因为121223()my y y y =+,故221829y x y ==, 所以直线NQ 恒过定点(2,0).4.(2019朝阳一模文科)已知圆22:(2)2C x y -+=,直线:2l y kx =-. 若直线l 上存在点P ,过点P 引圆的两条的切线12,l l ,使得12l l ⊥,则实数k 的取值范围是 DA. [0,2-)2+∞()UB. 22[C. ∞(-,0)D. )∞[0,+ 5.(2019朝阳一模文科)双曲线2214x y -=的右焦点到其一条渐近线的距离是 .1 6.(2019朝阳一模文科)已知点00(,)M x y 为椭圆22:12x C y +=上任意一点,直线00:22l x x y y +=与圆22(1)6x y -+=交于,A B 两点,点F 为椭圆C 的左焦点.(Ⅰ)求椭圆C 的离心率及左焦点F 的坐标; (Ⅱ)求证:直线l 与椭圆C 相切;(Ⅲ)判断AFB ∠是否为定值,并说明理由.(Ⅰ)由题意a ,1b =,1c ==所以离心率c e a ==,左焦点(1,0)F -. …………4分 (Ⅱ)由题知,220012x y +=,即220022x y +=. 当00y =时直线l方程为x =x =l 与椭圆C 相切. 当00y ≠时,由22001,222x y x x y y ⎧+=⎪⎨⎪+=⎩得2222000(2)4440y x x x x y +-+-=, 即22002220x x x y -+-= 所以 2200(2)4(22)x y ∆=---22004+880x y =-= 故直线l 与椭圆C 相切. …………8分(Ⅲ)设11(,)A x y ,22(,)B x y ,当00y =时,12x x =,12y y =-,1x =,2211(1)FA FB x y ⋅=+-2211(1)6(1)x x =+-+-21240x =-=,所以FA FB ⊥,即90AFB ∠=.当00y ≠时,由220(1)6,22x y x x y y ⎧-+=⎪⎨+=⎪⎩ 得2222000(1)2(2)2100y x y x x y +-++-=, 则20012202(2)1y x x x y ++=+,2012202101y x x y -=+, 2001212122220001()42x x y y x x x x y y y =-++200254422x x y --+=+. 因为1122(1,)(1,)FA FB x y x y ⋅=+⋅+ 1212121x x x x y y =++++2222000000220042084225442222y y x y x x y y -++++--+=+++ 220025(2)10022x y y -++==+. 所以FA FB ⊥,即90AFB ∠=.故AFB ∠为定值90. …………14分7.(2019西城一模文科)如果把一个平面区域内两点间的距离的最大值称为此区域的直径,那么曲线2||2y x =-围成的平面区域的直径为 B (A )2 (B )4 (C)(D)8.(2019西城一模文科)设1F ,2F 为双曲线2222 1(0,0)x y C a b a b-=>>:的两个焦点,若双曲线C 的两个顶点恰好将线段12F F 三等分,则双曲线C 的离心率为____.39.(2019西城一模文科)已知椭圆W :2214x y m m +=的长轴长为4,左、右顶点分别为,A B ,经过点(1,0)P 的动直线与椭圆W 相交于不同的两点,C D (不与点,A B 重合). (Ⅰ)求椭圆W 的方程及离心率; (Ⅱ)求四边形ACBD 面积的最大值;(Ⅲ)若直线CB 与直线AD 相交于点M ,判断点M 是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)解:(Ⅰ)由题意,得244a m == , 解得1m =. ……………… 1分所以椭圆W 方程为2214x y +=. ………………2分故2a =,1b =,c =所以椭圆W的离心率2c e a ==. ……………… 4分(Ⅱ)当直线CD 的斜率k 不存在时,由题意,得CD 的方程为1x =,代入椭圆W的方程,得C,(1,D , 又因为||24AB a ==,AB CD ⊥, 所以四边形ACBD的面积1||||2S AB CD =⨯= ……………… 6分当直线CD 的斜率k 存在时,设CD 的方程为(1)(0)y k x k =-≠,11(,)C x y ,22(,)D x y ,联立方程22(1), 1,4y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得2222(41)8440k x k x k +-+-=. …… 7分由题意,可知0∆>恒成立,则2122841k x x k +=+,21224441k x x k -=+. (8)分四边形ACBD 的面积ABC ABD S S S ∆∆=+1211||||||||22AB y AB y =⨯+⨯ ……… 9分121||||2AB y y =⨯-122|()|k x x =-==设241k t +=,则四边形ACBD的面积S =1(0,1)t∈,所以S = 综上,四边形ACBD面积的最大值为. ……………… 11分(Ⅲ)结论:点M 在一条定直线上,且该直线的方程为4x =. (14)分10. (2019丰台一模文科)双曲线221169x y -=的渐近线方程为____.34y x =± 11.(2019丰台一模文科)直线2y kx =+与圆224x y +=相交于,M N 两点,若||MN =,则k =____.1±12.(2019丰台一模文科)已知椭圆22:22W x y +=,直线1:(0)l y kx m km =+≠与椭圆W 交于,A B 两点,直线2:l y kx m =-与椭圆W 交于,C D 两点. (Ⅰ)求椭圆W 的离心率;(Ⅱ)证明:四边形ABCD 不可能为矩形.解:(Ⅰ)由题知2222221a b a b c ⎧=⎪=⎨⎪=+⎩解得1a c ⎧=⎪⎨=⎪⎩则2c e a ==, 所以椭圆W的离心率为2. (Ⅱ)由于两直线关于原点成中心对称且椭圆是关于原点的中心对称图形.不妨设()()()()()1122112212,,,,,,,A x y B x y C x y D x y x x ----≠±.则221122222222x y x y ⎧+=⎨+=⎩L L ①②②−①得()()222221212y y x x -=--,()()()()2221212122212121112AB AD y y y y y y k k x x x x x x ----⋅=⋅==-≠-----. 所以 AB 不垂直于AD .所以 四边形ABCD 不可能为矩形.13(2019石景山一模文科)已知抛物线22(0)y px p =>的准线为l ,l 与双曲线2214x y -=的渐近线分别交于 ,A B 两点.若||4AB =,则p =______ .814.(2019石景山一模文科)在直角坐标系xOy 中,点()11,A x y 和点()22,B x y 是单位圆221x y +=上两点,=1AB ,则AOB ∠=______;12|2||2|y y +++的最大值为 _ .π34.15.(2019石景山一模文科)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,右焦点为(,0)F c ,左顶点为A ,右顶点B 在直线l :2x =上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上异于A ,B 的点,直线AP 交直线l 于点D ,当点P 运动时,判断以BD 为直径的圆与直线的位置关系,并加以证明.解:(Ⅰ)依题可知(0)B a ,,2a = 因为12c e a == , 所以1c =b故椭圆C 的方程为22143x y +=.(Ⅱ)以BD 为直径的圆与直线PF 相切.PF证明如下:由题意可设直线AP 的方程为(2)(0)y k x k =+≠. 则点D 坐标为24)k (,,BD 中点E 的坐标为22)k (,,由得 .设点的坐标为,则.所以,. 因为点坐标为, ①当时,点的坐标为,直线PF 的方程为1x =, 点的坐标 为.此时以为直径的圆与直线相切. ② 当时,直线的斜率. 所以直线的方程为,即214104k x y k ---=. 故点到直线的距离221414|221||2|k k k d k -+-⨯-===(或直线的方程为224401414k kx y k k --=--,故点到直线的距离) 又因为k R BD 42== ,故以为直径的圆与直线相切. 综上得,当点P 运动时,以为直径的圆与直线相切.解法二:(Ⅱ)以为直径的圆与直线相切.22(2),143y k x x y =+⎧⎪⎨+=⎪⎩2222(34)1616120k x k x k +++-=P 00(,)x y 2021612234k x k --=+2026834k x k-=+00212(2)34k y k x k =+=+F (1, 0)12k =±P 3(1, )2±D (2, 2)±BD 22(2)(1)1x y -+=PF 12k ≠±PF 0204114PF y k k x k ==--PF 24(1)14k y x k=--E PF PF EPF d =322228142||14|14|k k k k k k +-==+-BD PF BD PF BD PF证明如下: 设点00(,)P x y ,则220001(0)43x y y +=≠① 当01x =时,点的坐标为,直线PF 的方程为1x =, 点的坐标为, 此时以为直径的圆与直线相切, ② 当1x ≠时直线AP 的方程为00(2)2y y x x =++, 点D 的坐标为004(2,)2y x +,中点的坐标为002(2,)2y x +,故002||||2y BE x =+ 直线的斜率为001PF y k x =-, 故直线PF 的方程为00(1)1y y x x =--,即00110x x y y ---=, 所以点到直线的距离00012|21|2||||2x y y d BE x --⨯-===+ 故以为直径的圆与直线相切.综上得,当点P 运动时,以为直径的圆与直线相切.16.(2019延庆一模文科)圆心为(0,1)且与直线2y =相切的圆的方程为 C(A )22(1)1x y -+= (B )22(1)1x y ++= (C )22(1)1x y +-=(D )22(1)1x y ++=17.(2019延庆一模文科)“01k <<”是“方程22112x y k k +=-+表示双曲线”的 A (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件18.(2019延庆一模文科)已知椭圆G :22212x y a +=,左、右焦点分别为(,0)c -、(,0)c ,若点(,1)M c 在椭圆上, (Ⅰ)椭圆的标准方程; (Ⅱ)若直线:l 20(0)y m m -+=≠与椭圆G 交于两个不同的点A ,B ,直线MA ,P 3(1, )2±D (2, 2)±BD 22(2)(1)1x y -+=PF BD E PF E PF BD PF BD PFMB 与x 轴分别交于P ,Q 两点,求证:PM QM =解:(Ⅰ)(,1)M c 在椭圆22212x y a +=上 2212c a ∴= , 由22b =解得 24a ∴= ………………3分所以,椭圆的标准方程为22142x y +=………………4分 (Ⅱ)由2220,1,42y m x y-+=⎨+=⎪⎩得22480x m ++-=.………………5分 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点M ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<.……………6分设11(,)A x y ,22(,)B x y,则122x x m +=-,21284m x x -=,……………8分112my +=,222m y +=.……………10分显然直线MA 与MB 的斜率存在,设直线MA 与MB 的斜率分别为1k ,2k , 由(Ⅰ)可知M则12k k +=……………11分211)(1)(x x -+===28)(m m ----+=2=220==.因为120k k +=,所以MPQ MQP ∠=∠.……………13分所以PM QM =. ………………14分19.(2019怀柔一模文科)已知抛物线22=y px 的准线方程为1x =-,则=p __________.220.(2019怀柔一模文科)以原点(0,0)O 为圆心,以1为半径的圆C 的方程为__________;若点P 在圆C 上,点A 的坐标为(2,0)-,则AO A P ⋅的最大值为__________.221+=x y ,6.21.(2019怀柔一模文科)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(1,0)F ,点(0,)B b 满足||2FB =.(Ⅰ)求椭圆E 的方程;(Ⅱ)过点F 作直线l 交椭圆E 于M N 、两点,若BFM ∆与BFN ∆的面积之比为2,求直线l 的方程.解 (Ⅰ) 椭圆的右焦点为,点满足,,解得.由公式,得所以所以椭圆的方程为22143+=x y ------------------------------------------------5分 (Ⅱ)直线l 的斜率不存在时,,,不符合题意;设直线l 的方程为y=k(x-1),由得,(3+4)2222:1(0)x y E a b a b+=>>(1,0)F (0,)B b ||2FB =2=0)b b =>222c a b =-2134,2(0)a a a =+==>2,a b =⎧⎪⎨=⎪⎩E FM FM=BFN BFM S S ∆∆={134)1(22=+-=y x x k y 2k 01248222=-+-k x k x设M(①②由,得, 即. 可得, 即 ③由① ③ 得, 代入② 得, 解得, 所以,所求直线的方程为. ------------------------------------13分 22.(2019东城一模文科) 已知圆22:20C x x y ++=,则圆心C 到直线3x =的距离等于 D(A )1(B )2 (C )3 (D )423.(2019东城文科一模)抛物线C :22y px =上一点0(1,)y 到其焦点的距离为3,则抛物线C 的方程为_______.28y x =24.(2019东城文科一模)已知3(2,0),(1,)2A P -为椭圆22221(0)x y M a b a b +=>>:上两点,过点P 且斜率为,(0)k k k ->的两条直线与椭圆M 的交点分别为,B C . (Ⅰ)求椭圆M 的方程及离心率;(Ⅱ)若四边形PABC 为平行四边形,求k 的值.解:(I )由题意得222,191.4a a b =⎧⎪⎨+=⎪⎩解得2,a b =⎧⎪⎨=⎪⎩ (),11N y x ),,22y x 2221438恒成立。
2019北京各区一模数学文试题分类解析-统计、概率、随机变量及其分布注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!9、〔2018高考模拟文科〕某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示〔如右图〕、1s ,2s 分别表示甲、乙两班抽取的5名学生学分的标准差,那么1s 2s 、〔填“>”、“<”或“=”〕、〔B 〕 A 、> B 、< C 、= D 、不能确定11.〔2018东城一模文科〕在如下图的茎叶图中,乙组数据的中位数是; 假设从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是组、 答案:84乙 12、〔2018丰台一模文科〕为了了解学生的视力情况,随机抽查了一批学生的视力,将抽查结果绘制成频率分布直方图〔如下图〕、假设在[5.0,5.4]内的学生人数是2,那么根据图中数据可得被抽查的学生总数是;样本数据在[3.8,4.2)内的频率..是、答案:50,0.1212、〔2018石景山一模文科〕在区间[]9,0上随机取一实数x ,那么该实数x 满足不等式21log 2x ≤≤的概率为、第9题图答案:2910.〔2018高考仿真文科〕在两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,今从每个袋中任取一张卡片,那么两数之和等于5的概率为______________________. 答案:6113.〔2018高考仿真文科〕某棉纺厂为了解一批棉花的质量,从中随机抽测100根棉花纤维的长度〔棉花纤维的长度是棉花质量的重要指标〕。
所得数据均在区间[]40,5中,其频率分布直方图如下图,由图中数据可知=a _______,在抽测的100根中,棉花纤维的长度在[]30,20内的有__________根。
答案:55,05.05、〔2018门头沟一模文科〕某高中校三个年级人数见下表:通过分层抽样从中抽取40人进行问卷调查,现在从答卷中随机抽取一张,恰好是高三学生的答卷的概率是〔D 〕A 、 101B 、401C 、32D 、5213.〔2018门头沟一模文科〕某公司对下属员工在龙年春节期间收到的祝福短信数量进行了统计,得到了如下的直方图,如果该公司共有员工200人,那么收到125条以上的大约 有人、 答案:8 9、〔2018密云一模文科〕某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本、女生抽了95人,那么该校的女生人数应是人、 答案:76010.〔2018西城一模文科〕某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间、将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如下图的频率分布直方图、如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____、答案:54 18、〔2018高考模拟文科〕〔本小题总分值12分〕关于x 的一元二次函数.14)(2+-=bx ax x f〔Ⅰ〕设集合{}1,2,3P =和{}1,1,2,3,4Q =-,分别从集合P 和Q 中随机取一个数作为a 和b ,求函数)(x f y =在区间[),1+∞上是增函数的概率;〔Ⅱ〕设点(,)a b 是区域⎪⎩⎪⎨⎧>>≤-+0008y x y x 内的随机点,记{()A y f x ==有两个零点,其中一个大于1,另一个小于1},求事件A 发生的概率。
北京市12区2019届高三第一次模拟(3、4月)数学理试题分类汇编概率与统计一、解答题1、(朝阳区2019届高三一模)某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按[5,10),[10,15),[15,20),,[35,40]分组,制成频率分布直方图:乘车等待时间(分钟)0.036乙站O400.0480.0080.0160.052O405101520253035频率/组距0.0480.0120.0280.0360.0120.040甲站频率/组距乘车等待时间(分钟)3530252015105假设乘客乘车等待时间相互独立.(Ⅰ)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A ;从乙站的乘客中随机抽取1人,记为B .用频率估计概率,求“乘客A ,B 乘车等待时间都小于20分钟”的概率;(Ⅱ)从上班高峰时段,从乙站乘车的乘客中随机抽取3人,X 表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X 的分布列与数学期望.2、(东城区2019届高三一模)改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).(Ⅰ)从2007年至2016年随机选择1年,求该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上的概率;(Ⅱ)从2007年至2016年随机选择3年,设X是选出的三年中体育产业年增长率超过20%的年数,求X的分布列与数学期望;(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)3、(丰台区2019届高三一模)随着经济全球化、信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争.吸引、留住培养和用好人才成为人力资源管理的战略目标和紧迫任务.在此背景下,某信息网站在15个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如下图所示.(Ⅰ)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收入薪资高于8500元的城市的概率;(Ⅱ)现有2名大学毕业生在这15座城市中各随机选择一座城市就业,且2人的选择相互独立.记X 为选中月平均收入薪资高于8500元的城市的人数,求X 的分布列和数学期望()E X ;(Ⅲ)记图中月平均收入薪资对应数据的方差为21s ,月平均期望薪资对应数据的方差为22s ,判断21s 与22s 的大小.(只需写出结论)4、(海淀区2019届高三一模) 据《人民网》报道,“美国国家航空航天局( NASA)发文称,相比20年前世界变得更绿色了.卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的42%来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和) 单位:公顷造林方式 地区 造林总面积人工造林飞播造林新封山育林退化林修复人工更新 内蒙 618484 311052 74094 136006 90382 6950 河北 583361 345625 33333 135107 65653 3643 河南 149002 97647 1342922417 15376 133重庆 226333 10060062400 63333 陕西 297642 , 184108 33602 63865 16067 甘肃 325580 26014457438 7998新疆 263903 118105 6264 126647 10796 2091青海 178414 16051 159734 2629宁夏 91531 58960 22938 8298 1335 北京 1906410012400039991053(I)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最 小的地区;(Ⅱ)在这十个地区中,任选一个地区,求该地区人工造林面积占造林总面积的比值超过 50%的概率是多少?(Ⅲ)在这十个地区中,从新封山育林面积超过五万公顷的地区中,任选两个地区,记X 为 这两个地区中退化林修复面积超过六万公顷的地区的个数,求X 的分布列及数学期望.5、(怀柔区2019届高三一模)某大型企业为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量的使用情况,通过抽样,得到100位员工 每人手机月平均使用流量L (单位:M ) 的数据,其频率分布直方图如图所示.(Ⅰ)从该企业的员工中随机抽取3人,求这3人中至多有1人手机月流量不超过900M的概率;(Ⅱ)据了解,某网络运营商推出两款流量套餐,详情如下:套餐名称月套餐费(单位:元) 月套餐流量(单位:M)A 20 700B 30 1000流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需要购买流量叠加包,每一个叠加包(包含200M的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以所需费用的数学期望为决策依据,该企业订购哪一款套餐更经济?A B C D6、(门头沟区2019届高三一模)在某区“创文明城区”(简称“创城”)活动中,教委对本区,,,四所高中校按各校人数分层抽样调查,将调查情况进行整理后制成下表:学校A B C D抽查人数50 15 10 25“创城”活动中参与的人数40 10 9 15(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与“创城”活动是相互独立的.(Ⅰ)若该区共2000名高中学生,估计A学校参与“创城”活动的人数;(Ⅱ)在随机抽查的100名高中学生中,从,A C两学校抽出的高中学生中各随机抽取1名学生,求恰有1人参与“创城”活动的概率;(Ⅲ)若将上表中的参与率视为概率,从A学校高中学生中随机抽取3人,求这3人参与“创城”活动人数的分布列及数学期望.7、(石景山区2019届高三一模)某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除颜色外均相同.(Ⅰ)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;(Ⅱ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记得到红球的次数为ξ,求ξ的分布列;(Ⅲ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取100次,得到几次红球的概率最大?只需写出结论.8、(顺义区2019届高三第二次统练(一模))国际上常用恩格尔系数(食品支出总额占个人消费支出总额的比重)反映一个国家或家庭生活质量的高低,恩格尔系数越低,生活质量越高.联合国根据恩格尔系数的大小,对世界各国的生活质量有一个划分标准如下:下表记录了我国在改革开放后某市A,B,C,D,E五个家庭在五个年份的恩格尔系数.年份家庭恩格尔系数(%)A B C D E1978年57.7 52.5 62.3 61.0 58.81988年54.248.3 51.9 55.4 52.61998年44.741.6 43.5 49.0 47.42008年37.9 36.5 29.2 41.3 42.72018年28.627.7 19.8 35.7 34.2(Ⅰ)从以上五个家庭中随机选出一个家庭,求该家庭在2008年和2018年都达到了“富裕”或更高生活质量的概率;(Ⅱ)从以上五个家庭中随机选出三个家庭,记这三个家庭在2018年达到“富裕”或更高生活质量的个数为X,求X的分布列;(Ⅲ)如果将“贫穷”,“温饱”,“小康”,“相对富裕”,“富裕”,“极其富裕”六种生活质量分别对应数值:0,1,2,3,4,5. 请写出A,B,C,D,E五个家庭在以上五个年份中生活质量方差最大的家庭和方差最小的家庭(结论不要求证明).9、(西城区2019届高三一模)为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动. 活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a表示.(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值, 求图中a 的所有可能取值;(Ⅱ)将甲、乙两组中阅读量超过..15本的学生称为“阅读达人”. 设3a ,现从所有“阅读达人”里任取3人,求其中乙组的人数X 的分布列和数学期望.(Ⅲ)记甲组阅读量的方差为20s . 在甲组中增加一名学生A 得到新的甲组,若A 的阅读量为10,则记新甲组阅读量的方差为21s ;若A 的阅读量为20,则记新甲组阅读量的方差为22s ,试比较20s ,21s ,22s 的大小.(结论不要求证明)10、(延庆区2019届高三一模) 2020年我国全面建成小康社会,其中小康生活的住房标准是城镇人均住房建筑面积30平方米. 下表为2007年—2016年中,我区城镇和农村人均住房建筑面积统计数据. 单位:平方米.(Ⅰ)现从上述表格中随机抽取连续两年数据,求这两年中城镇人均住房建筑面积增长不少于2 平方米的概率;(Ⅱ)在给出的10年数据中,随机抽取三年,记X 为同年中农村人均住房建筑面积超过城镇人 均住房建筑面积4平方米的年数,求X 的分布列和数学期望()E X ;(Ⅲ)将城镇和农村的人均住房建筑面积经四舍五入取整后作为样本数据.记2012—2016年中城镇人均住房面积的方差为21s ,农村人均住房面积的方差为22s ,判断21s 与22s 的大小.(只需写出结论).11、(房山区2019届高三一模)苹果是人们日常生活中常见的营养型水果.某地水果批发市场销售来自5个不同产地的富士苹果,各产地的包装规格相同,它们的批发价格(元/箱)和市场份额如下:产地 A B C D E批发价格150 160 140 155 170市场份额15% 10% 25% 20% 30% 市场份额亦称“市场占有率”.指某一产品的销售量在市场同类产品中所占比重.2007年 2008年 2009年 2010年 2011年 2012年 2013年 2014年 2015年 2016年城镇 18.66 20.25 22.79 25 27.1 28.3 31.6 32.9 34.6 36.6 农村23.324.826.527.930.732.434.137.141.245.8(Ⅰ)从该地批发市场销售的富士苹果中随机抽取一箱,估计该箱苹果价格低于160元的概率; (Ⅱ)按市场份额进行分层抽样,随机抽取20箱富士苹果进行检验, ①从产地,A B 共抽取n 箱,求n 的值;②从这n 箱中随机抽取三箱进行等级检验,随机变量X 表示来自产地B 的箱数,求X 的分布列和数学期望.(Ⅲ)产地F 的富士苹果明年将进入该地市场,定价160元/箱,并占有一定市场份额,原有五个产地的苹果价格不变,所占市场份额之比.不变(不考虑其他因素).设今年苹果的平均批发价为每箱1M 元,明年苹果的平均批发价为每箱2M 元,比较12,M M 的大小.(只需写出结论)12、(大兴区2019届高三一模)某机构对A 市居民手机内安装的“APP ”(英文Application 的缩写,一般指手机软件)的个数和用途进行调研,在使用智能手机的居民中随机抽取了100人,获得了他们手机内安装APP 的个数,整理得到如图所示频率分布直方图:(Ⅰ)从A 市随机抽取一名使用智能手机的居民,试估计该居民手机内安装APP 的个数不低于30的概率;(Ⅱ)从A 市随机抽取3名使用智能手机的居民进一步做调研,用X 表示这3人中手机内安装APP的个数在[20,40)的人数.①求随机变量X 的分布列及数学期望;②用Y 1表示这3人中安装APP 个数低于20的人数,用Y 2表示这3人中手机内安装APP 的个数不低于40的人数.试比较EY 1和EY 2的大小.(只需写出结论)参考答案1、解:(Ⅰ)设M 表示事件“乘客A 乘车等待时间小于20分钟”,N 表示事件“乘客B 乘车等待时间小于20分钟”,C 表示事件“乘客A,B 乘车等待时间都小于20分钟”. 由题意知,乘客A 乘车等待时间小于20分钟的频率为0.0120.0400.048)50.5(++⨯=,故()P M 的估计值为0.5.乘客B 乘车等待时间小于20分钟的频率为0.0160.0280.036)50.4(++⨯=,故()P N 的估计值为0.4.又121()()()()255P C P MN P M P N ==⋅=⨯=.故事件C 的概率为15.………………………………………………………….6分 (Ⅱ)由(Ⅰ)可知,乙站乘客乘车等待时间小于20分钟的频率为0.4, 所以乙站乘客乘车等待时间小于20分钟的概率为25. 显然,X 的可能取值为0,1,2,3且2(3,)5~X B .所以033327(0)()5125P X C ===;1232354(1)()55125P X C ==⋅=; 2232336(2)()55125P X C ==⋅=;33328(3)()5125P X C ===.故随机变量X 的分布列为X 0 1 2 3P27125 54125 36125 812526355EX =⨯= .……………….13分 2、解:(Ⅰ)设A 表示事件“从2007年至2016年随机选出1年,该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上”.由题意可知,2009年,2011年,2015年,2016年满足要求, 故42()105P A ==. ............................4分 (Ⅱ)由题意可知,X 的所有可能取值为0,1,2,3,且36310C 1(0)=C 6P X ==; 1246310C C 1(1)=C 2P X ==;2146310C C 3(2)=C 10P X ==; 34310C 1(3)=C 30P X ==.所以X 的分布列为:X0 1 2 3P16 12 310 130故X 的期望11316()01236210305E X =⨯+⨯+⨯+⨯=. (10)分(Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. ............................13分 3、解:(Ⅰ)设该生选中月平均收入薪资高于8500元的城市为事件A .因为 15座城市中月平均收入薪资高于8500元的有6个,所以 2()5P A =. (Ⅱ)由(Ⅰ)知选中平均薪资高于8500元的城市的概率为25,低于8500元的概率为35, 所以X ~2(2,)5B .239(0)()525P X ===;122312(1)5525P X C ==⨯⨯=;22224(2)()525P X C ==⨯=. 所以随机变量X 的分布列为:P0 1 2X925 1225425所以X 的数学期望为24()255E X =⨯=.(Ⅲ)2212s s > .4、解:(Ⅰ) 人工造林面积与总面积比最大的地区为甘肃省人工造林面积与总面积比最小的地区为青海省(Ⅱ) 设在这十个地区中,任选一个地区,该地区人工造林面积占总面积的比值超过为事件A在十个地区中,有7个地区(内蒙、河北、河南、陕西、甘肃、宁夏、北京)人工造林 面积占总面积比超过50%,则7()10P A =(Ⅲ)新封山育林面积超过五万公顷有7个地区:内蒙、河北、河南、重庆、陕西、甘肃、新疆、青海,其中退化林修复面积超过六万公顷有3个地区:内蒙、河北、重庆,所以X 的取值为012,, 所以242712(0)42C P X C ===, 11342724(1)42C C P X C ===23276(2)42C P X C ===随机变量X 的分布列为X 012P1242244264212246366012424242427EX =⨯+⨯+⨯==5、解:(Ⅰ)由题意100位员工每人手机月平均使用流量不超过900M 的概率为1(0.00020.0008)1000.9-+⨯=.从该企业的员工中随机抽取3,可近似看为独立重复实验,至多1个可分为恰有1人和没有人超过900M ,设事件A 为“3人中至多有1人手机月流量不超过900M”,则1200333()0.90.10.90.10.028=⨯⨯+⨯⨯=P A C C------------------------------------------------------------------------------------------------------6分 (Ⅱ)若该企业选择A 套餐,设一个员工所需费用为X ,则X 可能为20,30,40。
2019年北京市海淀区高三一模数学(文科)第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|13A x x =<<,集合{}2|4B x x =>,则集合A B 等于( ) A .{}|23x x << B .{}|1x x > C .{}|12x x << D .{}|2x x >2.圆心为(0,1)且与直线2y =相切的圆的方程为( )A .22(1)1x y -+=B .22(1)1x y ++=C .22(1)1x y +-=D .22(1)1x y ++= 3.执行如图所示的程序框图,输出的x 的值为( )A .4B .3C .2D .14.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为( )ABC. D .36.在ABC ∆上,点D 满足2AD AB AC =-,则( )A .点D 不在直线BC 上B .点D 在BC 的延长线上 C .点D 在线段BC 上 D .点D 在CB 的延长线上7.若函数cos ,,()1,x x a f x x a x≤⎧⎪=⎨>⎪⎩ 的值域为[]1,1-,则实数a 的取值范围是( ) A .[1,)+∞ B .(,1]-∞- C .(0,1] D .(1,0)-8.如图,在公路MN 两侧分别有1A ,2A ,…,7A 七个工厂,各工厂与公路MN (图中粗线)之间有小公路连接.现在需要在公路MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( )①车站的位置设在C 点好于B 点;②车站的位置设在B 点与C 点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数(1)2z a i =+-为纯虚数,则实数a = .10.已知等比数列{}n a 中,245a a a =,48a =,则公比q = ,其前4项和4S = .11.若抛物线22y px =的准线经过双曲线2213y x -=的左焦点,则实数p = . 12.若x ,y 满足240,20,1,x y x y x +-=⎧⎪-≤⎨⎪≥⎩则y x 的最大值是 . 13.已知函数()sin f x x ω=(0ω>),若函数()y f x a =+(0a >)的部分图象如图所示,则ω= ,a 的最小值是 .14.阅读下列材料,回答后面问题:在2014年12月30日13CCTV 播出的“新闻直播间”节目中,主持人说:“……加入此次亚航失联航班8501QZ 被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为 ,你的理由是 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{}n a 满足126a a +=,2310a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列{}1n n a a ++的前n 项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a ,b 两种“共享单车”(以下简称a 型车,b 型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a 型车,3人租到b 型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a 型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a 型车的用户中,在第4个月有60%的用户仍租a 型车.若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a ,b 两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.17.在ABC ∆中,2A B =.(Ⅰ)求证:2cos a b B =;(Ⅱ)若2b =,4c =,求B 的值.18.在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,2PA AB ==,E ,F 分别是PB ,PD 的中点.(Ⅰ)求证://PB 平面FAC ;(Ⅱ)求三棱锥P EAD -的体积;(Ⅲ)求证:平面EAD ⊥平面FAC .19.已知椭圆C :22221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设点(4,0)Q ,若点P 在直线4x =上,直线BP 与椭圆交于另一点M .判断是否存在点P ,使得四边形APQM 为梯形?若存在,求出点P 的坐标;若不存在,说明理由.20.已知函数2()x f x e x ax =-+,曲线()y f x =在点(0,(0))f 处的切线与x 轴平行.(Ⅰ)求a 的值;(Ⅱ)若()21xg x e x =--,求函数()g x 的最小值;(Ⅲ)求证:存在0c <,当x c >时,()0f x > .高三年级第二学期期中练习数学(文科)答案一、选择题1-5:ACCCB 6-8:DAC二、填空题 9.2 10.2,15 11.4 12.32 13.2,12π 14.选①,数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;选②,数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;不选②,数据②两个数据虽表面不是同一类数据,但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x ,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.三、解答题15.解:(Ⅰ)设数列{}n a 的公差为d ,因为126a a +=,2310a a +=,所以314a a -=,所以24d =,2d =.又116a a d ++=,所以12a =,所以1(1)2n a a n d n =+-=.(Ⅱ)记1n n n b a a +=+,所以22(1)42n b n n n =++=+,又14(1)2424n n b b n n +-=++--=,所以{}n b 是首项为6,公差为4的等差数列,其前n 项和21()(642)2422n n n b b n n S n n +++===+. 16.解:(Ⅰ)依题意租到a 型车的4人为1A ,2A ,3A ,4A ;租到b 型车的3人为1B ,2B ,3B ; 设事件A 为“7人中抽到2人,至少有一人租到a 型车”, 则事件A 为“7人中抽到2人都租到b 型车”.如表格所示:从7人中抽出2人共有21种情况,事件A 发生共有3种情况, 所以事件A 概率36()1()1217P A P A =-=-=.(Ⅱ)依题意,市场4月份租用a 型车的比例为50%60%50%50%55%+=, 租用b 型车的比例为50%40%50%50%45%+=,所以市场4月租用a ,b 型车的用户比例为55%1145%9=. 17.解:(Ⅰ)因为2A B =, 所以由正弦定理sin sin a b A B =,得sin sin 2a a A B=, 得2sin cos sin a b B B B =,所以2cos a b B =. (Ⅱ)由余弦定理,2222cos a b c bc A =+-,因为2b =,4c =,2A B =,所以216cos 41616cos 2B B =+-, 所以23cos 4B =, 因为2A B B B π+=+<,所以3B π<,所以cos B =,所以6B π=.18.(Ⅰ)证明:连接BD ,与AC 交于点O ,连接OF ,在PBD ∆中,O ,F 分别是BD ,PD 的中点,所以//OF PB ,又因为OF ⊂平面FAC ,PB ⊄平面FAC ,所以//PB 平面FAC .(Ⅱ)解:因为PA ⊥平面ABCD ,所以PA 为棱锥P ABD -的高. 因为2PA AB ==,底面ABCD 是正方形, 所以13P ABD ABD V S PA -∆=⨯⨯114222323=⨯⨯⨯⨯=, 因为E 为PB 中点,所以PAE ABE S S ∆∆=, 所以1223P EAD P ABD V V --=⨯=. (Ⅲ)证明:因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,在等腰直角PAB ∆中,AE PB ⊥,又AE AD A =,AE ⊂平面EAD ,AD ⊂平面EAD ,所以PB ⊥平面EAD ,又//OF PB ,所以OF ⊥平面EAD ,又OF ⊂平面FAC ,所以平面EAD ⊥平面FAC .19.解:(Ⅰ)由||4AB =,得2a =.又因为12c e a ==,所以1c =,所以2223b a c =-=, 所以椭圆C 的方程为22143x y +=. (Ⅱ)假设存在点P ,使得四边形APQM 为梯形.由题意知,显然AM ,PQ 不平行,所以//AP MQ , 所以||||||||BQ BM AB BP =,所以||1||2BM BP =. 设点11(,)M x y ,(4,)P t ,过点M 作MH AB ⊥于H ,则有||||1||||2BH BM BQ BP ==, 所以||1BH =,所以(1,0)H ,所以11x =, 代入椭圆方程,求得132y =±, 所以(4,3)P ±.20.解:(Ⅰ)'()2x f x e x a =-+,由已知可得'(0)0f =,所以10a +=,得1a =-.(Ⅱ)'()2x g x e =-,令'()0g x =,得ln 2x =,所以x ,'()g x ,()g x 的变化情况如表所示:所以()g x 的最小值为ln 2(ln 2)2ln 2112ln 2g e =--=-. (Ⅲ)证明:显然()'()g x f x =,且(0)0g =,由(Ⅱ)知,()g x 在(,ln 2)-∞上单调递减,在(ln 2,)+∞上单调递增. 又(ln 2)0g <,2(2)50g e =->,由零点存在性定理,存在唯一实数0(ln 2,)x ∈+∞,满足0()0g x =, 即00210x e x --=,0021x e x =+,综上,()'()g x f x =存在两个零点,分别为0,0x .所以0x <时,()0g x >,即'()0f x >,()f x 在(,0)-∞上单调递增; 00x x <<时,()0g x <,即'()0f x <,()f x 在0(0,)x 上单调递减; 0x x >时,()0g x >,即'()0f x >,()f x 在0(,)x +∞上单调递增, 所以(0)f 是极大值,0()f x 是极小值,0222200000000015()211()24x f x e x x x x x x x x =--=+--=-++=--+, 因为(1)30g e =-<,323()402g e =->, 所以03(1,)2x ∈,所以0()0f x >,因此0x ≥时,()0f x >.因为(0)1f =且()f x 在(,0)-∞上单调递增,所以一定存在0c <满足()0f c >,所以存在0c <,当x c >时,()0f x >.。
北京市海淀区高三一模数学(文科)第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|13A x x =<<,集合{}2|4B x x =>,则集合A B 等于( ) A .{}|23x x << B .{}|1x x > C .{}|12x x << D .{}|2x x >2.圆心为(0,1)且与直线2y =相切的圆的方程为( )A .22(1)1x y -+=B .22(1)1x y ++=C .22(1)1x y +-=D .22(1)1x y ++= 3.执行如图所示的程序框图,输出的x 的值为( )A .4B .3C .2D .14.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为( )ABC. D .36.在ABC ∆上,点D 满足2AD AB AC =-,则( )A .点D 不在直线BC 上B .点D 在BC 的延长线上 C .点D 在线段BC 上 D .点D 在CB 的延长线上7.若函数cos ,,()1,x x a f x x a x ≤⎧⎪=⎨>⎪⎩的值域为[]1,1-,则实数a 的取值范围是( ) A .[1,)+∞ B .(,1]-∞- C .(0,1] D .(1,0)-8.如图,在公路MN 两侧分别有1A ,2A ,…,7A 七个工厂,各工厂与公路MN (图中粗线)之间有小公路连接.现在需要在公路MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( )①车站的位置设在C 点好于B 点;②车站的位置设在B 点与C 点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数(1)2z a i =+-为纯虚数,则实数a = .10.已知等比数列{}n a 中,245a a a =,48a =,则公比q = ,其前4项和4S = .11.若抛物线22y px =的准线经过双曲线2213y x -=的左焦点,则实数p = . 12.若x ,y 满足240,20,1,x y x y x +-=⎧⎪-≤⎨⎪≥⎩则y x 的最大值是 . 13.已知函数()sin f x x ω=(0ω>),若函数()y f x a =+(0a >)的部分图象如图所示,则ω= ,a 的最小值是 .14.阅读下列材料,回答后面问题:在2014年12月30日13CCTV 播出的“新闻直播间”节目中,主持人说:“……加入此次亚航失联航班8501QZ 被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为 ,你的理由是 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{}n a 满足126a a +=,2310a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列{}1n n a a ++的前n 项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a ,b 两种“共享单车”(以下简称a 型车,b 型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a 型车,3人租到b 型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a 型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a 型车的用户中,在第4个月有60%的用户仍租a 型车.若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a ,b 两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.17.在ABC ∆中,2A B =.(Ⅰ)求证:2cos a b B =;(Ⅱ)若2b =,4c =,求B 的值.18.在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,2PA AB ==,E ,F 分别是PB ,PD 的中点.(Ⅰ)求证://PB 平面FAC ;(Ⅱ)求三棱锥P EAD -的体积;(Ⅲ)求证:平面EAD ⊥平面FAC .19.已知椭圆C :22221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设点(4,0)Q ,若点P 在直线4x =上,直线BP 与椭圆交于另一点M .判断是否存在点P ,使得四边形APQM 为梯形?若存在,求出点P 的坐标;若不存在,说明理由.20.已知函数2()x f x e x ax =-+,曲线()y f x =在点(0,(0))f 处的切线与x 轴平行.(Ⅰ)求a 的值;(Ⅱ)若()21x g x e x =--,求函数()g x 的最小值;(Ⅲ)求证:存在0c <,当x c >时,()0f x > .高三年级第二学期期中练习数学(文科)答案一、选择题1-5:ACCCB 6-8:DAC二、填空题9.2 10.2,15 11.4 12.32 13.2,12π 14.选①,数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;选②,数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;不选②,数据②两个数据虽表面不是同一类数据,但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x ,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.三、解答题15.解:(Ⅰ)设数列{}n a 的公差为d ,因为126a a +=,2310a a +=,所以314a a -=,所以24d =,2d =.又116a a d ++=,所以12a =,所以1(1)2n a a n d n =+-=.(Ⅱ)记1n n n b a a +=+,所以22(1)42n b n n n =++=+,又14(1)2424n n b b n n +-=++--=,所以{}n b 是首项为6,公差为4的等差数列,其前n 项和21()(642)2422n n n b b n n S n n +++===+. 16.解:(Ⅰ)依题意租到a 型车的4人为1A ,2A ,3A ,4A ;租到b 型车的3人为1B ,2B ,3B ; 设事件A 为“7人中抽到2人,至少有一人租到a 型车”, 则事件A 为“7人中抽到2人都租到b 型车”.如表格所示:从7人中抽出2人共有21种情况,事件A 发生共有3种情况,所以事件A 概率36()1()1217P A P A =-=-=.(Ⅱ)依题意,市场4月份租用a 型车的比例为50%60%50%50%55%+=,租用b 型车的比例为50%40%50%50%45%+=,所以市场4月租用a ,b 型车的用户比例为55%1145%9=. 17.解:(Ⅰ)因为2A B =, 所以由正弦定理sin sin a b A B =,得sin sin 2a a A B=, 得2sin cos sin a b B B B =,所以2cos a b B =. (Ⅱ)由余弦定理,2222cos a b c bc A =+-,因为2b =,4c =,2A B =,所以216cos 41616cos 2B B =+-, 所以23cos 4B =, 因为2A B B B π+=+<,所以3B π<,所以cos B =,所以6B π=. 18.(Ⅰ)证明:连接BD ,与AC 交于点O ,连接OF ,在PBD ∆中,O ,F 分别是BD ,PD 的中点,所以//OF PB ,又因为OF ⊂平面FAC ,PB ⊄平面FAC ,所以//PB 平面FAC .(Ⅱ)解:因为PA ⊥平面ABCD ,所以PA 为棱锥P ABD -的高. 因为2PA AB ==,底面ABCD 是正方形, 所以13P ABD ABD V S PA -∆=⨯⨯114222323=⨯⨯⨯⨯=, 因为E 为PB 中点,所以PAE ABE S S ∆∆=, 所以1223P EAD P ABD V V --=⨯=. (Ⅲ)证明:因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,在等腰直角PAB ∆中,AE PB ⊥,又AE AD A =,AE ⊂平面EAD ,AD ⊂平面EAD ,所以PB ⊥平面EAD ,又//OF PB ,所以OF ⊥平面EAD ,又OF ⊂平面FAC ,所以平面EAD ⊥平面FAC .19.解:(Ⅰ)由||4AB =,得2a =. 又因为12c e a ==,所以1c =,所以2223b a c =-=, 所以椭圆C 的方程为22143x y +=. (Ⅱ)假设存在点P ,使得四边形APQM 为梯形.由题意知,显然AM ,PQ 不平行,所以//AP MQ , 所以||||||||BQ BM AB BP =,所以||1||2BM BP =. 设点11(,)M x y ,(4,)P t ,过点M 作MH AB ⊥于H ,则有||||1||||2BH BM BQ BP ==, 所以||1BH =,所以(1,0)H ,所以11x =, 代入椭圆方程,求得132y =±, 所以(4,3)P ±.20.解:(Ⅰ)'()2x f x e x a =-+,由已知可得'(0)0f =,所以10a +=,得1a =-.(Ⅱ)'()2x g x e =-,令'()0g x =,得ln 2x =,所以x ,'()g x ,()g x 的变化情况如表所示:所以()g x 的最小值为ln 2(ln 2)2ln 2112ln 2g e =--=-.(Ⅲ)证明:显然()'()g x f x =,且(0)0g =,由(Ⅱ)知,()g x 在(,ln 2)-∞上单调递减,在(ln 2,)+∞上单调递增. 又(ln 2)0g <,2(2)50g e =->,由零点存在性定理,存在唯一实数0(ln 2,)x ∈+∞,满足0()0g x =, 即00210x e x --=,0021x e x =+,综上,()'()g x f x =存在两个零点,分别为0,0x .所以0x <时,()0g x >,即'()0f x >,()f x 在(,0)-∞上单调递增; 00x x <<时,()0g x <,即'()0f x <,()f x 在0(0,)x 上单调递减; 0x x >时,()0g x >,即'()0f x >,()f x 在0(,)x +∞上单调递增, 所以(0)f 是极大值,0()f x 是极小值,0222200000000015()211()24x f x e x x x x x x x x =--=+--=-++=--+, 因为(1)30g e =-<,323()402g e =->, 所以03(1,)2x ∈,所以0()0f x >,因此0x ≥时,()0f x >.因为(0)1f =且()f x 在(,0)-∞上单调递增,所以一定存在0c <满足()0f c >,所以存在0c <,当x c >时,()0f x >.。
北京2019高三数学文分类汇编(主城区一模及上年末)专项10:概率【一】选择题1、〔2018届北京大兴区一模文科〕假设实数,a b 满足221a b +≤,那么关于x 的方程220x x a b -++=无实数根的概率为 〔〕A 、14B 、34C 、3π24π+ D 、π24π-2、〔北京市东城区普通高中示范校2018届高三3月联考综合练习〔二〕数学〔文〕试题〕不等式组⎪⎩⎪⎨⎧≤≥+≤1,0,1x y x y 表示的平面区域为Ω,不等式组⎩⎨⎧≥+-≤0,1y x y 表示的平面区域为M .假设在区域Ω内随机取一点P ,那么点P 在区域M 内的概率为 A.21B.31C.41D.323、〔北京市昌平区2018届高三上学期期末考试数学文试题〕设不等式组22,4,2x y x y -+≥≥-⎧⎪⎨⎪⎩0≤表示的平面区域为D 、在区域D 内随机取一个点,那么此点到直线+2=0y 的距离大于2的概率是 〔〕A 、413B 、513C 、825D 、9254、〔北京市丰台区2018届高三上学期期末考试数学文试题〕从装有2个红球和2个黑球的口袋内任取2个球,那么恰有一个红球的概率是 〔〕A 、13B 、12C 、23 D 、565、〔北京市海淀区2018届高三上学期期末考试数学文试题〕在等边ABC ∆的边BC上任取一点P ,那么23ABP ABC S S ∆∆≤的概率是 〔〕A 、13B 、12C 、23D 、56【二】填空题6、〔2018届北京东城区一模数学文科〕从1,3,5,7这四个数中随机地取两个数组成一个两位数,那么组成的两位数是5的倍数的概率为___.7、〔2018届北京门头沟区一模文科数学〕用计算机产生随机二元数组成区域-11-22x y <<⎧⎨<<⎩,对每个二元数组(,)x y ,用计算机计算22y x +的值,记“(,)x y 满足22y x +《1”为事件A ,那么事件A 发生的概率为________.8、〔北京市西城区2018届高三上学期期末考试数学文科试题〕平行四边形ABCD 中,E 为CD 的中点、假设在平行四边形ABCD 内部随机取一点M ,那么点M 取自△ABE 内部的概率为______、【三】解答题9、〔2018届北京市延庆县一模数学文〕某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n 人,回答以下问题统计结果如图表所示.(Ⅰ)分别求出y x b a ,,,的值;(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,那么第2,3,4组每组应各抽取多少人?(Ⅲ)在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.10、〔2018届北京东城区一模数学文科〕为了解高三学生综合素质测评情况,对2000名高三学生的测评结果进行了统计,其中优秀、良好、合格三个等级的男、女学生人数份综合素质测评结果中随机抽取80份进行比较分析,应抽取综合素质测评结果是优秀等级的多少份?(Ⅱ)假设245x ≥,245y ≥,求优秀等级的学生中男生人数比女生人数多的概率.11、〔2018届北京丰台区一模文科〕在一次抽奖活动中,有A 、B 、C 、D 、E 、F 共6人获得抽奖的机会.抽奖规那么如下:主办方先从6人中随机抽取两人均获一等奖,再从余下的4人中随机抽取1人获二等奖,最后还从这4人中随机抽取1人获三等奖.(Ⅰ)求A 能获一等奖的概率;(Ⅱ)假设A 、B 已获一等奖,求C 能获奖的概率.12、〔2018届北京海滨一模文〕在某大学自主招生考试中,所有选报II 类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(I )求该考场考生中“阅读与表达”科目中成绩为A 的人数;(II )假设等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A 的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率.13、〔2018届北京门头沟区一模文科数学〕某学校有两个参加国际中学生交流活动的代表名额,为此该校高中部推荐了2男1女三名候选人,初中部也推荐了1男2女三名候选人.(I )假设从初高中各选1名同学做代表,求选出的2名同学性别相同的概率; (II )假设从6名同学中任选2人做代表,求选出的2名同学都来自高中部或都来自初中部的概率.14、〔2018届北京大兴区一模文科〕一次考试结束后,随机抽查了某校高三(1)班成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.15、〔2018届北京西城区一模文科〕某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.(Ⅰ)假设甲停车1小时以上且不超过2小时的概率为31,停车付费多于14元的概率为125,求甲停车付费恰为6元的概率;(Ⅱ)假设每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.16、〔2018届房山区一模文科数学〕PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某城市环保局从该市市区2012年全年每天的PM2.5监测数据中随机的抽取6天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).(Ⅰ)假设从这6天的数据中随机抽出2天,求至多有一天空气质量超标的概率;(Ⅱ)根据这6天的PM2.5日均值来估计一年的空气质量情况,那么一年(按365天计算)中平均有多少天的空气质量达到一级或二级?17、〔北京市东城区普通高中示范校Array 2018届高三3月联考综合练习〔二〕数学〔文〕试题〕为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本(Ⅰ)求这15(Ⅱ)估计这60名乘客中候车时间少于10分钟的人数;(Ⅲ)假设从上表第【三】四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.18、〔北京市石景山区2018届高三上学期期末考试数学文试题〕一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4、现从盒子中随机抽取卡片、〔Ⅰ〕假设一次抽取3张卡片,求3张卡片上数字之和大于7的概率;〔Ⅱ〕假设第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到 数字3的概率、19、〔北京市朝阳区2018届高三上学期期末考试数学文试题〕某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛、为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩〔得分取正整数,总分值为100分〕作为样本进行统计、请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图〔如下图〕解决以下问题:〔Ⅰ〕写出,,,a b x y 的值;〔Ⅱ〕在选取的样本中,从竞赛成绩是80分以上〔含80分〕的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.〔ⅰ〕求所抽取的2名同学中至少有1名同学来自第5组的概率;〔ⅱ〕求所抽取的2名同学来自同一组的概率.20、〔北京市海淀区2018届高三上学期期末考试数学文试题〕某汽车租赁公司为了调查A ,B 两种车型的出租情况,现随机抽取这两种车型各50辆,分别统计了每辆车在某个星期内的出租天数,统计数据如下表:A 型车75B 型车〔I 组别 分组 频数 频率 第1组【50,60〕 8 0.16 第2组【60,70〕 A ▓ 第3组【70,80〕 20 0.40第4组【80,90〕 ▓ 0.08 第5组 【90,100】 2 B合计 ▓ ▓ 频率 频率分布直方图关系〔只需写出结果〕;〔Ⅱ〕现从出租天数为3天的汽车〔仅限A ,B 两种车型〕中随机抽取一辆,试估计这辆汽车是A 型车的概率;〔Ⅲ〕如果两种车型每辆车每天出租获得的利润相同,该公司需要购买一辆汽车,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.21、〔北京市西城区2018届高三上学期期末考试数学文科试题〕为了解学生的身体状况,某校随机抽取了一批学生测量体重、经统计,这批学生的体重数据〔单位:千克〕全部介于45至70之间、将数据分成以下5组:第1组[4550),,第2组[5055),,第3组[5560),,第4组[6065),,第5组[6570],,得到如下图的频率分布直方图、现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生做初检、〔Ⅰ〕求每组抽取的学生人数;〔Ⅱ〕假设从6名学生中再次随机抽取2名学生进行复检,求这2名学生不在同一组的概率、22、〔北京市房山区2018届高三上学期期末考试数学文科试题〔解析版〕〕〔本小题总分值13分〕某校从参加高三年级期中考试的学生中随机选取40名学生,并统计了他们的政治成绩,这40名学生的政治成绩全部在40分至100分之间,现将成绩分成以下6段:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],据此绘制了如下图的频率分布直方图.〔Ⅰ〕求成绩在[80,90)的学生人数;〔Ⅱ〕从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在[90,100]的概率. 【精品推荐】北京2018届高三最新文科试题分类汇编〔含9区一模及上学期期末试题精选〕专题10:概率参考答案【一】选择题1.D2.A3.【答案】D解:不等式对应的区域为三角形DEF ,当点D 在线段BC 上时,点D 到直线+2=0y 的距离等于2,所以要使点D 到直线的距离大于2,那么点D 应在三角形BCF 中。
各点的坐标为(20)(40)(62)(42)(43)B C D E F ----,,,,,,,,,,所以105DE EF ==,,6BC =,3CF =,根据几何概型可知所求概率为163921251052BCF DEF S P S ∆∆⨯⨯===⨯⨯,选 D.4.【答案】C 解:从袋中任取2个球,恰有一个红球的概率1122244263C C P C ===,选C. 5.【答案】C 解:当23ABP ABC S S ∆∆=时,有121232AB PD AB CO =⨯,即23PD CO =,那么有23BP BC =,要使23ABP ABC S S ∆∆≤,那么点P 在线段BP 上,所以根据几何概型可知23ABP ABC S S ∆∆≤的概率是23BP BC =,选C.【二】填空题 6.147.π88.【答案】12解:,根据几何概型可知点M 取自△ABE 内部的概率为1122ABE ABCD AB h S P S AB h ∆===,其中h 为平行四边形底面的高。