k5七桥问题与一笔画教案(陈勇欢)
- 格式:doc
- 大小:155.01 KB
- 文档页数:8
七桥问题与一笔画广西玉林市陆川县万丈初中陈勇欢所用教材人教版七年级上册第三章P121-122教学任务分析教学流程安排课前准备教学过程一、展示问题引入新课18世纪时风景秀丽的小城哥尼斯堡中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥(如图),当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有七座桥,再回到出发点?这就是数学史上著名的七桥问题,你愿意试一试吗?二、分析:数学家欧拉知道了七桥问题他用四个点A 、B 、C 、D 分别表示小岛和岸,用七条线段表示七座桥(如图)于是问题就成为如何“一笔画”出图中的图形?A 岛D 岸B 岛C 岸● 点A 、B 表示岛点C 。
D 表示岸 ▎线表示桥通过故事的形式把问题引出来,一方面激发学生的学习兴趣,另一方面也可以让学生感受到他们今天探讨的课题就是当年困扰千百人的问题,这样可以增进学生的求知欲。
接着让学生通过对七座桥的观察,在图上试走等活动,留给学生一个悬念,为后面的探究活动埋下伏笔,同时也把学生的求知欲望推上了一个高潮。
欧拉利用了几何的抽象化和理想化来观察生活,建立了准确的数学模型,七年级数学开始讲点、线、面,这些几何概念是从现实中抽象化和理想化而来,在欧拉的眼中,在地图上一个城市是一个点。
岛和陆地抽象成点,桥抽象成线,直线是笔直的,生活中没有完全精确的笔直线,这是理想化了,正因为数学的这种抽象,才使数学具问题的答案如何呢?让我们先来了解三个新概念。
①有奇数条边相连的点叫奇点。
如:●●●②有偶数条边相连的点叫偶点。
如:●●③一笔画指:1、下笔后笔尖不能离开纸。
2、每条线都只能画一次而不能重复。
三、活动探究下列图形中。
请找出每个图的奇点个数,偶点个数。
试一试哪些可以一笔画出,请填●●●●●●让学生充分理解这三个概念为下面探究规律做准备。
教师重点关注:①学生能否理解一笔画②能否勇于克服数学活动中的困难,有学好数学的信心。
老师发给学生每人一份探究的图形与表格然后,学生动手、填表,教师参与学生活动,并在投影仪上展示学生的作品对于图①②③④⑤⑥⑨有什么共同的⑺⑻●●ABCCCBOBCDF用你发现的规律,说一说七桥问题的答案?①凡是“一笔画”,一定有一个“起点”,一个“终点”,还有一些“过路点”。
七桥问题与一笔画的通解(论文拟稿)在柯尼斯堡的一个公园里,有七座桥将一条河上的两座岛和两岸相连接。
当时有人提出了这么一个问题:如何一次性不重复不遗漏走完七座桥。
后来,数学家欧拉将它变成了一个一笔画问题(如图)。
从欧拉的简化图来看,似乎我们无论如何,也不能一笔画完图形。
但是,这是为什么呢?在这个图中,有ABCD 4个点,有五条线汇聚到A点,三条线汇聚到B,C,D 点,我们可以把这种有奇数条线(3条及以上)汇聚的点称为奇点,作为对应,把有偶数条线(4条及以上)汇聚的点称为偶点。
那么,我们不难发现,在任意封闭图形中,奇点的个数一定是偶数。
因为一条线定连接两个点(或重合),若存在奇数个奇点,则此图形定不符合封闭图形定义。
从一个奇点来看,若要一笔画成,则此奇点定是起笔点或停笔点。
起笔点,停笔点只有两个,所以说,奇点为两个或没有奇点的封闭图形可以一笔画。
回来看七桥问题,图中有四个奇点,以任意两个作为起笔点和落笔点,则还有两个奇点无法连接。
故七桥问题无解。
从上面总结出以下结论:■⒈凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
画时必须把一个奇点为起点,另一个奇点为终点。
■⒊其他情况的图都不能一笔画出。
(奇点数除以二便可算出此图需几笔画成。
)我们可以把得到的结论推广到所有一笔画解法存在问题,如汉字“田”,我们观察到,它有四个奇点,故不可以一笔画。
而汉字“日”,只有两个奇点,则可以一笔画。
早在1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,就阐述了这种方法,也为后来的数学新分支--拓扑学的建立奠定了基础。
从这里我们可以看出,伟大的创造一开始可能并不像我们想象的那么高深莫测,仔细观察生活,我们也会有了不起的发现。
七桥问题与一笔画广西玉林市陆川县万丈初中陈勇欢所用教材人教版七年级上册第三章P121-122教学任务分析教学流程安排课前准备教学过程一、展示问题引入新课18世纪时风景秀丽的小城哥尼斯堡中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥(如图),当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有七座桥,再回到出发点?这就是数学史上著名的七桥问题,你愿意试一试吗?二、分析:数学家欧拉知道了七桥问题他用四个点A 、B 、C 、D 分别表示小岛和岸,用七条线段表示七座桥(如图)于是问题就成为如何“一笔画”出图中的图形?● 点A 、B 表示岛点C 。
D 表示岸 ▎线表示桥通过故事的形式把问题引出来,一方面激发学生的学习兴趣,另一方面也可以让学生感受到他们今天探讨的课题就是当年困扰千百人的问题,这样可以增进学生的求知欲。
接着让学生通过对七座桥的观察,在图上试走等活动,留给学生一个悬念,为后面的探究活动埋下伏笔,同时也把学生的求知欲望推上了一个高潮。
欧拉利用了几何的抽象化和理想化来观察生活,建立了准确的数学模型,七年级数学开始讲点、线、面,这些几何概念是从现实中抽象化和理想化而来,在欧拉的眼中,在地图上一个城市是一个点。
岛和陆地抽象成点,桥抽象成线,直线是笔直的,生活中没有完全精确的笔直线,这是理想化了,正因为数学的这种抽象,才使数学具有“应用的广泛性”这一特点。
问题的答案如何呢?让我们先来了解三个新概念。
①有奇数条边相连的点叫奇点。
如:●●●②有偶数条边相连的点叫偶点。
如:●●③一笔画指:1、下笔后笔尖不能离开纸。
2、每条线都只能画一次而不能重复。
三、活动探究下列图形中。
请找出每个图的奇点个数,偶点个数。
试一试哪些可以一笔画出,请填让学生充分理解这三个概念为下面探究规律做准备。
教师重点关注:①学生能否理解一笔画②能否勇于克服数学活动中的困难,有学好数学的信心。
老师发给学生每人一份探究的图形与表格然后,学生动手、填表,教师参与学生活动,并在投影仪上展示学生的作品对于图①②③④⑤⑥⑨有什么共同的特点?如果它们能一笔画,必须从什么样的点出发?你得到了哪些结论⑼ABCC一定有一个“起点”,一个“终点”,还有一些“过路点”。
七桥问题与一笔画赤城四小 叶考良【教学目标】1、让学生体会用数学知识解决问题得方法。
2、通过其中抽象出点、线得过程,使学生对点、线有进一步得认识。
3、生活中得许多问题,可以用数学方法解决,但首先要通过抽象化与理想化建立数学模型、解决问题,通过“一笔画”得数学问题,解决实际问题。
4、究“一笔画”得规律得活动,锻炼学生克服困难得意志及勇于发表见解得好习惯。
5、“一笔画”问题及其结论得了解,扩大学生知识视野,激发学生学习兴趣。
【重点】,运用“一笔画”得规律,快速正确地解决问题。
【难点】,探究“一笔画”得规律 【教学过程】一、展示问题引入新课下面呢老师要给大家讲个故事: 18世纪时,欧洲有一个风景秀丽得小城哥尼斯堡,那里有七座桥。
(课件出示)如图所示:河中有两个小岛, 一个岛与河得左岸、右岸各有两座桥相连结,另一个岛与河得左岸、右岸各有一座桥相连结,两个岛屿之间也有一座桥相连结。
人们经常在桥上走过,一天又一天,7座桥上走过了无数得行人。
不知从什么时候起,脚下得桥梁触发了人们得灵感,一个有趣得问题在居民中传开了:谁能够一次走遍所有得7座桥,而且每座桥都只通过一次呢?大家都想找出问题得答案,但就是谁也解决不了这个七桥问题。
同学们,您能解决这个问题吗?为什么?您就是怎样想得。
二、分析并构建数学模型:后来著名数学家欧拉就是这样解决得:她把两个岛屿与陆地分别瞧成点A,B,C,D 、所走得七桥路线用线条表示,这样就构成了一个简单图形,于就是,七桥问题就变成了这样一个图形问题:也就就是怎样才能从A 、B 、C 、D 中得某一点出发,一笔画出这个图形。
这节课我们重温欧拉得研究之路,探寻什么样得图形可以一笔画。
一笔画指:1、下笔后笔尖不能离开纸。
2、每条线都只能画一次而不能重复。
同学们快速判断下面哪些图形能够一笔画?像这样各部分连在一起得图形,叫做连通图。
能一笔画得图形必须就是连通图。
A 岛D 岸B 岛C● 点A 、B 表示岛 点C 。
一笔画规律教学内容:一笔画规律教学目标:1、通过“过桥故事”,使学生了解许多重要的科学理论来源于生活。
2、掌握一笔画的规律,能应用规律解决简单的实际问题。
教学准备:多媒体课件、练习纸每人一张。
教学过程:一、故事引入,激发兴趣。
1、讲述哥尼斯堡七桥故事。
(但不先揭示结果)师:在18世纪,东普鲁士的哥尼斯堡是一座景色迷人的城市,普勒格尔河从这个城市穿过,并在这儿形成两条支流,把整座城市分割成4个区域。
当时有七座桥横跨普勒格尔河及其支流,把河岸、半岛和河心岛连接起来。
有趣的桥群和哥尼斯堡的迷人景色吸引了众多的游客,有人在游览时就提出这样的问题:怎样才能够一次走完这七座桥,每座桥只准通过一次,而且最后又回到出发点?2、出示七桥图片:师:刚才老师讲的故事就是著名的“七桥问题”,同学们仔细观察一下这幅图片,先猜一猜究竟有没有这样一条路线。
师:有的同学认为有,有的认为没有,究竟有没有呢,今天我们就来学习一笔画的有关知识,通过今天的学习,我相信大家一定会找到答案。
所谓一笔画,就是从图形上的某一点出发,笔不离开纸,而且每一条线都不重复,也就是一笔勾画出。
二、讲授新课:1、出示一组图形,让学生进行判断能不能一笔画出。
学生画后汇报。
师:(1)和(2)能,(3)不能,老师来演示一下看看是不是这样。
师:为什么同样是图形有的能一笔画出,有的却不能呢?我们知道,所有的图形都是由点和线组成的,图形中的点可以分成两大类:1、从一点出发的线的数目是双数的,我们把它叫做双数点;2、从一点出发的线的数目是单数的,我们把它叫做单数点。
引导学生观察图1,它有几个点?都是什么点?依次说出其他图形的点有什么特点。
2、合作探索。
师:一个图形能否一笔画成与双数点和单数点有没有关系呢?仔细观察一下这三个图形,分组讨论讨论,看看能不能找出其中的规律。
学生讨论后汇报。
3、课件出示一笔画规律:师:刚才老师对同学们讨论的结果进行了总结,我们一起来看一看一笔画究竟有怎样的规律。
2009—2010第一学期南开区六十三中学教师教案叫旧河,两河在城中心汇合成一条主流,叫做大河。
汇合处有两座小岛,河上有7座桥,岛上有古老的哥尼斯堡大学,有教堂,还有哲学家康德的墓地和塑像,因此城中的居民,尤其是大学生们经常沿河过桥散步。
渐渐地,爱动脑筋的人们提出了一个问题:一个散步者能否一次走遍7座桥,而且每座桥只通过一次,最后仍回到起始地点。
这个问题看起来似乎很简单,然而许多人作过尝试始终没有能找到答案。
因此,一群大学生就写信给著名的瑞士数学家欧拉,向他请教如何解决这个七桥问题。
欧拉从千百人次的失败,以深邃的洞察力猜想,也许根本不可能不重复地一次走遍这七座桥,并很快证明了这样的猜想是正确的。
欧拉是怎样解决这个问题的呢欧拉发现欧几里得几何并不适用于这个问题,因为桥不涉及“大小”,也不能用“量化计算”来解决。
相反地,这问题属于提出的“位置几何”。
欧拉想到,小岛无非是桥梁的连接地点,两岸陆地也是如此,那么可以把这四处地点用A,B,C,D四个点来表示,同时将七座桥表示成连结其中两点的七条线,就得到这样一张图.于是,欧拉建立了一个数学模型,一个人不重复地走遍所有的七座桥,就相当于从图中某一点出发,不重复地一笔画出图来.这样,“七桥问题”就转化为“一笔画”问题了。
欧拉注意到,如果一个图能一笔画成,那么一定有一个起点开始画,也有一个终点。
图上其它的点是“过路点”——画的时候要经过它。
这些点有什么特征呢我们先来看看“过路点”,作业回字形的图中呢(8个点都是奇点,所以无法一笔完成)其实欧拉的结论只是给出了什么样的图可以一笔画出,具体怎么画还要我们根据不同的情况具体分析。
大家有没有兴趣尝试一下好,那我们就来试试看。
1、最近有个摄影展览,所有作品都布置在画廊里,入口处有个指示图,怎样才能既不走冤枉路又不漏看任一幅作品呢可看作这样一个图形来处理。
}2、甲乙两个邮递员去送信,两人以同样的速度走遍所有的街道,甲从A点出发,乙从B点出发,最后都回到邮局(C点)。
七桥问题与一笔画__全国优质课说课各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢人教版七年级上册第三章P121-122教学任务分析教学目标知识技能1、让学生体会用数学知识解决问题的方法。
2、通过其中抽象出点、线的过程,使学生对点、线有进一步的认识。
数学思想生活中的许多问题,可以用数学方法解决,但首先要通过抽象化和理想化建立数学模型。
解决问题通过“一笔画”的数学问题,解决实际问题。
情感态度1、通过探究“一笔画”的规律的活动,锻炼学生克服困难的意志及勇于发表见解的好习惯。
2、通过“一笔画”问题及其结论的了解,扩大学生知识视野,激发学生学习兴趣。
重点运用“一笔画”的规律,快速正确地解决问题。
难点探究“一笔画”的规律。
教学流程安排活动流程图活动内容和目的活动1多媒体展示问题多媒体展示问题,引发学生的兴趣,从而乐于接触生活中的数学信息。
活动2展示名数学家欧拉对七桥问题的建模欧拉利用几何的抽象化和理想化来观察生活,建立了准确的数学模型。
问题3介绍三个新概念充分理解概念,为下面探究规律做准备。
活动4活动探究得出“一笔画”的规律。
活动5知识的拓宽与深化用“一笔画”规律将七桥问题拓宽与深化。
活动6课堂练习用“一笔画”规律解决生活中的实际问题活动7小结体会将实际问题建模成数学问题,再由数学问题解决实际问题的数学思想。
活动8布置作业把知识巩固、发展、提高课前准备教具学具补充材料电脑、、投影仪铅笔探究的图形。
搜集运用一笔画规律解决的一些实际问题编成练习题。
教学过程一、展示问题引入新课18世纪时风景秀丽的小城哥尼斯堡中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥(如图),当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有七座桥,再回到出发点?这就是数学史上著名的七桥问题,你愿意试一试吗?A岛问题的答案如何呢?让我们先来了解三个新概念。
①有奇数条边相连的点叫奇点。
如:●●●②有偶数条边相连的点叫偶点。
七桥问题课课程设计一、教学目标本节课旨在让学生理解并掌握七桥问题的背景、意义以及解决方法,培养学生的逻辑思维能力和问题解决能力。
具体目标如下:1.知识目标:使学生了解七桥问题的背景和基本概念,理解欧拉关于七桥问题的解决方案,掌握图论中的基本概念和算法。
2.技能目标:通过解决实际问题,培养学生运用图论知识分析和解决问题的能力,提高学生的数学建模和计算能力。
3.情感态度价值观目标:培养学生对数学问题的兴趣和好奇心,引导学生体验数学在实际生活中的应用价值,培养学生的团队合作意识和交流表达能力。
二、教学内容本节课的教学内容主要包括以下几个部分:1.七桥问题的背景介绍:向学生介绍哥尼斯堡七桥问题的历史背景和意义。
2.图论基本概念:讲解图、顶点、边、度等基本概念,使学生了解图的基本组成部分。
3.欧拉的解决方案:介绍欧拉如何解决七桥问题,让学生理解欧拉的解题思路和方法。
4.图的遍历算法:讲解深度优先搜索和广度优先搜索算法,并通过实例让学生掌握这两种算法的实现和应用。
5.练习与讨论:布置相关的练习题,让学生巩固所学知识,并进行小组讨论,分享解题心得。
三、教学方法为了提高学生的学习兴趣和主动性,本节课将采用多种教学方法,包括:1.讲授法:讲解七桥问题的背景、图论基本概念和欧拉的解决方案。
2.案例分析法:通过分析具体的案例,让学生理解图的遍历算法及其应用。
3.实验法:让学生动手编写程序,实现图的遍历算法,培养学生的实际操作能力。
4.小组讨论法:在练习与讨论环节,鼓励学生相互交流、分享解题心得,培养学生的团队合作意识和交流表达能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选择适合学生水平的教材,为学生提供系统的学习资料。
2.多媒体资料:制作PPT、动画等多媒体资料,生动形象地展示七桥问题和图论基本概念。
3.实验设备:准备计算机等实验设备,让学生动手编写程序,实现图的遍历算法。
七桥问题与一笔画广西玉林市陆川县万丈初中陈勇欢所用教材人教版七年级上册第三章P121-122教学任务分析教学流程安排课前准备教学过程一、展示问题引入新课18世纪时风景秀丽的小城哥尼斯堡中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥(如图),当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有七座桥,再回到出发点?这就是数学史上著名的七桥问题,你愿意试一试吗?二、分析:数学家欧拉知道了七桥问题他用四个点A 、B 、C 、D 分别表示小岛和岸,用七条线段表示七座桥(如图)于是问题就成为如何“一笔画”出图中的图形?A岛D 岸B 岛C 岸● 点A 、B 表示岛点C 。
D 表示岸 ▎线表示桥通过故事的形式把问题引出来,一方面激发学生的学习兴趣,另一方面也可以让学生感受到他们今天探讨的课题就是当年困扰千百人的问题,这样可以增进学生的求知欲。
接着让学生通过对七座桥的观察,在图上试走等活动,留给学生一个悬念,为后面的探究活动埋下伏笔,同时也把学生的求知欲望推上了一个高潮。
欧拉利用了几何的抽象化和理想化来观察生活,建立了准确的数学模型,七年级数学开始讲点、线、面,这些几何概念是从现实中抽象化和理想化而来,在欧拉的眼中,在地图上一个城市是一个点。
岛和陆地抽象成点,桥抽象成线,直线是笔直的,生活中没有完全精确的笔直线,这是理想化了,正因为数学的这种抽象,才使数学具有“应用的广泛性”这一特点。
问题的答案如何呢?让我们先来了解三个新概念。
①有奇数条边相连的点叫奇点。
如:● ●●②有偶数条边相连的点叫偶点。
如:● ●③一笔画指:1、下笔后笔尖不能离开纸。
2、每条线都只能画一次而不能重复。
三、活动探究下列图形中。
请找出每个图的奇点个数,偶点个数。
试一试哪些可以一笔画出,请填让学生充分理解这三个概念为下面探究规律做准备。
教师重点关注:①学生能否理解一笔画②能否勇于克服数学活动中的困难,有学好数学的信心。
本文为自本人珍藏版权所有仅供参考
七桥问题与一笔画
广西玉林市陆川县万丈初中陈勇欢
所用教材
人教版七年级上册第三章P121-122
教学任务分析
教学流程安排
课前准备
教学过程
一、展示问题引入新课
18世纪时风景秀丽的小城哥尼斯堡中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥(如图),当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有七座桥,再回到出发点?
这就是数学史上著名的七桥问题,你愿意试一试吗?
二、分析:数学家欧拉知道了七桥问题他用四个点A 、B 、C 、D 分别表示小岛和岸,用七条线段表示七座桥(如图)于是问题就成为如何“一笔画”出图中的图形?
● 点A 、B 表示
岛
点C 。
D 表示岸 ▎线表示桥
通过故事的形式把问题引出来,一方面激发
学生的学习兴趣,另一方面也可以让学生感
受到他们今天探讨的课题就是当年困扰千
百人的问题,这样可以增进学生的求知欲。
接着让学生通过对七座桥的观察,在图上试走
等活动,
留给学生一个悬念,为后面的探究活
动埋下伏笔,同时也把学生的求知欲望推上
了一个高潮。
欧
拉利用了几何的抽象化和理想化来观察生活,建立了准确的数学模型,七年级数学开始讲点、线、面,这些几何概念
是从现实中抽象化和理想化而来,在欧拉的眼中,在地图上
一个城市是一个点。
岛和陆地抽象成点,桥抽象成线,直线是笔直的,生活中没有完全精确的笔直线,这是理想化了,正因为数学的这种抽象,才使数学具有“应用的广泛性”这一特点。
问题的答案如何呢?让我们先来了解三个新概念。
①有奇数条边相连的点叫奇点。
如:
● ●
●
②有偶数条边相连的点叫偶点。
如:
● ●
③一笔画指:1、下笔后笔尖不能离开纸。
2、每条线都只能画一次而不能重复。
三、活动探究
下列图形中。
请找出每个图的奇点个数,偶点个数。
试一试哪些可以一笔画出,请填
让学生充分
理解这三个概念为下面探究规律做准备。
教师重点关注:①学生能否理解一笔画②能否勇于克服数学活动中的困难,有学好数学的信心。
老师发给学生每人一份探究的图形与表格然后,学生动手、填表,教师参与学生活动,并在投影仪上展示学生的作品
对于图①②③④⑤⑥⑨有什么共同的特点?如果它们能一笔画,必须从什么样的点出发?你得到了哪些结论
⑼
A
B
C
C
一定有一个“起点”,
一个“终点”,还有
一些“过路点”。
有
一条线进入过路点,
必有一条线离开过
路点,即对于过路点
来说,“进”和“出”
的线段总是成对出
现的,也就是说,对
于过路点,和它们相
连的线段总是偶数
条。
②对于起点和终点
来说,如果它们不是
同一点,那么和它们
相连的线段就是奇
数条,这时奇点有2
个.如果起点和终点
是同一点,那么就没
有奇点,即奇点个数
为0.
因为奇点个数为4,
所以七桥问题不能
一笔画,也就是说,
不能不重复地走过
所有的七座桥,再回
到出发点。
四、知识的拓宽与深化
在七桥问题中,如果允许再架一座桥,能否不重复地一次走遍这八座桥?这座桥应架在哪里?请你试一试!
五、课堂练习
1、一辆洒水车要给某城市的街道洒水,街道地图如下:你能否设计一条洒水车洒水的路线,使洒水车不重复地走过所有的街道,
2、下图是一个公园的平面图,能不能 使游人走遍每一条路不重复?入口和出口 又应设在哪儿?
在任何两地之间架桥都可以,这时奇点数2个,偶点数也是2个。
但只能不重复的走过,而不能回到出发点。
知识来源于生
活,通过学以致用,把在探究活
动中学到的知
识
又服务日常生活之中。
在此设置三道练习题,让学生分析
问题及解决问题的能力在此得到升华,同时
也
增强数学的趣味性。
C
3、甲乙两个邮递员去送信,两人同时出发以同样的速度走遍所有的街道,甲从A点出发,乙从B点出发,最后都回到邮局(C点)。
如果要选择最短的线路,谁先回到邮局?
六、小结:
师生共同完成,主要围绕以下两方面:
①在探究七桥问题中,我们运用了哪些
数学思想和方法去研究问题?谈谈你
活动后的感受。
②在探究过程中,你遇到了哪些困惑,
是如何解决的?还有哪些问题没有解
决?
七.课后作业
请你观察生活,设计一个运用“一笔画”的数学知识来解决的实际问题。
并与同伴交流。
引导学生把本节课的内容进行升华、提炼,帮助学生归纳解决问题过程中的思路和方法,让学生反思自己在学习中的优点和不足,使双基进一步落实,数学思想得到提升,改进学生学习,感悟数学价值。
引导学生关心身边的数学,善于用数学的眼光来审视客观世界中丰富多彩的现象,不仅能使学生学习到数学知识,同时也能让学生感受到数学在生活及社会各领域中的广泛应用。
教学设计简要说明
《七桥问题与一笔画》是一个实验与探究的课题。
这节课有两个重点:一是实验,二是探究。
所以在刚开始展示题目时,就让学生反复实验,最终仍是不能一次不重复地走过七座桥。
然后,引出欧拉对七桥问题的建模,把实际问题转化成“一笔画”的数学问题,并让学生体会到转化的数学思想以及从具体到抽象的思想。
接着是活动探究,这是本节课的首要重点。
在充分理解教材的基础上,我创造性地将教学内容重新打造,,特意为学生设计了一个探究的图形与表格,为学生有效探究规律搭建了一个非常好的“手脚架”。
学生在搜集、观察数据的同时,引发对数学问题的思考,培养学生的观察能力,用表格、语言表示规律,培养归纳猜想的能力。
其次,运用“一笔画”的规律解决七桥问题,并把七桥问题拓宽与深化。
最后,再次运用“一笔画”的规律解决生活中的实际问题,把数学问题又转化并应用到实际生活中,真正体现数学来源于生活并应用于生活这一特点,让学生感受到数学的价值。